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Abstract: Given processes that assign binary vectors to data, one wish to
test models that simulate those processes and uncover groupings in the pro-
cesses. It is shown that a suitable test can be derived from a kappa type
agreement measure. This is applied to analyze stress placement in spoken
phrases, based on experimental data previously obtained. The processes
were Portuguese speakers and the grouping corresponds to the Brazilian
and European varieties of that language. Optimality Theory gave rise to
different models. The agreement measure was successful in pointing the
relative fitness of models to language varieties.
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1. Introduction

This work originates on the research for mathematical models for language
rhythm. In particular, Portuguese is a language with two very distinct varieties,
Brazilian Portuguese (BP) and European Portuguese (EP), which differ in many
rhythmic aspects. One that stands out is the use of stress: when a person utters
a phrase, the syllables that are stressed seem to reflect whether the person is a
BP or EP speaker. A question posed in Sandalo et al. (2006) was whether such a
stressing could be modelled within the confines of Optimality Theory (see Kager,
1999), in such a way that the provenience of a speaker could be gleaned by just
looking at the stress pattern in speech; this article is, in a sense, a complement
to that work.

In Optimality Theory models there are two main ingredients: structures and
restrictions. The model has to choose among the structures; the restrictions are
used to define a quasi-order on the structures and the choice is for the optimal
structures (which may be many). For instance, from the restrictions one gets a
real valued “cost” function on the structures, and the model chooses the minimal
cost structures.
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This is how optimality was instanced in that article: the structures associated
to each phrase were factorizations of the phrase into segments of successive syl-
lables. There were some feasibility criteria for the segments, in such a way that,
from each such segmentation one could directly read a stress placement for the
phrase. These segmentations can be conveniently encoded as paths on a directed
graph, the segmentation graph of the phrase. Then, after some experimenting, a
collection of restrictions was chosen; those are linguistically significant constructs
and involve further information gathered from the phrase.

As a final step, there is a choice of weights for the restrictions. Each choice
of restriction weights yields costs on the edges of each segmentation graph, and
the preferred segmentations are those corresponding to shortest paths linking two
special vertices.

In what follows, we refer to each weighting of the restrictions as a model. So,
this is the data flow: from a phrase one gets the graph, from a model one gets
costs in the graph, and then some paths. Those are decodified to produce a stress
placement. In the end, a model produces for each phrase a collection of binary
vectors, each describing a stress placement for the phrase.

This process was tested in the following experimental setting, as reported in
Sandalo et al. (2006):

There was a fixed collection P of phrases for which different models could be
tried. The phrases were given to speakers of both varieties of Portuguese (we
further refer to them as readers); it was known, for each reader, which variety
of Portuguese she speaks. They read the phrases aloud and the reading was
recorded. The researchers then assigned to each reading a binary vector Or(p)
(reader r, phrase p). As in the case of models, each binary vector associated to
a phrase p has length equal to the number of syllables of p. The actual test bed
consisted of 20 phrases and 4 readers.

It is worth noticing that in Portuguese each word has a primary stress, which
does not vary; the variation occurs in the placement of the secondary stresses,
which are needed for the utterance of long words. This has implications for the
modelling, as will be explained in the next section.

An a priori grouping of the readers into two classes, BP and EP, was known.
The main question was whether models could be chosen in such a way that this
classification could be recovered, that is, whether one could choose, for each
group, a model that reasonably predicted the stress placements uttered by its
members. That was done in an ad-hoc manner, one model being chosen for each
group and the adequacy of the models was argued in an intuitive manner.

We suggest here a quantitative approach for evaluating the models vis a vis the
readers’ grouping. That will be done through an agreement measure: members of
the same group will have strong agreement within the group and with the certain
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group model, while there will be little agreement between different groups and
the another models. The (weighted) kappa coefficient (Cohen, 1960), which has
been used to assess the degree of agreement between two ratings on presence or
absence of a characteristic (see, for example, Fleiss, 1971, Poentius, 2000) turns
out to be a useful statistics for this purpose. Applying those kappa-based criterion
to the data and models of Sandalo et al (2006) results in a qualified vindication
of those models: the two models proposed are each a good fit for one language
variety and a poor fit for the other.

Given the small number of observations available, we reprocess the data
through bootstrap techniques to enhance the confidence on the earlier results.
Section 2 presents the techniques used and the results thus obtained. Section 3
present the bootstrapping. Section 4 contains concluding remarks.

2. Weighted Kappa

Cohen’s kappa is an index of agreement of observations of categorical data.
We will use it to measure the agreement between the observations of the readers
and the vectors assigned by the models, for each input phrase. We present a
short description of kappa, specialized for binary data and modified to allow for
weights, following Poentius (2000).

