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Abstract: The use of multiple regression analysis (MRA) has been on the
rise over the last few decades in part due to the realization that analy-
sis of variance (ANOVA) statistics can be advantageously completed using
MRA. Given the limitations of ANOVA strategies it is argued that MRA
is the better analysis; however, in order to use ANOVA in MRA coding
structures must be employed by the researcher which can be confusing to
understand. The present paper attempts to simplify this discussion by pro-
viding a description of the most popular coding structures, with emphasis
on their strengths, limitations, and uses. A visual analysis of each of these
strategies is also included along with all necessary steps to create the con-
trasts. Finally, a decision tree is presented that can be used by researchers to
determine which coding structure to utilize in their current research project.

Key words: Analysis of variance, contrast coding, multiple regression anal-
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According to Hinkle and Oliver (1986), multiple regression analysis (MRA)
has begun to become one of the most widely used statistical analyses in educa-
tional research, and it can be assumed that this popularity and frequent usage
is still rising. One of the reasons for its large usage is that analysis of variance
(ANOVA) techniques can be calculated by the use of MRA, a principle described
by Cohen (1968). The benefits of using MRA instead of ANOVA include MRA’s
ability to allow the researcher to (1) use both continuous and categorical or nom-
inal independent variables, (2) examine trends in data (i.e., look for patterns
beyond linear data representation) (Kerlinger & Pedhazur, 1973), (3) have more
flexibility and conceptual clarity (Kaufman & Sweet, 1974), (4) understand where
statistically significant mean differences are occurring, beyond a simple omnibus
test (Chatham, 1999), (5) have the potential to increase the statistical power
against Type II error, and (6) have more thoughtful hypotheses about the data
(Thompson, 2006). The use of such techniques can be confusing for the researcher
however, due in part to their complexity and the many different options.
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The present paper attempts to simplify this process by including a summary
of some of the most used coding structures, with a description of their strengths,
weaknesses, and utilization. This discussion includes an illustration of each coding
method on an example database with all the necessary steps to code the contrasts,
results, and interpretations. Finally, the paper concludes with a decision tree to
assist the research in choosing the most appropriate code structure to use with
their particular data and research interests.

1. Planned vs. Unplanned Contrasts

Before specific types of coding structures can be discussed, understanding
of the broader concepts and code groupings must be achieved. At the highest
level a researcher mush choose from two broad coding categories: planned and
unplanned contrasts. Unplanned contrasts are sometimes looked down on in
the literature, but as described by Thompson (2006) these types of contrasts do
have their benefits because “planned contrasts should not be used in new areas
of inquiry where theory has not been elaborated” (p. 371). Thus unplanned
contrasts are of use when the researcher must actually “fish” for understanding
of the data.

When, though, the research does have theory or literature planned contrasts
(also known as a priori or focused contrasts) can be especially useful and give
the researcher three inherent advantages over unplanned contrasts. First, planned
contrasts provide increased statistical power against Type II error because the re-
searcher is not forced to test unnecessary or unwanted group differences. Second,
planned contrasts cause researchers to be more specific and thoughtful about the
hypotheses that they create (Chatham, 1999). Third, interpretation is simplified
because there is no need to interpret results that may either be unimportant or
uninteresting.

2. Orthogonal Contrasts

Beyond these large categories of coding structures, the concepts of orthog-
onal vs. non-orthogonal contrasts and trend vs. non-trend contrasts must be
examined. First, orthogonal contrasts are described as “uncorrelated variables
created to test perfectly uncorrelated hypotheses” (Thompson, 2006, p. 363).
This means that as one contrast is tested it does not provide any information
about the results of subsequent contrasts (Hinkle, Wiersma, & Jurs, 1998).

von Eye and Schuster (1998) provided a 3-step process for creating orthogonal
contrast. To increase the understanding of this process an example data sample
will be utilized (see Table 1) examining risk factors in adolescents. First, the
researcher must understand that the number of contrasts created will be the
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number of groups/categories minus 1, thus in our fictitious example if we wanted
to code the variable family type we would have 4 groups: intact biological family,
adopted parents, step-family, and single parent, which would allow 3 contrasts
(4 − 1 = 3). The initial step in creating orthogonal contrasts is to choose your
first hypothesized group difference you wish to test.

Table 1: Fictitious data sample assessing adolescent riskiness

Id Riskiness Gender Grades Thrill Seeking Substance Use Family Type
(id) (risky) (gender) (grade) (thrlseek) (sub use) (fam type)

1 5 Female (0) A (5) Very low (1) No use (1) Intact (1)
2 14 Male (1) D (2) Medium high (3) Once a week (3) Step (3)
3 8 Female (0) F (1) Very low (1) 1 - 2 times a month (2) Intact (1)
4 10 Female (0) A (5) Low (2) 1 - 2 times a month (2) Adopted (2)
5 17 Male (1) B (4) Medium High (3) 2 - 3 times a week (4) Step (3)
6 19 Male (1) C (3) High (4) Every day (5) Single Mom (4)
7 2 Female (0) F (1) Very low (1) No use (1) Intact (1)
8 20 Male (1) C (3) High (4) Every day (5) Single Mom (4)
9 15 Male (1) B (4) Medium High (3) Once a week (3) Step (3)
10 11 Female (0) D (2) Low (2) 2 - 3 times a week (4) Adopted (2)
11 18 Male (1) C (3) High (4) Every day (5) Single Mom (4)
12 12 Female (0) B (4) Low (2) Once a week (3) Adopted (2)

