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ABSTRACT 

Bayesian hierarchical regression (BHR) is often used in small area estimation 

(SAE). BHR conditions on the samples. Therefore, when data are from a complex 

sample survey, neither survey sampling design nor survey weights are used. This 

can introduce bias and/or cause large variance. Further, if non-informative priors 

are used, BHR often requires the combination of multiple years of data to produce 

sample sizes that yield adequate precision; this can result in poor timeliness and 

can obscure trends. To address bias and variance, we propose a design assisted 

model-based approach for SAE by integrating adjusted sample weights. To 

address timeliness, we use historical data to define informative priors (power 

prior); this allows estimates to be derived from a single year of data. Using 

American Community Survey data for validation, we applied the proposed 

method to Behavioral Risk Factor Surveillance System data. We estimated the 

prevalence of disability for all U.S. counties. We show that our method can 

produce estimates that are both more timely than those arising from widely-used 

alternatives and are closer to ACS’ direct estimates, particularly for low-data 

counties. Our method can be generalized to estimate the county-level prevalence 

of other health related measurements. 
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1. Introduction 

National and state-level surveys are crucial to public health surveillance in the United 

States. These are typically designed to provide direct estimates. However, direct estimates are, 

due to small sample sizes, often impractical at the county level (a unit of local government in 

the United States). Some U.S. states use other names for these units of government, such as 

‘parish’. Since they function like counties, we will call them all counties. 

Small area estimation (SAE), through modeling, provides estimates for counties that do 

not have large enough samples for direct estimation. In brief, by borrowing “strength” from 

the entire domain (i.e., whole counties across state-wide or/and nation-wide) as well as 

auxiliary variables from other survey studies (Erciulescu, A., 2019), county level estimates can 

often be derived (Ghosh, M. and Rao, J.N.K., 1994). 

Frequentist model-based methods, such as those of Das, K. et al., (2004) and Pierannunzi 

C. et al., (2016) can provide SAE-based estimates for more counties than can direct estimation. 

However, such methods can also fail for counties with small sample sizes. Bayesian 

hierarchical regression (BHR) models can provide estimates for counties with small sample 

sizes (Planck, N. R. V. et al., 2017). However, BHR methods typically condition on the 

samples and the parameters of interest. That is, the sampling design and survey weights are 

not used (Pfeffermann, D., 2013). Thus, BHR can be vulnerable to model misspecification, 

resulting in both bias and large variance (Kish, L. and Frankel, M., 1974; Hansen, M. et al., 

1983).  

Additionally, BHR requires specification of a prior. Specifying an informative prior often 

requires more information than is readily available. Further, informative priors are inherently 

subjective. Non-informative priors avoid this difficulty. However, for small sample size 

counties, the posterior distributions are heavily influenced by the subjective priors. Avic (2017) 

suggested obtaining an informative prior, when sample sizes are small, via meta-analysis of 

multiple published data sets.  

The power prior (Ibrahim, J. G. et al., 2015) is a compromise between informative and 

uninformative priors – it uses historical data (if available) to modify an uninformative prior to 

make it more ‘informative’. In brief, the power prior is derived by raising the historical 

likelihood to a power 𝛼0 ∈ (0,1) and combining it with the uninformative ‘flat’ prior. This 

results in a proper posterior distribution. Many studies (Neelon, B. et al., 2010; De Santis, F., 

2007; Congdon, P., 2008) have shown that the power prior can improve the precision and 

accuracy of posterior estimates.  

Here, we propose an approach, which we call the power prior log-weights estimates 

(PLOW).  The PLOW incorporates adjusted design-based sampling weights and uses a power 

prior.  As an example, we apply the PLOW to obtain estimates of county level prevalence of 

impaired vision from 2015 Behavioral Risk Factor Surveillance System (BRFSS) data. We 

provide estimates for all 3142 counties in the United States.We validate the estimates using 

both simulations and data from the American Community Survey (ACS), a survey large 

enough to provide direct estimates for many counties.  