We consider a binary vector as an assignment of category 0 or 1 to each
of its components; in our application, the components are syllables, 0 means
not stressed and 1 means stressed. Given a pair u, v of binary vectors of same
length, the standard definition of kappa is based on the contingency table D of
paired observations (uk, vk), where k ranges over the components. The weighted
version allows for the presence of a nonnegative weight vector w of same length,
so that each component k counts wk for the contingency. More precisely, the
2 × 2 matrix D has entries dij =

∑
{wk : (uk, vk) = (i, j)}, where i, j ∈ {0, 1}.

In particular, d00 + d11 is the total weight of the components where the vectors
agree. There is no loss of generality in supposing that

∑
i wi = 1, and, since it

simplifies some expressions, we assume it throughout. In particular, it follows
that d00 + d01 + d10 + d11 = 1.

The marginal distributions of D give the weighted proportions of 0’s and 1’s
in u and v. If, given these, the pairs (ui, vi) occurred independently, the expected
agreement would be P (u, v) = (d00 + d01)(d00 + d10) + (d01 + d11)(d10 + d11).
Kappa is defined based in the actual proportion of agreement, A(u, v) = d00+d11,
centered and normalized relative to P (u, v):

κ(u, v) =
A(u, v) − P (u, v)

1 − P (u, v)
.

It is easy to see that κ satisfies −1 ≤ κ(u, v) ≤ 1, the value 1 being attained
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only if u = v, and −1 attained when they completely disagree, and the com-
ponents where u = 0 and v = 1 have total weight 1/2. The value 0 reflects
independent observations.

We turn back now to the experimental setting, which consists of a collection
P of phrases, and a set of readers. Each reader r assigns each phrase p a single
binary vector Or(p). The agreement of phrase of readers will be greater in the
most appropriate models for its variety of Portuguese; each model m assigns to
each phrase p a nonempty set of binary vectors Om(p). Recall that all vectors
assigned to each phrase are the same length, the number of syllables.

We wish to recover the grouping of readers from agreement between binary
vectors generated by phrases readers and those generated by models. So, for each
phrase we compute the agreement between readers and models and summarize
these values in order to drive the clustering decision .

For each phrase p, reader r and model m, consider the following multiset:

K(r,m, p) = {κpuv |κpuv = κ(u, v), u = Or(p), v ∈ Om(p)}

and define K(r,m) as the multiset union of K(r,m, p) over all p ∈ P .
We will consider two different weight types. Weighting 1 is uniform on the

syllables, and is used as a ballpark measure. Weighting 2 is driven by a more
accurate assessment of readers and models: linguistic reasons imply that for
each phrase there are a few precisely identified coordinates in which all assigned
vectors will agree 1. It is natural then to assign weight 0 to those coordinates,
and give equal weights to the others, keeping a total sum of 1. In what follows,
all calculations will be done separately for each weighting.

The summary statistics of each K(r,m) is presented in Table 1. Each column
is labeled by reader (a, b, c, d), model (b, e), and weighting (1, 2) (we use different
symbols, instead of integer indices, in order to improve readability). The a priori
grouping of readers was BP= {a, b}, EP= {c, d}.

Table 1: Summary statistics for K(r,m)

rmw ab1 ab2 ae1 ae2 bb1 bb2 be1 be2

min 0.350 -0.333 0.156 -0.333 0.444 0.000 0.156 -0.333
mean 0.793 0.592 0.634 0.270 0.822 0.664 0.625 0.254

median 0.792 0.607 0.675 0.315 0.798 0.650 0.675 0.315
max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Std Dev 0.195 0.394 0.208 0.391 0.178 0.335 0.205 0.390
rmw cb1 cb2 ce1 ce2 db1 db2 de1 de2

min 0.333 -0.333 0.412 -0.207 0.125 -0.429 0.350 -0.333
mean 0.583 0.066 0.732 0.256 0.553 0.062 0.745 0.362

median 0.553 0.000 0.700 0.000 0.587 0.000 0.712 0.333
max 0.851 0.609 1.000 1.000 0.871 0.727 1.000 1.000

