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Abstract: Clustered binary samples arise often in biomedical investigations.
An important feature of such samples is that the binary responses within
clusters tend to be correlated. The Beta-Binomial model is commonly ap-
plied to account for the intra-cluster correlation – the correlation between
responses within the clusters – among dichotomous outcomes in cluster sam-
pling. The intracluster correlation coefficient (ICC) quantifies this correla-
tion or level of similarity. In this paper, we propose Bayesian point and inter-
val estimators for the ICC under the Beta-Binomial model. Using Laplace’s
method, the asymptotic posterior distribution of the ICC is approximated by
a normal distribution. The posterior mean of this normal density is used as
a central point estimator for the ICC, and 95% credible sets are calculated.
A Monte Carlo simulation is used to evaluate the coverage probability and
average length of the credible set of the proposed interval estimator. The
simulations indicate that for the situation when the number of clusters is
above 40, the underlying mean response probability falls in the range of
[0.3;0.7], and the underlying ICC values are ≤ 0.4, the proposed interval
estimator performs quite well and attains the correct coverage level. Even
for number of clusters as small as 20, the proposed interval estimator may
still be useful in the case of small ICC (≤ 0.2).

Key words: Beta-Binomial model, correlated binary responses, interval es-
timation, intracluster correlation coefficient, Laplace’s method, posterior
point estimation.

1. Introduction

The intraclass correlation coefficient (ICC) ρ has wide applications in biology,
epidemiology and medical research. In family studies, it is used to measure the
degree of intra-family resemblance with respect to characteristics such as blood
pressure, weight and height. Moreover, it is used as means of investigating the
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heritability of certain traits, whether such traits are continuous or dichotomous.
An extensive literature, summarized in Shoukri and Ward (1985) and Donner
(1986) exists for the statistical analysis of ICC for continuous response variables
using the frequentist approach. Recently, Bayesian techniques have been devel-
oped; for example Spiegelhalter (2001). For binary traits statistical analysis of
the ICC were extensively discussed by Mak (1988), Donner, Klar and Eliasziw
(1995), and Gao, Klar and Donner (1997). Less developed is Bayesian statistical
analysis of ICC for binary outcomes, which are of considerable practical im-
portance in many toxicological and psychological studies. Within the Bayesian
paradigm, the application of multivariate normal theory of continuous outcomes
to binary variables is not strictly valid, and appropriate modeling strategy is
needed. Turner, Omar and Thompson (2006) obtain the posterior distribution of
ρ under the hierarchical logistic model and the beta binomial model using MCMC
(Markov Chain Monte Carlo) methods. The posterior median is used as a point
estimator and 95% interval estimates are calculated.

In this paper we develop a Bayesian estimator of the ICC under the Beta-
Binomial model of correlated binary responses. In particular, we derive the ap-
proximate/asymptotic posterior distribution of the ICC, and use it to obtain the
point and interval estimators. The remainder of the paper is organized as follows:
Section 2 describes the underlying Beta-Binomial model. The proposed Bayesian
estimator and its approximate posterior distribution are presented in Section 3.
To study the coverage probability and average length of the credible set of the
proposed interval estimator, a simulation study is given in Section 4. This is
followed by an example in Section 5, and discussion in Section 6.

2. The Beta-Binomial Model

Consider a random sample of k clusters each of size ni (i = 1, 2, . . . , k). We
assume further that all subunits within the ith cluster , Yij (j = 1, 2, . . . , ni), are
binary taking one of two possible values of Yij , success or failure (coded as one
and zero, respectively). The Yij ’s are conditionally independent with probability
P (Yij = 1|pi) = pi , where 0 < pi < 1. Let Yi· =

∑ni
j=1 Yij denote the total

number of successes in the ith cluster. Thus, the conditional distribution of
Yi·|pi is Binomial(ni, pi). In addition, it is assumed that the pi’s are identically
independently distributed as Beta(a, b) with mean π = a/(a + b) and variance
v = ab/(a + b)2(a + b + 1) = π(1−π)/(a + b + 1). The unconditional distribution
of Yi· is well known as the Beta-Binomial(ni, a, b) with the following density

P (Yi· = yi) =
(

ni

yi

)
B(a + yi, ni + b − y)

B(a, b)
,

yi = 0, 1, . . . , ni .
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The correlation between any pair of responses within the same cluster corr(Yij ,
Yil), j 6= l, is given by the intracluster correlation coefficient ρ = 1/(1 + a + b)
(Moore, 1987). Prentice (1986) showed that the Beta-Binomial distribution is
valid for ρ values falling in the range

min
(

π

nmax − π − 1
,

1 − π

nmax + π − 2

)
< ρ < 1,

where nmax is the size of the largest cluster.
A positive correlation means that responses within a cluster are more alike.