 

https://tspace.library.utoronto.ca/browse?type=author&value=Ver+Planck%2C+Neil++R
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2. Survey Data 

Behavioral Risk Factor Surveillance System (BRFSS) is an annual state-level telephone 

surveillance system conducted by the Centers for Disease Control Prevention (CDC). It 

collects data on risk behaviors, preventive health practices and health-related conditions in the 

non-institutionalized adult household population with ages 18 years and older. Details on 

BRFSS have been previously published (Cadwell, B.L. et al., 2010). ACS, conducted by the 

US Census Bureau, is also an ongoing annual survey, using internet, mail, telephone, and 

person visits to collect data (Gettens, J. et al., 2015). ACS has more than eight times as many 

respondents as BRFSS. 

In 2013, five survey questions concerning disability were used in common by both BRFSS 

and ACS. Table 1 displays those disabilities and the definitions used in ACS and survey 

questions in BRFSS.  Possible responses for both surveys were yes, no, and no answer.    

 

Table 1. The descriptions of five disabilities listed in ACS and BRFSS 

Disability ACS Disability Definitions BRFSS Disability Questions 

Vision Blind or having serious difficulty seeing, 

even when wearing glasses 

Are you blind or do you have 

serious difficulty seeing, even when 

wearing glasses? 

Cognitive Because of a physical, mental, or 

emotional problem, having difficulty 

remembering, concentrating, or making 

decisions  

Because of a physical, mental, or 

emotional condition, do you have 

serious difficulty concentrating, 

remembering, or making decisions? 

Ambulatory Having serious difficulty walking or 

climbing stairs 

Do you have serious difficulty 

walking or climbing stairs? 

Self-care Having difficulty bathing or dressing Do you have difficulty dressing or 

bathing? 

Independent Difficulty because of a physical, mental, or 

emotional problem, having difficulty 

doing errands alone such as visiting a 

doctor’s office or shopping 

Because of a physical, mental, or 

emotional condition, do you have 

difficulty doing errands alone such 

as visiting a doctor’s office or 

shopping? 

 

3. Methods 

3.1 Notation 

Auxiliary variables are variables other than the variable of interest used to construct models 

for SAE. We use the county-level covariates age, sex and race/ethnicity as auxiliary variables. 

Similar to Barker, L. E. et al. (2013), sampled persons in each county are cross-classified by 

age-groups (20-44, 45-64, 65 years plus), sex (male and female) and race/ethnicity (non-

Hispanic white and all others; in some counties, numbers of people other than non-Hispanic 

whites were too small to stratify further). This resulted in 12 classes.  

Let 𝑦ijk be the binary disability outcome of survey participant 𝑘th in the county 𝑖 (𝑘=1,…, 

𝑛ij, 𝑖 =1 to 3142) and class 𝑗 (𝑘 =1 to 12), where 𝑛ij is the sample size of county 𝑖 and class 𝑗. 
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We denote 𝑦𝑖𝑗 = ∑ 𝑦𝑖𝑗𝑘
𝑛𝑖
𝑗=1  as the total case counts and 𝑁𝑖𝑗  as the total population size in 

county 𝑖 and class 𝑗, respectively. The BRFSS uses design weights and raking weights. We 

use 𝑤ijk to denote the sampling raking weight attached to 𝑘th sample in county 𝑖 and class 𝑗. 

County-level data 𝑦ijk and 𝑤ijk were derived from 2015 BRFSS while 𝑁𝑖𝑗 were from Census 

Bureau Center county-level population projections (Barker, L. E. et al., 2013).      

 

3.2 Adjustment of sampling weights 

The most common design-based inference for the SAE is the Horvitz-Thompson (HT) 

estimator (Horvitz, D.G. and Thompson, D.J., 1952). Let �̂�𝑖𝑗 be the direct estimate probability 

in county i and class j. The HT estimate is �̂�𝑖𝑗 = ∑ 𝑤𝑖𝑗𝑘𝑦𝑖𝑗𝑘
𝑛𝑖𝑗
𝑘=1

∑ 𝑤𝑖𝑗𝑘
𝑛𝑖𝑗
𝑘=1⁄ . The HT estimate 

is impossible in counties with no survey respondents, and yield large variance in counties with 

small sample sizes. If the sampling weights have a distribution with a heavy right tail, some 

estimates can have very large variances (Beaumont, J. and Rivest, L., 2009). As can be seen 

in Table 2, BRFSS sampling weights have a heavy right tail (the ‘adjusted’ sampling weights 

are explained later).  