Std Dev 0.175 0.321 0.177 0.456 0.221 0.363 0.183 0.442

1For each word, the syllable with lexical accent gets a 1, and all succeeding syllables get a 0
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First we noted that assessing what constitutes a good value for κ is problem-
atic in itself and that different scales have been proposed. For example, Landis
and Koch (1977) and Rietveld and van Hout (1993) consider 0.21 ≤ κ ≤ 0.40
as indicating fair agreement, 0.40 ≤ κ ≤ 0.60 as indicating moderate agreement,
0.61 ≤ κ ≤ 0.80 and 0.81 ≤ κ ≤ 1.00 as indicating substantial and almost perfect
agreement, respectively. Krippendorff (1980), which discounts when κ < 0.67
and allows tentative conclusions when 0.67 ≤ κ < 0.80 and definite conclusions
when κ ≥ 0.81. In this work, we are interested in the comparison of the values
of kappas in each case, thus here these scales serve as a guide and other stud-
ies would be necessary to determine the most appropriate scale for the weighted
kappa. On a first glance one notices that, for each reader and model, weighting 2
affords kappa a smaller mean and bigger dispersion (Std Dev and SE mean) than
weighting 1. That is to be expected, as the move from 1 to 2 was done by striking
out components where agreement was fixed; as expected, this move accrued the
discriminatory power of κ.

For each weighting, one notes that for readers a, b the mean κ is bigger for
model b than for model e; the opposite occurs for readers c, d. That is the first
evidence for our main conclusion about the data:

Model b is a better fit for readers a and b, while model be is a better
fit for readers c and d.

That was, indeed, the ad hoc conclusion offered in Sandalo et al. (2006); what
we have shown is that their conclusion has a better support than intuition.

More support for this clustering is given by an analysis of how the adequacy of
each model is evidenced at the individual phrase level. For this purpose for each
reader, we consider the statistic ∆r = κe − κb, where κe ∈ Krep, κb ∈ Krbp,
and p ranges over all phrases. We expect ∆r to be negative for r = a, b, because
the agreement measure κe would be less than κb for r ∈ BP, and for it to be
positive for r = c, d.

The summary statistics for these differences ∆r, over all phrases, are presented
in Table 2, columns indexed by reader and weighting 2.

Table 2: Summary statistics for ∆r

rw a1 a2 b1 b2 c1 c2 d1 d2

min -0.844 -1.333 -0.844 -1.333 -0.294 -0.771 -0.325 -0.901
mean -0.155 -0.331 -0.190 -0.412 0.158 0.188 0.222 0.320

median -0.143 -0.400 -0.181 -0.458 0.136 0.028 0.228 0.235
max 0.650 1.333 0.556 0.917 0.667 1.333 0.833 1.375

Std Dev 0.304 0.582 0.287 0.540 0.209 0.526 0.251 0.565

2Note that the weighting is denoted by a superscript. In the following sections, whenever we
want to make explicit the dependence of any statistic on weights, we use a superscript w.
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These differences are generally bigger when weighting 2 is used, again attesting
for its better discriminating ability.

3. Bootstrap Based Inference

The reason for using bootstrap inference is that hypothesis tests and con-
fidence intervals based on asymptotic theory can be seriously misleading when
the sample size is not large. Here we use bootstrap to evaluate the confidence
intervals for δw

r , the statistical mean of ∆w
r , for each reader r and weighting w.

Note that for each reader the set of kappa values is naturally stratified by input
phrases, and each stratum is correlated from inception. As we do not have any
hypothesis or knowledge on the theoretical distribution of kappa, we appeal to
non-parametric methods.

For this reason we consider non-parametric bootstrap confidence limits and
the achieved significance level (ASL) of the test for the comparison of kappas
(see, for example, Efron and Tibshirani, 1993).

For each resample, a bootstrap sample is drawn separately for each stratum
{κe − κb |κe ∈ Krep, κb ∈ Krbp}, and those are combined to give the full re-
sample. The sample mean ∆̄w

r is calculated for the resample as a whole. The
bootstrap summary statistics based on 10,000 bootstrap replications are pre-
sented in Table 3. Empirical percentiles and BCa (Bias-corrected accelerated)
confidence limits are shown in Table 4.

Table 3: Bootstrap Summary Statistics

∆̄w
r a1 a2 b1 b2 c1 c2 d1 d2

Observed -0.155 -0.331 -0.190 -0.412 0.158 0.188 0.222 0.320
Bias 0.000 -0.000 -0.000 0.001 -0.000 -0.000 -0.000 -0.000
Mean -0.155 -0.331 -0.190 -0.412 0.158 0.188 0.221 0.320
SE 0.020 0.042 0.020 0.042 0.017 0.044 0.019 0.047

Table 4: Empirical percentiles and BCa confidence limits based on 10,000 boot-
strap replications