Thompson (2006) defined simple contrasts as those which test for differences
between only two groups, and complex contrasts as those which test for multiple
group mean differences. The researcher can choose to begin by selecting a complex
or simple contrast. For our example we will begin with a simple contrast in
which we hypothesize that youth from intact families will differ from those in
adopted parent families in regard to riskiness, thus from this our first contrast
will be: c1 = (−1, 1, 0, 0). Next, we create the rest of the desired contrasts,
and because we are creating orthogonal contrasts, we need two more complex
contrasts. For the first complex contrast we will examine the difference in mean
riskiness for youths in step-parent families vs. those from intact and adopted
parent families: c2 = (−1,−1, 2, 0), and for the final complex contrast we test
whether intact adopted and step-parent families differ from single parent families:
c3 = (−1,−1,−1, 3). Finally, we create the coding design matrix. This is done
by creating a column for each contrast and placing the corresponding contrast
vector in for all members of that category, as illustrated in Table 2. Following
are the steps to create and run these contrasts:

Create three variables (A1, A2, A3), set their values to 0.

If fam type = 1, set A1 = −1, A2 = −1, and A3 = −1.
If fam type = 2, set A1 = 1, A2 = −1, and A3 = −1.
If fam type = 3, set A2 = 2, and A3 = −1.
If fam type = 4, set A3 = 3.
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Run linear regression with risky as dependent variable and A1, A2,
and A3 as independent variables.

Table 2: Orthogonal contrast coding for a four-level way

Id Riskiness Family Type A1 A2 A3
(id) (risky) (fam type)

1 5 1 −1 −1 −1
3 8 1 −1 −1 −1
7 2 1 −1 −1 −1
2 14 2 1 −1 −1
5 10 2 1 −1 −1
9 15 2 1 −1 −1
4 10 3 0 2 −1

10 11 3 0 2 −1
12 12 3 0 2 −1
6 19 4 0 0 3
8 20 4 0 0 3

11 18 4 0 0 3

Note. The 4 levels of the balanced (n in each cell is 3) one-way design are
family type: 1 = intact family, 2 = adopted parents, 3 = step-family, and 4 =
single parent.

The results show statistically significant effects for two of the three contrast
variables, A1 : F (1, 11) = 48.05, p = .004; A3 : F (1, 11) = 49.41, p = .004. These
results supported the hypothesis that different family compositions affected youth
levels of riskiness. More specifically A1 suggests that youth from intact families
were statistically significantly less likely to be risky (M = 5, SD = 3) than those
youth from adopted parent families (M = 15.33, SD = 1.53). A2 suggests that
youth from intact and adopted parent families were not statistically significantly
different (M = 8, SD = 3) than those youth from step-parent families (M =
11, SD = 1; F [1, 11] = .42, p = .564). Finally, A3 suggests that youth from
intact, adopted and step-parent families were statistically significantly less likely
to be risky (M = 10.44, SD = 4.82) than those youth from single parent families
(M = 19, SD = 1).

Once the researcher has completed setting up their orthogonal contrasts they
can do one of two simple tests to ensure their contrasts are in fact uncorrelated.
First, by calculating the inner product of each pair of vectors; if this number
equals 0 then the contrasts are orthogonal (von Eye & Schuster, 1998). For our
example we see that for (A1)(A3) vector cross products equals (−1 ∗−1) + (−1 ∗
−1) + (−1 ∗−1) + (1 ∗−1) + (1 ∗−1) + (1 ∗−1) + (0 ∗−1) + (0 ∗−1) + (0 ∗−1) +
(0 ∗ 3) + (0 ∗ 3) + (0 ∗ 3) = 0, thus our A1 and A3 contrasts are orthogonal and
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we can do the same to test the orthogonality of our other contrasts. Second, a
Pearson r can be run on the three contrast variables (A1, A2, and A3) to ensure
that our three contrasts are in fact uncorrelated with each other.

3. Trend Contrasts

The second type of further contrast distinction is trend vs. non-trend. The
example orthogonal contrasts described previously are non-trend contrasts be-
cause they examine mean differences. Other examples of non-trend contrasts will
be examined shortly. Trend contrasts, also known as polynomial contrasts, are
defined by Thompson (2006) as those which “do not each test whether two means
are equal but instead test whether the means across the levels form a certain pat-
tern (e.g., a line, a parabola)” (p. 375). Such trend analyses can be very useful
by the researcher who wants to examine data to look for effects of treatment or
any other type of data that may perform in a manner that is not simply on a
linear line. Such trend contrasts are possible only if (1) they way is quantitative
(e.g., minutes of time, milligrams of drug) and (2) the levels are equally spaced
(e.g., 10, 20, 30, 40 minutes).