 

Table 2. The distribution of BRFSS sampling weights and the adjusted sampling weights (N = 426218). 

GF=  max𝑊𝑖𝑗𝑘 min𝑊𝑖𝑗𝑘⁄  is the Gelman Factor, a measure of the dispersion of sampling weights. 

Weighs min max median skewness GF 

Raw  1.18 36700 231.28 5.74 31102 

Adjusted  1.24 1612 68.16 2.49 1300 

 

Meng, X. L. et al. (2010) presented a power transformation to deal with weights with 

right tails. However, their approach did not work well with the most extreme weights. The 

trade-off of bias-variance relied on correlation between variable and weights (Chen, C. N. et 

al., 2006). Instead of what was done earlier, we propose a “log-weight” transformed method 

to adjust the sampling weights. Here, we use 𝜏 as an index of transformation in the range 0 to 

1, in other words, τ∈ [0.1], is a tuning parameter; in Tukey’s ladder of transformations 

(Tukey, J. W., 1977), a logarithmic transformation corresponds to an asymptotically zero 

exponent. We let �̂�𝑖𝑗
𝜏  denote the weighted direct estimate probability. This modifies the HT 

estimator as:                                                                 

  �̂�𝒊𝒋
𝝉 =

{
 
 

 
 

∑𝒚𝒊𝒋𝒌

𝑵𝒊𝒋
                            𝒊𝒇 𝝉 = 𝟎

∑(𝒍𝒐𝒈 (𝒘𝒊𝒋𝒌)
𝝉)𝒚𝒊𝒋𝒌

∑𝒍𝒐𝒈 (𝒘𝒊𝒋𝒌)𝝉
           𝒊𝒇 𝟎 < 𝝉 ≤ 𝟏

 (3.1) 

 

In particular, 𝜏=0 corresponds to the unweighted adjustment while 𝜏=1 to the fully-

weighted adjustment. To target the “optimal” 𝜏 value, we calculated the mean squared error 

(MSE) between �̂�𝑖𝑗 and �̂�𝑖𝑗
𝜏  as follows (Cox, B. G. and McGrath, D. S., 1981): 
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𝑴𝑺�̂�( �̂�𝒊𝒋 , �̂�𝒊𝒋
𝝉 ) = (�̂�𝒊𝒋 − �̂�𝒊𝒋

𝝉 )𝟐 + 𝒗𝒂𝒓(�̂�𝒊𝒋
𝝉 ) 

= (�̂�𝒊𝒋 − �̂�𝒊𝒋
𝝉 )𝟐 +

𝟏

𝒏𝒊𝒋
(𝟏 −

𝒏𝒊𝒋

𝑵𝒊𝒋
)

𝟏

𝒏𝒊𝒋 − 𝟏
∑𝒘𝒊𝒋

𝟐 (𝒚𝒊𝒋𝒌 − �̂�𝒊𝒋
𝝉 )𝟐 

 

 

In general, the bias (�̂�𝑖𝑗 − �̂�𝑖𝑗
𝜏 )2 increases and 𝑣𝑎𝑟(�̂�𝑖𝑗

𝜏 ) decreases as 𝜏 increases, and vice 

versa (Appendix. Figure 1). The “optimal” 𝜏 is then selected by the cutoff associated with 

minimal MSE value (Potter, F.J., 1988). Using the “optimal” cutoff of 𝜏, we can calculate the 

“effective” number of cases, named as  𝑦𝑖𝑗
𝑒  , as the product of raw sampling cases and the 

weighted probability (3.1): 

 𝒚𝒊𝒋
𝒆 = 𝒚𝒊𝒋 × �̂�𝒊𝒋

𝝉     (3.2) 