An example for positive correlation is in toxicological experiments designed to
study teratogenic effects of chemical compounds on animals. Fetuses within a
litter tend to respond more similarly than fetuses from different litters, a phe-
nomenon known as litter effect. Less commonly, the observations within a clus-
ter are negatively correlated. This occurs for example in family studies where
children may be competing for maternal care. The focus of this paper is on
applications where the ICC is positive.

Following the logic of Moore (1987), the distribution of the pi’s may be repa-
rameterized in terms of π and ρ, i.e. pi ∼ Beta(π, ρ).

3. A Bayesian Estimator of the ICC

The Beta-Binomial model in (2.1) is a popular example for hierarchical mod-
els. In the first stage, Yi·|pi are independent Binomial(ni, pi). In the second stage,
pi|π, ρ are i.i.d. Beta(π, ρ) . For a full Bayesian analysis, the hyperparameters,
π and ρ , are in turn drawn from a hyperprior distribution. In this paper, it is
assumed that they are distributed as Uniform(0, 1), and that they are -a priori-
independent of each other. The joint posterior distribution is obtained via Bayes
theorem (Carlin and Louis, 2000, p. 19):

G(π, ρ|y) =
∫

p
f(p, π, ρ|y)dp

=
∫

p

f(p, π, ρ, y)
f(y)

dp

=
∫

p

f(y|p)f(p|π, ρ)f(π, ρ)
f(y)

dp

The marginal posterior distribution of ρ is then derived via integrating p out,
that is

g(ρ|y) =
∫

π

∫
p

f(y|p)f(p|π, ρ)f(π, ρ)
f(y)

dpdπ.
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The evaluation of the previous integrals is intractable and computationally
difficult. An alternative is to use asymptotic techniques to obtain approximations
of the posterior density. In this paper, when the number of clusters k gets large
and the cluster size n remains small, g(π, ρ|y) is approximated using Laplace’s
method. Following the logic of Kass and Steffey (1989), under mild regularity
conditions, g(π, ρ|y) is asymptotically Bivariate Normal with mean and variance
given by the posterior mode λ̃ and the inverse of the negative Hessian of the log
posterior evaluated at the mode

Σ̃ = (−D2 log(Lf(π, ρ))−1|λ̃,

where L =
∏k

i=1

∫
f(yi·|pi)f(pi|π, ρ)dpi, and f(π, ρ) is the prior introduced on

λ = (π, ρ). When the Uniform prior on λ is adopted, which is the case here, λ̃
and Σ̃ can be replaced by the MLE’s, π̂ and ρ̂, and the inverse of the observed
information matrix. That is asymptotically, g(π, ρ|y) ∼ Bivariate Normal(λ̂, Σ̂),
where, λ̂ = (π̂, ρ̂) and Σ̂ = (Îobs)−1, the inverse of the observed information
matrix evaluated at π̂ and ρ̂. The elements of the observed information matrix
are given by

Îij =
[
− ∂2

∂λi∂λj
log(L)

]
λ=λ̂

.

For the case of the Beta-Binomial model,

L =
k∏

i=1

(
ni

yi

)
B(a + yi, ni + b − yi)

B(a, b)
,

where a = π(1 − ρ)/ρ, and b = (1 − π)(1 − ρ)/ρ.
By properties of the Bivariate Normal distribution, the marginal posterior dis-

tribution g(ρ|y) is asymptotically Normal (ρ̂, σ2
∗), where σ2

∗ is the corresponding
diagonal element of Σ̂. Griffiths (1973) describes an approach for ML estimation
of the Beta-Binomial distribution with n = ni (i = 1, 2, . . . , k). The ML esti-
mators of π and θ, where θ = ρ/(1 − ρ), are the solution of the following two
equations (Griffiths, 1973):

∂ lnL

∂π
=

n−1∑
i=0

(
Sn − Si

π + iθ
− Sn−1−i

1 − π + iθ

)
= 0

lnL

∂θ
=

n−1∑
i=1

i

(
Sn − Si

π + iθ
+

Sn−i−i

1 − π + iθ
− Sn

1 + iθ

)
= 0,

where, Si =
∑I

y=0 fy, (i = 0, 1, 2, . . . , n) and fy is the observed frequency (y =
0, 1, 2, . . . , n) .
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Equations (3.1) may be solved iteratively using numerical algorithms such as
Newton-Raphson method (Press et al., 2007, chap. 9) or the Jenkins-Traub algo-
rithm (Jenkins and Traub, 1970). The second derivatives can be easily obtained
to find the information matrix of π and θ, Î(π, θ), and are given by:

