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Empirical Bayes Analysis on the Power Law Process with
Natural Conjugate Priors
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Abstract: The power law process has been used extensively in software relia-
bility models, reliability growth models and more generally reliable systems.
In this paper we work on the Power Law Process via empirical Bayes (EB)
approach. Based on a two-hyperparameter natural conjugate prior and a
more generalized three-hyperparameter natural conjugate prior, which was
stated in Huang and Bier (1998), we work out an empirical Bayes (EB) pro-
cedure and provide statistical inferences based on the natural conjugate pri-
ors. Given past experience about the parameters of the model, the empirical
Bayes (EB) approach uses the observed data to estimate the hyperparamters
of priors and then proceeds as though the prior were known.
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1. Introduction

Bayesian inference on the power law process was also studied during the past
two decades. Bayesian point and interval estimates were obtained by Guida,
M. (1989); Kyparisis and Singpurwalla (1985) and Calabria and Pulcini (1997).
Informative and noninformative priors were both employed on failure truncated
data case. Bar-Lev et al. (1991) discussed both time and failure truncated data
by using noninformative priors. They derived prediction distributions of future
failure times and the number of failures in some future time interval. Calabria
(1990) also derived prediction distribution by using noninformative and informa-
tive priors. These references are given on a single system and usually assume
parameters are independent. Crow (1974) and Bain (1978) analyzed indepen-
dent equivalent multi-system by employing power law process. Power bounds
for a test of equality of trends in several independent power law processes were
discussed by Calabria, R., Guida, M. and Pulcini, G.(1992). Huang and Bier
(1998) developed a natural conjugate prior for the PLP. The prior they proposed
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has relatively simple closed-form expression for its moments.

When we only consider a single system, Bayesian framework can be utilized
appropriately. Now suppose we have k similar but non-identical systems and
each is modeled by PLP. This assumption is reasonable if k systems are made
from the same manufacturing process. Parametric empirical Bayes model is pro-
posed for the PLP with estimation of prior hyperparameters. We assume that
the parameters (in our case the (ηi, βi)s) of multiple systems are drawn from
certain prior distribution π(η, β). In section 2, we work on the EB procedure
with employing two-hyperparameter natural conjugate prior and in section 3
three-hyperparameter natural conjugate prior. In our paper, we applied Huang’s
(1998) prior to obtain Bayesian maximum likelihood estimate of a hyperparam-
eter a, posterior means of the shape parameter β and the scale parameter η in
closed forms. In section 4, several contour plots and three-dimension plots for the
congugate prior illustrate some properties of the hyperparameters in the natural
conjugate prior by changing hyperparameters’ value. Finally in section 5, we
make some remarks and conclusions.

2. Parametric Empirical Bayes on the PLP–Two Hyperparameters
(a,m)

Nonhomogeneous Poisson Process (NHPP) is a Poisson process in which in-
tensity function is not a constant. Let N(t) denote the cumulative number of
failures from time 0 to time t and suppose we have a sequence of successive fail-
ure times. The power law process (PLP) can be described as a nonhomogeneous
Poisson process {N(t), t ≥ 0} with intensity function

v(t) =
β

αβ
tβ−1, for α > 0, β > 0,

where α and β are the scale parameter and shape parameter respectively. Hence,
the mean value function λ(t) of the process is

λ(t) = E(N(t)) =
∫ t

0
v(s) ds =

∫ t

0

β

αβ
sβ−1 ds = (t/α)β .

It can be shown that the number of failures in any interval (t1, t2] has a Poisson
distribution with mean

∫ t2
t1

v(t) dt = (t2/α)β−(t1/α)β . When β < 1, the intensity
function ν(t) is decreasing and the system is improving. Under this situation,
the power law process can be applied as a reliability growth model.

Let η = α−β . Parametric empirical Bayes procedures on the Power Law
Process are easier to work with if the intensity function is parametrized as
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ν(t) = ηβtβ−1, t > 0.