 

3.3 Power prior using historical survey data 

When historical data are available, it is possible to ‘borrow’ strength from it. Let 

𝛼0 ∈(0,1) be the power parameter (defined later) which controls how much the historical 

data impacts the prior. Let 𝜋0(𝑝𝑖𝑗) be the prior for 𝑝𝑖𝑗 from before the historical data are 

observed (Ibrahim, J. G. and Chen, M.H., 2000).We denote the historical data 𝑌0 and the 

likelihood function of 𝑌0 is L(p|𝑌0). The power prior for 𝑝𝑖𝑗 is then defined as: 

 𝝅(𝒑𝒊𝒋|𝒀𝟎) ∝ 𝑳(𝒑𝒊𝒋|𝒀𝟎)
𝜶𝟎
𝝅𝟎(𝒑𝒊𝒋)     

    

From Bayes’ theorem, the posterior distribution of 𝑝𝑖𝑗|𝑦𝑖
𝑒 , 𝑌0 can be re-written as: 

 
𝑓(𝑝𝑖𝑗|𝑦𝑖

𝑒 , 𝑌0) =
𝐿(𝑦𝑖

𝑒|𝑝𝑖𝑗)𝜋(𝑝𝑖𝑗|𝑌0)

∫ 𝐿(𝑦𝑖
𝑒|𝑝𝑖𝑗)𝜋(𝑝𝑖𝑗|𝑌0)𝑑 (𝑝𝑖𝑗|𝑌0)

 
 

 
∝ 𝐿(𝑦𝑖

𝑒|𝑝𝑖𝑗)𝜋(𝑝𝑖𝑗|𝑌0) = 𝐿(𝑦𝑖
𝑒|𝑝𝑖𝑗)

𝐿(𝑌0|𝑝𝑖𝑗)
𝛼0
𝜋0(𝑝𝑖𝑗)

∫ 𝐿(𝑌0|𝑝𝑖𝑗)
𝛼0
𝜋0(𝑝𝑖𝑗)𝑑(𝑝𝑖𝑗)

 
 

 
∝ 𝐿(𝑦𝑖

𝑒|𝑝𝑖𝑗)𝐿(𝑌0|𝑝𝑖𝑗)
𝛼0
𝜋0(𝑝𝑖𝑗) (3.3) 

 

For notational convenience, we combine 𝐿(𝑦𝑖
𝑒|𝑝𝑖𝑗)𝐿(𝑌0|𝑝𝑖𝑗)

𝛼0
into 𝑳′(y

𝑖
𝑒 , 𝑌0|𝑝𝑖𝑗) and call it 

the “power likelihood”.  

 

3.4 Estimating disability prevalence using the PLOW approach  

We employ the BHR model for county-level disability prevalence estimates. Let 𝑝𝑖𝑗 be the 

prevalence of disability in county i and class j. The “effective” case count 𝑦𝑖𝑗
𝑒  (3.2) is assumed 

to follow a binomial distribution: 

 
𝒚𝒊𝒋
𝒆 |𝒑𝒊 ~ 𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍(𝒏𝒊𝒋, 𝒑𝒊𝒋).  
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Let 𝛼𝑖𝑗 be the overall mean effect for county i and class j; 𝑋𝑇 be the vector of auxiliary 

variables; and 𝛽𝑖𝑗 be the associated vector of fixed effect in county i and class j. Under this 

framework,  𝑈𝑖|𝜎𝑖
2~(0, 𝜎𝑖

2)   and 𝑉𝑠(𝑖)|𝜎𝑠(𝑖)
2 ~(0, 𝜎𝑠(𝑖)

2 )  are county-specific and state-specific 

random effects, respectively. We assume 𝑈𝑖 and 𝑉𝑠(𝑖) are independent. Borrowing “strength” 

(Rao, J. N. K. and Molina I., 2015) from county and state variabilities, the logit function of 𝑝𝑖𝑗 

in county i and class j can be modeled as: 

 
𝒍𝐨𝒈𝒊𝒕(𝒑𝒊𝒋) = 𝜶𝒊 + 𝑿

𝑻𝜷𝒊𝒋 + 𝑼𝒊 + 𝑽𝒔(𝒊).  