∂2 lnL

∂π2
=

n−1∑
i=0

(
Si − Sn

(π + iθ)2
− Sn−1−i

(1 − π + iθ)2

)
∂2 lnL

∂π∂θ
=

n−1∑
i=0

i

(
Si − Sn

(π + iθ)2
+

Sn−1−i

(1 − π + iθ)2

)
∂2 lnL

∂θ2
=

n−1∑
i=0

i2
(

Si − Sn

(π + iθ)2
− Sn−1−i

(1 − π + iθ)2
+

Sn

(1 + iθ)2

)

V ar(θ̂) is then the corresponding diagonal element of [Î(π, θ)]−1. The MLE of ρ
is given by

ρ̂ = θ̂/(1 + θ̂). By the Delta method (Kendall and Stuart, 1986, p. 324),

var(ρ̂) =
1

(1 + θ̂)4
var(θ̂).

Thus, the asymptotic posterior distribution of ρ is

ρ|y ∼ N

(
θ̂

1 + θ̂
,

1

(1 + θ̂)4
var(θ̂)

)
.

The posterior mean, mode or median can be used as a point estimator of ρ. In
this paper, a squared error loss function is adopted. Therefore, the Bayes rule
(the point estimator that minimizes the posterior risk) is the posterior mean. A
100(1 − α)% credible set (Bayesian confidence interval) for ρ is given by the 2.5
and 97.5 per cent quantiles of this posterior distribution.

4. Simulation Study

In order to evaluate the accuracy of the Bayesian credible set, we need to
conduct a large scale Monte Carlo simulation. Since there are many parameters
involved (n, k, π, ρ), a theoretical evaluation is difficult to conduct. Therefore, the
simulation approach is adopted, to study the coverage probability and average
length of the credible set of the proposed estimator. For the case of cluster size
n = 2, the situations were considered where the number of clusters k equals 20,
40, 100 and 200, the underlying mean response probability p equals 0.1, 0.2, 0.3,
0.4, 0.6, and 0.7 and the ICC, ρ, takes one of four values 0.1, 0.2, 0.4, 0.6. A
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Table 1: Performance of the proposed credible set based on Monte Carlo sim-
ulation: the estimated coverage probability for the ICC at nominal level 0.95,
average length of the credible set (in parentheses), and the proportion of invalid
samples [in brackets]

π 0.1 0.2 0.3

k ρ 0.1 0.2 0.4 0.6 0.1 0.2 0.4 0.6 0.1 0.2 0.4 0.6

20 0.93 0.94 0.97 0.98 0.94 0.94 0.90 0.87 0.95 0.93 0.86 0.73
(1.07) (1.05) (1.01) (0.91) (0.94) (0.94) (0.89) (0.75) (0.87) (0.87) (0.80) (0.60)
[0.70] [0.57] [0.43] [0.42] [0.34] [0.24] [0.12] [0.12] [0.11] [0.06] [0.03] [0.03]

40 0.97 0.95 0.90 0.82 0..96 0.94 0.86 0.73 0.92 0.92 0.90 0.75
(0.84) (0.84) (0.81) (0.70) (0.66) (0.67) (0.65) (0.51) (0.62) (0.63) (0.59) (0.45)
[0.46] [0.35] [0.18] [0.12] [0.10] [0.04] [0.02] [0.01] [0.01] [0.00] [0.00] [0.00]

100 0.97 0.94 0.88 0.74 0.92 0.93 0.93 0.79 0.94 0.94 0.94 0.71
[0.15] [0.06] [0.01] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
(0.49) (0.53) (0.54) (0.43) (0.42) (0.44) (0.44) (0.34) (0.40) (0.40) (0.39) (0.26)

200 0.91 0.92 0.92 0.74 0.94 0.94 0.94 0.78 0.96 0.94 0.95 0.75
(0.34) (0.38) (0.40) (0.30) (0.30) (0.31) (0.31) (0.23) (0.28) (0.29) (0.27) (0.19)
[0.02] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