The power law process has been widely used in reliability growth (Crow
(1982)), and software reliability models (Kyparisis and Singpurwalla (1985)), and
in repairable systems (Ascher and Feingold (1984); Engelhardt and Bain (1986);
Rigdon and Basu (1989)).

Assume there are k similar systems from the same manufacturing process.
Let ~ti denote the vector of failure times for system i, and let

T = [~t1,~t2, . . . ,~tk]

denote the two-dimensional array of failure times. Suppose that the ith system
has been operated from time 0 until the nith failure and the nith failure occurs
at time tini . Clearly ti1 < ti2 < . . . < tini . This is the failure truncated case,
where ni is a constant. The likelihood function of η, β associated with the first
ni failure times for system i is

L(~ti|η, β) = L(ti1, ti2, . . . , tini |η, β) = ηniβni(
ni∏

j=1

tij)β−1 exp(−ηtβini
). (2.1)

A natural conjugate prior distribution for the parameter η, β is given by

π0(η, β|m,a) = c−1ηm−1βm−1(exp(−a)tmini
)β−1 exp(−ηtβini

), (2.2)

here (m,a) are positive hyperparameters. c is a constant.

c =
∫ ∫

ηm−1βm−1(exp(−a)tmini
)β−1 exp(−ηtβini

)dηdβ

= Γ2(m)a−m[exp(−a)tmini
]−1.

Then the marginal distribution of failure time ~ti from system i given (m,a) is

m(~ti|m,a) =
∫ ∫

L(ti1, ti2, . . . , tini |η, β)π0(η, β|m,a)dηdβ

= c−1

∫ ∫
ηni+m−1βni+m−1[exp(−a)tmini

ni∏
j=1

tij ]β−1 exp(−2ηtβini
)dηdβ

=
2−(m+ni)Γ2(ni + m)[a + ni ln(tini) − ln

∏ni
j=1(tij)]

−(ni+m)∏ni
j=1 tijΓ2(m)a−m

. (2.3)
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Suppose k systems are independent, we have the marginal distribution of T
given (m,a) is

m(T |m,a) = m(~t1|m,a)m(~t2|m,a) · · ·m(~tk|m,a)

=
k∏

i=1

{
Γ2(ni + m)[a + ni ln(tini) − ln

∏ni
j=1(tij)]

−(ni+m)

2m+ni
∏ni

j=1 tijΓ2(m)a−m
}.(2.4)

In order to obtain Maximum likelihood estimates (MLEs) of m and a, we need
to take a logarithm of (2.4)

ln[m(T |m,a)] =
k∑

i=1

{
− (m + ni) ln 2 + 2 lnΓ(ni + m)

−(ni + m) ln[a + ni ln(tini) − ln
ni∏

j=1

(tij)]

− ln
ni∏

j=1

tij − 2 ln Γ(m) + m ln a

}
. (2.5)

Then after taking the derivative with respect to a in (2.5) and setting it equal to
zero, we have

k∑
i=1

[
ni + m

a + ni ln(tini) − ln
∏ni

j=1 tij
− m

a

]
= 0. (2.6)

Similarly, after taking the derivative with respect to m in (5) and setting it equal
to zero, we have

k∑
i=1

− ln 2 +
2Γ′(ni + m)
Γ(ni + m)

− [a + ni ln(tini) − ln
ni∏

j=1

(tij)] − 2
Γ′(m)
Γ(m)

+ ln a

 = 0.

(2.7)
According to the following well known property of Gamma function:

−Γ′(z)
Γ(z)

=
1
z

+ γ +
∞∑
i=1

(
1

n + z
− 1

n
),

equation (2.7) can be simplified to

2
k∑

i=1

ni∑
j=1

1
m + j − 1

+ k ln
a

2
− ka −

k∑
i=1

ni ln(tini) − ln
ni∏

j=1

(tij)

 = 0. (2.8)
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MLEs of a and m can be obtained by solving equations (2.6) and (2.8) numer-
ically. In general, the likelihood equations do not admit a closed form solution
and a numerical method must be employed to approximate the MLEs of the hy-
perparameters (a,m).