We apply the power prior, as described earlier. For example, to estimate the prevalence of 

disability in 2015, we use 2015 BRFSS data (most current available) and 2013 and 2014 

BRFSS data (historical). We integrate them with current data through use of the power prior 

(3.3). Let 𝑝𝑖  be the model-based estimated prevalence of disability in county i. Then the 

estimated prevalence in county i is: 

 
𝒑𝒊 =

∑ 𝒑𝒊𝒋𝑵𝒊𝒋
𝟏𝟐
𝒋=𝟏

∑ 𝑵𝒊𝒋
𝟏𝟐
𝒋=𝟏

. 
 

 

3.5 Validation of PLOW estimates 

The ACS releases single-year disability data for the 835 large counties (population>65000). 

For those counties, validation is done via direct comparison of HT (hereafter, direct estimates), 

PLOW estimates, and the unweighted, non-informative prior estimates of Cadwell et al. (2010) 

(hereafter, ‘Cadwell estimates’). 

For counties for which single year data are not released, direct comparison is not possible. 

For those counties, we validate through a simulation.  We create fictional small sample size 

‘pseudo-counties’ by sampling from actual counties for which ACS data are available. That is, 

we: 

(1) Randomly select 200 counties from 835 counties covered by ACS 1-year data 

(2) Randomly select 1%~5% survey samples from each selected county to form pseudo-

counties; some pseudo-counties may have no data 

(3) Apply PLOW to estimate the prevalence of disability of each pseudo-county 

(4) Repeat steps 1 to 3 for 500 times and average the estimates 

(5) Validate simulation results with the real ACS 1-year results for each county 

  

4. Results 

4.1 Shrinkage of sampling weights 

Weightings heavily influence the estimates, particularly in small population counties 

where the weights can be large. The weights tend to have a highly right-skewed distribution. 

To limit this effect, we rescale weights by a logarithmic transformation. Table 2 describes the 

distribution of sampling weights before and after transformation.  The transformation 
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substantially reduced the skewness of the weights. The Gelman Factor (Burgard, et al. 2014) 

is the ratio of the largest to smallest sampling weights, which reflects the dispersion of weights. 

In general, the Gelman Factor of survey design should not exceed 1000 (Meng, X. L. et al., 

2010). With the adjustment, the Gelman factor is reduced by over 95%.   

 

4.2 Validation with ACS for large counties 

Table 3 presents the MSE of the disability questions for direct estimates, Cadwell estimates, 

and PLOW estimates. For all of these, the MSE of the Cadwell estimate is smaller than it is 

for the direct estimate. Similarly, the MSE of the PLOW estimate is smaller (sometimes much 

smaller) than that of the Cadwell estimate.   

 

Table 3. Mean squared error (MSE) of HT direct estimates, unweighted model estimates and new 

approach (weighted model estimates) for estimation of disabilities (Vision, Cognitive, Ambulatory, Self-

care and Independent living) prevalence 

 

Method 

Mean Square Error (MSE)×104  

(cases/10000 persons) 

Vision 

Difficulty 

Cognitive 

Difficulty 

Ambulatory 

Difficulty 

Self-care 

Difficulty 

Independent 

living 

HT direct 

estimates 

7.12 34.65 43.53 3.36 6.32 

unweighted model 

estimates  

(Cadwell 

estimates)  

3.52 26.17 34.80 1.52 3.25 

weighted model 

estimates (PLOW 

estimates) 

1.02 2.61 4.05 0.88 2.07 

 