Empirical Percentiles BCa Confidence Limits
∆̄w

r 2.5 % 5% 95% 97.5% 2.5% 5% 95% 97.5%
a1 -0.194 -0.188 -0.122 -0.116 -0.195 -0.188 -0.123 -0.116
a2 -0.416 -0.402 -0.262 -0.248 -0.416 -0.402 -0.262 -0.248
b1 -0.230 -0.224 -0.157 -0.150 -0.230 -0.224 -0.157 -0.150
b2 -0.493 -0.481 -0.343 -0.330 -0.495 -0.482 -0.344 -0.331
c1 0.125 0.130 0.186 0.192 0.126 0.131 0.187 0.192
c2 0.102 0.115 0.261 0.274 0.103 0.116 0.262 0.275
d1 0.184 0.190 0.253 0.258 0.185 0.191 0.254 0.259
d2 0.227 0.241 0.397 0.413 0.228 0.243 0.398 0.413

We can observe on Tables 3 and 4 that none of the intervals contains the zero
value, thus the previous conclusions about model-reader fit are confirmed.
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If the BCa method is considered, we could claim that the null hypothesis
δw
r = 0 is rejected at the 0.05 level, for all r. The bootstrap ASL testing the same

null hypothesis δw
r = 0 considers

ÂSL =
#{b|∆̄w

r (b) < 0}
B

·

i.e., the proportion of bootstrap replications (b) less than zero, with B = 10, 000.
The minimum and maximum observed values in the 10,000 bootstrap replications
of δw

r = 0 are negative for the readers a and b and positive for c and d. These re-
sults reinforce the above-mentioned conclusion on the relationship model-reader.

Table 5: Summary Statistics in the contaminated sets

κw
m ab1 ab2 ae1 ae2

p = 1 min 0.350 -0.333 0.156 -0.333
mean 0.793 0.592 0.634 0.270

median 0.792 0.607 0.675 0.315
max 1.000 1.000 1.000 1.000

Std Dev 0.195 0.394 0.208 0.391
p = 5 min 0.350 -0.333 0.156 -0.333

mean 0.748 0.483 0.645 0.270
median 0.732 0.524 0.678 0.265
max 1.000 1.000 1.000 1.000

Std Dev 0.196 0.408 0.210 0.399
p = 10 min 0.125 -0.428 0.350 -0.333

mean 0.645 0.281 0.710 0.343
median 0.675 0.333 0.700 0.333
max 1.000 1.000 1.000 1.000

Std Dev 0.245 0.462 0.183 0.418
p = 15 min 0.125 -0.429 0.329 -0.333

mean 0.641 0.273 0.723 0.351
median 0.680 0.233 0.704 0.333
max 1.000 1.000 1.000 1.000

Std Dev 0.259 0.474 0.188 0.426

3.1 Sensitivity of kappa

We can ask what is the performance of kappa for a mix of phrases for two
readers of different groups; if kappa were not sensitive to this mix, its reliability
would be questionable. To answer this, we randomly selected a reader of each
group, a and d. In the set of phrases of reader a we randomly replaced p =
1, 5, 10, 15 phrases for phrases of reader d, constructing so called contaminated
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data sets. In Table 5, we present the value of kappa associated to reader a for
model m and weight w (κw

m); we observe that κw
b decreases and κw

e increases
with the increase in the number of substituted phrases. Bootstrap Summary
Statistics, Empirical Percentiles and BCa Confidence Limits for the statistics
mean ∆w

a = κw
e −κw

b were obtained. We observe that the values of ∆w
a tend to be

positive when the number of substituted phrases increases, being practically null
when the number of phrases of the two languages is the same. All these results
are expected indicating a very good performance of kappa.

3.2 Selection of the weights

One can argue that, for a given reader r. the higher the absolute value of ∆w
r ,

the bigger the evidence that one of the two models fits r. We compare now the
two weightings on this basis, by studying the statistics Dr = |∆2

r | − |∆1
r |, where

superscripts again indicate weightings.
We obtained the usual summary statistics, bootstrap summary statistics,

bootstrap confidence limits and minimum and maximum values of the replicate
bootstrap of Dr > 0 for each reader . These results confirm, as expected, there
is strong evidence that Dr > 0, a further support to the intuition that weighting
2 is a better choice than weighting 1.

4. Conclusion

We have shown an example where weighted kappa can be a useful agreement
measure for model selection. The use of stratified bootstrap was driven by the
small sample size, and by the multi-valued character of the models. The analysis
also exemplifies that a judicious choice of weighting can lead to more supported
conclusions.

This can be further improved: given the quantitative quality measure given
by kappa, one could aim to eliminate the ad-hoc component in the choice of
models. Such a choice can perhaps be construed as an optimization problem in
a suitable “model space”.
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