In the special case that we consider one system, which is k = 1, with observa-
tions (t1, t2, . . . , tn), we are able to obtain the estimate of a in a closed form from
Bayesian maximum likelihood approach. The following results shall be considered
as Bayesian inference.

â = m̂ ln tn − m̂

n
ln

n∏
i=1

ti.

Then we can use Newton-Raphson method to obtain MLE for m. The posterior
distribution is

π(η, β|~t, n, m̂, â) =
c−1ηn+m̂−1βn+m̂−1[exp(−â)tm̂n

∏n
i=1 ti]β−1 exp(−2ηtβn)

m(~t|m̂, â)
.

(2.9)
From the form of equation (2.9), the prior distribution and posterior distribution
are from the same family, therefore, priors are natural conjugate priors. The
posterior mean for η has a closed form. The posterior mean is considered as a
Bayesian estimation of η which is given by

η̃B = E(η) =
∫ ∫

ηπ(η, β) dβ dη

=
Γ(n + m̂ + 1)
2Γ(m̂ + n)

{
â + (n + 1) ln tn − ln

∏n
i=1 ti

â + n ln tn − ln
∏n

i=1 ti
}
−(n+m̂)

.

The posterior mean for β also has a closed form and is given by

β̃B = E(β) =
∫ ∫

βπ(η, β) dη dβ

=
Γ(n + m̂ + 1)

Γ(n + m̂)(â + n ln tn − Σn
i=1 ln ti)

.

3. Parametric Empirical Bayes on the PLP–Three Hyperparameters
(m,a, ym)

Now we consider a more general conjugate prior with three hyperparameters
(m,a, ym), which adds a hyperparameter ym. Recall the likelihood function:

L(~ti|η, β) = L(ti1, ti2, . . . , tin|η, β) = ηniβni(
ni∏

j=1

tij)β−1 exp(−ηtβini
).
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The natural conjugate prior distribution for the power law failure model is given
by

π0(η, β|m,a, ym) ∝ ηm−1βm−1(
m∏

i=1

yi)β−1 exp(−ηyβ
m). (3.1)

The parameters y1 . . . ym can be interpreted as a pseudo-data set, where m is
the number of failures and yi is the time of the ith failure. For simplicity and
without loss of generality, we can choose

∏m
i=1 yi = exp(−a)ym

m. Thus the natural
conjugate prior becomes

π0(η, β|m, a, ym) = c−1ηm−1βm−1(exp(−a)ym
m)β−1 exp(−ηyβ

m), (3.2)

here (m,a, ym) are positive hyperparameters. c is a constant and

c =
∫ ∫

ηm−1βm−1(exp(−a)ym
m)β−1 exp(−ηyβ

m)dηdβ

= Γ2(m)a−m[exp(−a)ym
m]−1.

m(~ti|m, a, ym)

=
∫ ∫

L(ti1, ti2, . . . , tini |η, β)π0(η, β|m,a, ym)dηdβ

=
1
c

∫
Γ(ni + m)[tβini

+ yβ
m]−(m+ni)[exp(−a)ym

m

ni∏
j=1

tij ]β−1βni+m−1dβ.

Since k systems are independent, the likelihood distribution of T given (m, a, ym)
is

m(T |m,a, ym) = m(~t1|m,a, ym)m(~t2|m,a, ym) · · ·m(~tk|m,a, ym).

Again the likelihood equations do not admit a closed form solution and a numer-
ical method need to be employed to approximate the maximum likelihood esti-
mates of (a,m, ym). However, suppose we only have observations (t1, t2, . . . , tn)
from one system, which means we only have a random sample of size one (η, β)
from the prior π(η, β|a,m, ym), our inference shall be regarded as Bayesian maxi-
mum likelihood approach. For this special case, we have the posterior distribution
of (η, β) is

π(η, β|~t, n, m̂, â, ŷm) =
c−1ηn+m̂−1βn+m̂−1[exp(−â)ŷm̂

m

∏n
i=1 ti]β−1 exp(−η(ŷβ

m + tβn))
m(~t|m̂, â, ŷm)

.