Validation, expressed as scatter plots, appears in Figure 1. There, we plot ACS direct 

estimates (x-axis) vs BRFSS direct estimates, Cadwell estimates, and PLOW estimates (y-

axes). Were all estimates unbiased, one would expect to see random scatter around the 

diagonals. A systematic departure indicates bias. Figure 1 suggests that direct and Cadwell 

estimates both have a positive bias, compared with ACS estimates. In contrast, the PLOW 

estimates are generally similar to ACS estimates. This finding indicates that inappropriately 

using sampling weights (direct estimate) or not using sampling weights (Cadwell estimates) 

can introduce bias.  
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Figure1. Scatter plots showing validation of the disability (Vision, Cognitive, Ambulatory, Self-care and Independent living) prevalence estimates 

through HT direct estimate, Cadwell estimate and PLOW estimate using ACS 1-year results for “large” counties 
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4.3 Validation with ACS 5-year county-level and ACS state-level data 

Next, we plot PLOW results against the ACS 5-year county-level data. ACS 5-year county-

level data were collected in the range of five years, e.g., survey data from 2011 to 2015 were 

aggregated as the 2015 reports for all 3142 counties. Based on the Census Bureau guideline, 

we classify 3142 counties into three groups: large size with population>65000, (“large”, 

hereafter), medium size with population>20000 and <65000 (“medium”, hereafter) and small 

size with population<20000 (“small”, hereafter).  Using Cognitive Difficulty for the example, 

Figure 2 shows the agreement of results between PLOW and ACS 5-year decreases from “large” 

to “small” counties.  

 
Figure 2. Scatter plots of prevalence estimates of Cognitive Difficulty using PLOW against ACS 5-year 

county-level results by county size (“large”, “medium” and “small”) 

 

Additionally, we compared the results of the three methods at the state-level. We 

aggregated the county-level estimations into state-level and compared them with ACS state-

level results.  Figure 2 (suppl.) presents the state-level Cognitive Difficulty prevalence with 

PLOW and the other two methods. PLOW estimates are closer to ACS estimates than are direct 

and Cadwell estimates. 

 

4.4 Validation for small counties 

Figure 3 displays estimates in pseudo-counties of prevalence of cognitive difficulty using 

PLOW (red triangle), BRFSS direct (black dot) and Cadwell estimates (open square); results 

for other disabilities are similar and appear in Figure 3 (suppl.) for reference. The PLOW 

estimates have less dispersion and lower bias. 
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Figure 3. Validation plot for comparison of results of ACS 1-year data with results of HT direct estimator 

(black circle), Cadwell estimates (black square) and PLOW (red triangle) for the small sizes counties 

using “pseudo-county” data. The diagonal reference line (dash line) represents the estimates results are 

same to ACS 1-year county-level results 

 

4.5 Power prior vs flat prior 

To compare the power prior with flat prior implemented in the Bayesian hierarchical model, 

we applied PLOW to estimate prevalence of Vision Difficulty with these two types of prior, 

respectively, using BRFSS 2015 data. The difference is that we use BRFSS 2013 and BRFSS 

2014 data as “historical” data in power prior modeling, whereas we chose the inverse Gamma 

distribution as the non-informative prior in the flat prior modeling. Figure 4 describes the 

distribution of prevalence of 3142 counties modeling with power and flat prior, respectively. 

The flat prior tends to generate larger estimates, with more outliers, than the power prior in 

each quantile, accordingly: 0.023 vs. 0.016 (1st quartile), 0.027 vs. 0.019 (median) and 0.033 

vs. 0.023 (3rd quartile).  
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Figure 4. Box-plot comparison of Bayesian hierarchical model implemented with power prior and flat 

prior to estimate the Vision Difficulty prevalence 

 

5. Discussion 

Previous work has been done on SAE for county-level prevalence estimates using BRFSS 

survey data. Cadwell, et al. (2010) used area-level Bayesian hierarchical regression model to 

estimate the diabetes prevalence rates in 3141 counties. Zhang, et al. (2011) estimated county-

level obesity prevalence in Mississippi using multilevel logistic model and synthetic 

estimation techniques. The model borrowed the “strength” from the county-specific 

demographic variables, geographic and socioeconomic variables and auxiliary random effect 

from counties. Other examples are found in Xie, et al. (2007), Goodman (2010), Olives (2013) 

and Schneider (2009).  