π 0.4 0.6 0.7

k ρ 0.1 0.2 0.4 0.6 0.1 0.2 0.4 0.6 0.1 0.2 0.4 0.6

20 0.92 0.93 0.87 0.69 0.92 0.98 0.92 0.78 0.94 0.92 0.92 0.84
(0.85) (0.84) (0.75) (0.55) (0.86) (0.85) (0.61) (0.61) (0.87) (0.87) (0.83) (0.69)
[0.02] [0.01] [0.00] [0.00] [0.02] [0.01] [0.00] [0.00] [0.10] [0.05] [0.02] [0.03]

40 0.95 0.93 0.92 0.74 0.94 0.93 0.93 0.85 0.93 0.92 0.92 0.90
(0.61) (0.61) (0.56) (0.41) (0.61) (0.61) (0.57) (0.46) (0.62) (0.63) (0.61) (0.52)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00]

100 0.95 0.94 0.95 0.77 0.96 0.94 0.95 0.85 0.94 0.93 0.94 0.94
(0.39) (0.39) (0.36) (0.26) (0.39) (0.39) (0.37) (0.28) (0.40) (0.40) (0.39) (0.34)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

200 0.94 0.95 0.94 0.81 0.94 0.95 0.95 0.90 0.95 0.95 0.94 0.95
(0.28) (0.27) (0.26) (0.19) (0.28) (0.27) (0.26) (0.21) (0.28) (0.29) (0.27) (0.24)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

fully factorial combination of these three factors was used, giving a total of 96
combinations. For each combination, 2000 valid samples were generated. In situ-
ations where the parameter π was near the edge, i.e., outside the range [0.3; 0.7],
the percentage of samples that gave invalid solutions was quite high, sometimes
reaching 70%. Whenever a generated sample led to an invalid point estimate of
π or ρ (i.e., when either parameter falls out of range), the sample was discarded
and replaced by a new one until a total of 2000 valid samples were obtained.
As for the limits of the interval estimates, if they exceeded one or fell below the
minimum possible value given in equation (2.2), then they were replaced by the
appropriate extreme value. For each combination of the simulation factors, the
coverage probability and the average length of the credible set were calculated.
A SAS program was used to generate the data from the Beta-Binomial distribu-
tion1. The random numbers were generated in two steps. First, the probability

1SAS Institute Inc., (2004). Version 8.2. Cary, NC, USA.



Bayesian Estimator of the Intracluster Correlation Coefficient 133

of success, pi, were generated from the Beta distribution. In the second step, the
yi’s were generated from a Binomial(2, pi). The NSolve function for numerically
solving sets of simultaneous equations in Mathematica software was used to find
the roots of the ML equations2.

Table 1 shows for 95% nominal credible sets, the estimated coverage probabil-
ity, the average length of the resulting credible sets, and the percentage of invalid
samples. First, note that the estimated coverage probability is above or less than
the nominal level by no more than 3% in 67 out of the 96 cases, i.e., 69.79% of the
time. This ratio reaches 97.22% for the case where, simultaneously, the number
of clusters increases (m ≥ 40) , ICC values are ≤ 0.4 , and π is in the interval [0.3;
0.7]. Even for number of clusters as small as 20, the proposed interval estimator
may still be useful in the case of small ICC (≤ 0.2). On the other side, the worst
situation occurs when ρ = 0.6. Here, the coverage probability does not attain its
nominal level.

Examining the average length of the confidence interval, it can be seen that
, for all other conditions fixed, the average confidence interval length tends to
decrease as either the number of clusters increases, or when π increases.

For π ≤ 0.4, all invalid samples in this simulation study are the result of the
case when f2 = 0. The number of invalid samples increases as π decreases. Recall
the following relationship between Prb[yi1 = 1, yi2 = 1] and pi , and consequently
π, (Shoukri and Pause,1998, p. 66):

Prb[yi1 = 1, yi2 = 1] = p2
i + ρpi(1 − pi).

A small π/pi will result in a small Prb[yi1 = 1, yi2 = 1], and thus the chances of
obtaining f2 = 0 will increase. For any fixed π, the percentage of invalid samples
decreases as either the value of ρ increases or the sampled number of clusters,m,
increases. This can be explained also by equation (4.1), where it is clear that
there is a proportional relationship between ρ and Prb[yi1 = 1, yi2 = 1]. It also
makes sense to say that as more clusters are sampled, the chances of obtaining
two positive responses within any cluster will increase. Therefore, as m increases,
the probability of obtaining f2 = 0 will decrease. By a similar logic, for π ≥ 0.6,
the invalid samples are the result of the case when f1 = 0.

Based on this simulation study, it is recommended to use the proposed es-
timator when the sampled number of clusters is at least 40, when it is believed
that the ICC values are ≤ 0.4, and the probability of positive response π is in
the range [0.3;0.7]. A limitation of this simulation study is that it is restricted to
the case of cluster size 2.