(3.3)



Empirical Bayes Analysis on the Power Law Process 145

The posterior mean for η is

E(η) =
∫ ∫

ηπ(η, β) dβ dη

=
Γ(n + m̂ + 1)

∫
βn+m̂−1[exp(−â)ŷm̂

m

∏n
i=1 tn]β−1(ŷβ

m + tβn)−(n+m̂+1)dβ

Γ(n + m̂)
∫

βn+m̂−1[exp(−â)ŷm̂
m

∏n
i=1 tn]β−1(ŷβ

m + tβn)−(n+m̂)dβ
.

The posterior mean for β is

E(β) =
∫ ∫

βπ(η, β) dη dβ

=
∫

βn+m̂[exp(−â)ŷm̂
m

∏n
i=1 tn]β−1(ŷβ

m + tβn)−(n+m̂)dβ∫
βn+m̂−1[exp(−â)ŷm̂

m

∏n
i=1 tn]β−1(ŷβ

m + tβn)−(n+m̂)dβ
.

It should be addressed that the problem with parametric Emperical Bayes
(PEB) is that we assume that the estimates of the prior parameters are the prior
parameters themselves. The PEB approach does not account for uncertainty in
the estimates of these hyperparameters. Variation in these estimates would lead
to more variation in the estimates of function of parameters, such as intensity
and reliability etc.

4. Prior Plots

The joint prior density is given by (3.2). By taking integral with respect to
η,

π0(β|m,a, ym) =
amβm−1 exp(−aβ)

Γ(m)
. (4.1)

The marginal prior distribution of β has a Gamma distribution with mean m/a
and variance m/a2. The conditional prior distribution of η given β is

π0(η|β) =
π0(η, β)
π0(β)

=
yβm

m ηm−1 exp(−ηyβ
m)

Γ(m)
,

which is Gamma distribution with mean m/yβ
m and variance m/y2β

m . Figure 1 and
2 are the prior density plots given different value of hyperparameters.
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Figure 1: Prior Contour Plots and Three-Dimension Plots - Part I

• In Figure 1, the first two are prior’s contour plot and three-dimension plot
when m = 2 a = 2 ym = 2. Only we only draw x-axis of η in [0,1] and y-axis of
β in [0,1].
• In Figure 1, the bottom two graphs show that if only a increases from 2 to
6 and the other parameters stay unchanged, whose threshold values are 2, then
both the mean m/a and the variance m/a2 decrease. The graphs move closer to
x-axis and become more concentrated.
• In Figure 2, the first two graphs show that if only ym increases from 2 to 6
and the other parameters stay unchanged, whose threshold values are 2, then the
mean m/yβ

m decreases and the variance m/y2β
m decreases. The graph move closer

to y -axis and become more concentrated.
• In Figure 2, the bottom two graphs show that if only m increases from 2 to
6 and the other parameters stay unchanged, whose threshold values are 2, then
both the mean and the variance increase. The graphs move away from x-axis and
y-axis and become more dispersed.
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Figure 2: Prior Contour Plots and Three-Dimension Plots - Part II

5. Conclusions and Remarks

An empirical Bayes (EB) approach on the Power Law Process with natural
conjugate priors has been developed in this paper. We obtained a closed form
of marginal distribution of observed data in the two-hyperparameter case. For
a special case of single system, we derived Bayesian maximum likelihood esti-
mates of hyperparameters and also found a closed form of the posterior means of
model parameters (η, β). Similar empirical Bayes approach based on the three-
hyperparameter prior has been shown and the marginal distribution of observed
data and estimates of (η, β) have been derived in a simpler form.

It is fundamental basis of Bayesian decision theory that statistical inference
should start with the determination of three factors: the distribution family for
the observations, the prior distribution for the parameters and the loss associ-
ated with decisions. Further work can be done to check the robustness of the
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priors we used, such as noninformative priors, natural conjugate EB priors and
nonparametric Empirical Bayes priors. We can slightly change the prior and see
what happens to the decision. Two commonly used measures are the range of
posterior decision and comparing Bayes risk criteria.
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