We have introduced PLOW, a design assisted model-based approach, and used it to 

estimate county-level disabilities prevalence. This approach has several advantages over 

model based estimates that do not use weights and design based estimates that are directly 

derived from weights. We demonstrate that PLOW can produce estimates with less bias and 

variance than other approaches. 

First, PLOW calculates “effective” disability case counts using the adjusted sampling 

weights before applying the Bayesian hierarchical model. Smaller skewness for the weights 

reduces bias and variance in the downstream model-based estimates (Beaumont, J. and Rivest, 

L., 2009). Secondly, PLOW uses a power prior, which shows promise in counties with little 

or no data. Estimates based on non-informative priors tend to be close to each other and, for 

examples consider here, were much higher than ACS reports. Inverse gamma is widely used 

as a flat prior for the unknown variance of normal distribution. Gelmen, A. (2006) 

demonstrated the inverse gamma distribution with small shape and scale produced large 
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reductions of parameter space, especially for a domain with few observations. Informative 

priors require prior elicitation and are inherently subjective. Power priors, while remaining 

objective, avoid prior elicitation by borrowing strength from historical data.  

Perhaps most importantly, PLOW makes possible annual county-level prevalence 

estimates for all counties, using single-year data. Other methods are typically limited to 

counties with larger samples sizes or combine multiple years of data. Combining multiple 

years of data obscures secular trends and makes timely detection of rapid changes difficult or 

impossible. For example, Cadwell estimates, used by CDC for estimating county level 

prevalence of diabetes, obesity, and regular physical activity (Gregg, E.W., et al., 2009), 

combines three years of data. This introduces bias if there are secular trends in prevalence. 

ACS states “single-year and multiple-year estimates are not expected to be the same” because 

in counties with smaller population, small changes in numbers of people who are members of 

a given demographic class can result in large percentage changes.   

In short, PLOW, when applied to survey data for which historical data are available, can 

provide prevalence estimates that are both more useful and more timely. While we have 

provided estimates for disability prevalence, the PLOW method does not depend on any 

characteristic that is unique to disability. It can be used to provide county-level estimates of 

any measure with historical data.  
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APPENDIX 

Optimal “Shrinkage” Factors 

The weights “shrinkage” index 𝜏 can be optimized by the MSE( p̂ij , p̂ij
𝜏) which consists of 

two parts: (�̂�𝑖𝑗 − �̂�𝑖𝑗
𝜏 )2 and var(�̂�𝑖𝑗

𝑡 ). Suppl. Figure 2 shows the relationship between 𝜏 and 

MSE �̂�𝑖𝑗,𝑝𝑖𝑗
𝜏  . Two dash lines represent (�̂�𝑖𝑗 − �̂�𝑖𝑗

𝜏 )2  and var (�̂�𝑖𝑗
𝜏 )  changing across 𝜏 , 

respectively. The solid represents mean square error which is the sum of those two parts. The 

joint of these two dish lines points to the minimal of MSE which corresponds to the optimal 𝜏. 

Since the MSE is relied on the sample sizes and case counts, the optimal 𝜏 varies: Self-care 

Difficulty has the smallest 𝜏=0.81 while Ambulatory Difficulty has the largest 𝜏=0.89.  

 
Figure 1 (supple.) MSE( p̂ij , p̂ij

𝜏 ) changes across the weights transformed index 𝜏. 
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Figure 2 (suppl.) Scatter plot for comparisons of state-level prevalence of Cognitive Difficulty of ACS 

with estimates using HT direct estimator (black circle), Cawdell estimates (blue square) and PLOW (red 

triangle). The diagonal reference line (dash line) represents the estimates are same to ACS 1-year state-

level results 

 



 
Hui Xie , Lawrence E. Barker and Deborah B. Rolka                                131 

 

131 
 

 
Figure 3 (suppl.) Validation plots for comparison of results of ACS 1-year data with results of HT direct 

estimator (black circle), Cadwell estimates (black square) and PLOW (red triangle) for the Ambulatory 

and Self-care Difficulties using “pseudo-county” data. The diagonal reference line (dash line) represents 

the estimates results are same to ACS 1-year county-level results 