2Wolfram Research Inc. (2005). Version 5.2. Champaign, IL, USA.
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5. Example

To illustrate the application of the proposed estimator, an example is con-
sidered. In ophthalmologic studies, the eye is the unit for statistical analysis
rather than the individual. Typically, an individual contributes two eyes worth
of information whose values might be correlated. Each person is a cluster of size
two. To obtain valid inference, the statistical analysis must account for the effect
of the intracluster correlation. Berson, Rosner and Simonoff (1980) and Rosner
(1982) describe an ophthalmologic study conducted at the Massachusetts Eye
and Ear Infirmary from 1970 to 1979 of an outpatient population of 216 persons
aged 20-39 with retinitis pigmentosa (RP). This population was classified into the
genetic types of autosomal recessive RP (AR), autosomal dominant RP (DOM),
sex-linked RP (SL) , and isolate RP (ISO) for a study of differences among these
four groups on certain measurements. The details of the study design and the
procedures for genetic classification are given by Berson, Rosner and Simonoff
(1980). In the current paper, the binary outcome of interest is the best corrected
Snellen visual acuity (VA). Any eye is considered affected if VA is 20/50 or worse,
and normal if VA is 20/40 or better. The number of affected eyes for the given
sample is presented in Table 2. Hence, S0 = f0 = 92, S1 = 129, and S2 = 216.

Table 2: Distribution of the number of affected eyes

f0 f1 f2 total

92 37 87 216

The goal is to estimate the ICC for this outpatient population using the
Bayesian estimator described in section 3. The MLE estimators of π and θ are
the solution of the following two equations:

S2 − S0

π
− S1

1 − π
+

S2 − S1

1 − π + θ
= 0

S2 − S1

π + θ
+

S0

1 − π + θ
− S2

1 + θ
= 0

Equations (5.1) can be easily solved using a rootfinding routine in mathemati-
cal or statistical computer software such as Mathematica. Using the Nsolve func-
tion of Mathematica, the solution of equations (5.1) is found to be π̂ = 0.488426
and θ̂ = 1.917357 . The covariance matrix is given by:

V ar(π̂, θ̂) =
[

0.00095853 0.00010274
0.00010274 0.19060900

]
.
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Therefore, var(θ̂) = 0.190609 , and the MLE of ρ is ρ̂ = θ̂/(1+ θ̂) = 0.657224.
By the Delta method, var(ρ̂) = 0.00263139. The asymptotic posterior distribu-
tion of ρ/y is N(0.657224, 0.00263139). The proposed point estimate of the ICC
is given by the posterior mean, which is equal 0.657224. A 95% credible set of the
ICC is [0.55668148, 0.7577665] . Rosner (1982) analyzed the same data set using
the classical approach, and similar results were obtained. The effective number
of units within a cluster, denoted by e, is used in his analysis. Easy manipulation
shows that the ICC is related to e through the the following function: ρ = 2/e−1.
The MLE of e obtained by Rosner is ê = 1.207. Therefore, the MLE of the ICC
is ρRosner = 0.657001.

6. Discussion

We have presented a Bayesian estimator for the ICC under the Beta-Binomial
model. The approach is based on Laplace’s method to approximate the posterior
distribution and moments of the ICC given the data. The technique is asymptotic,
that is for sufficiently large number of clusters. An advantage of adopting a
Bayesian perspective is the possibility of incorporating prior beliefs on likely
values of the ICC. The approach is flexible to accommodate informative and
noninformative priors for π and ρ. In the current study a Uniform prior has
been adopted. When a nonuniform prior of π and ρ is used, then the mean
and variance of the Normal approximation are given by the posterior mode and
the inverse of the negative Hessian of the log posterior evaluated at the mode
(Kass and Steffey, 1989). As noted by Turner, Omar and Thompson (2006), ICC
values are generally reported unaccompanied by confidence intervals, which makes
them of limited value as in estimation of any other parameter. The current paper
provides point and interval estimators for a single ICC. The proposed approach is
simple, relatively easy to implement, and is not computer intensive, which makes
it useful for practitioners from the biomedical fields. This is in contrast to already
existing Bayesian approaches depending on simulations and MCMC methods. It
is clear that the technique used here to find the MLE’s of the Beta-Binomial
distribution (Griffiths, 1973) assumes equal cluster sizes. When the clusters are
not of equal sizes, two nonlinear equations need to be solved numerically to obtain
the posterior estimators of ρ and π.
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