Say for instance we wanted to test the effect of grades on adolescent riskiness.
We may find a strait linear line that states that the higher the grades the lower
the risk, but we may also find other effects. Perhaps getting an 80% grade average
equals zero risk while both higher and lower grades increase risk, creating a curve
with one bend. To test the shape of the effects the researcher must fist determine
the grouping of the variables. In our example data we see that our grade data
range from 55 to 94 so we can create five groups of ranging grades placing the
adolescents in groups of A(5), B(4), C(3), D(2), or F (1). See Table 3 for the
matrix used to test trend contrasts for a 5-level way variable. Following are the
steps needed to create and test these contrasts:

Create four variables (linear, quadratic, cubic, and quartic), set their
values to 0. If grade = 1, set linear = −2, quadratic = 2, cubic = −1,
and quartic = 1.
If grade = 2, set linear = −1, quadratic = −1, cubic = 2, and quartic
= −4.
If grade = 3, set quadratic = −2, and quartic = 6.
If grade = 4, set linear = 1, quadratic = −1, cubic = −2, and quartic
= −4.
If grade = 5, set linear = 2, quadratic = 2, cubic = 1, and quartic = 1.

Run linear regression with risky as dependent variable and linear,
quadratic, cubic, and quartic as independent variables.
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Table 3: Trend/polynomial contrasts for a five-level way

Contrasts 1 2 3 4 5
Linear −2 −1 0 1 2

Quadratic 2 −1 −2 −1 2
Cubic −1 2 0 −2 1

Quartic 1 −4 6 −2 1

Note. Adapted from Thompson (2006).

The results show statistically significant effects for the quadratic pattern,
F (1, 11) = 39.19, p < .001. This suggests that the effect of grades on youth
riskiness is not a linear one, but one such that both youth with low and higher
grades are more likely to be risky than youth with average grades.

4. Non-trend Contrasts

The first example on creating orthogonal contrasts was an example of non-
trend contrasts. Two other types of contrast coding are dummy coding and effects
coding.

4.1 Dummy coding

Dummy coding, described by Cohen and Cohen in 1983, is the simplest coding
structure that allows the researcher to examine group mean differences. Dummy
coding only uses 1s and 0s, and is completed by creating up to k − 1 contrasts;
thus in a two group example dummy codes would be created by giving one group
a 1 and the others a 0 (Fox, 1997). More complex dummy codes can be created
though for variables with multiple categories. Completion is just as easy though,
first group one is given a 1 in the first contrast with all other groups receiving a
0, in the second contrast group two receives a 1 with all other groups receiving
a 0, and so forth (Wendorf, 2004). Examples of two-level and five-level dummy
codes are provided using the example data in Tables 4 and 5 respectively to test
for gender and substance use differences in regard to level of riskiness expressed
by the youth. Following are the steps needed to create and test these contrasts.

Table 4: Dummy coding for a two-level way

Id: 2 5 6 8 9 11 1 3 4 7 10 12
Riskiness (risky): 14 17 19 20 15 18 5 8 10 2 11 12
A1: 1 1 1 1 1 1 0 0 0 0 0 0

Note. The 2 levels of the balanced (n in each cell = 6) one-way design are
gender: 0 = female, 1 = male.
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Table 5: Dummy coding for a five-level way

Id Riskiness Substance Use A1 A2 A3 A4
(risky) (sub use)

1 5 1 1 0 0 0
7 2 1 1 0 0 0
3 8 2 0 1 0 0
4 10 2 0 1 0 0
2 14 3 0 0 1 0
9 15 3 0 0 1 0

12 12 3 0 0 1 0
5 17 4 0 0 0 1

10 11 4 0 0 0 1
6 19 5 0 0 0 0
8 20 5 0 0 0 0

11 18 5 0 0 0 0

Note. The 5 levels of the one-way design are substance use: 1= no use, 2
= 1 or 2 times a month, 3 = once a week, 4 = 2 to 3 times a week, and 5 =
everyday. (M = 9, SD = 1.41). A3 suggests that youth who used substances
once a week are not statistically significantly different (M = 13.67, SD = 1.53)
than their peers (M = 12.22, SD = 6.55;F [1, 11] = 4.67, p = .072). Finally, A4
suggests that youth who used substances 2 to 3 times a week were statistically
significantly less likely to be risky (M = 12.3, SD = 6.06) than their peers
(M = 14, SD = 4.24). However, interesting to note is that while each of these
findings provides interest, they can be conflicting as are hypotheses A1 and A4,
showing a limitation for using dummy codes on variables with high levels.

Two-level dummy code:

Create one variable (A1), set it’s value to 0.
If gender = 1, set A1 = 1.

Run linear regression with risky as dependent variable and A1 as the
independent variable.

The results show a statistically significant effect for gender differences in youth
riskiness, F (1, 11) = 25, p < .001. Such that females were statistically signifi-
cantly less likely to be risky (M = 8, SD = 3.85) than males (M = 17.17, SD =
2.32). five-level dummy code:

Create four variables (A1, A2, A3, and A4), set their values to 0.
If sub use = 1, set A1 = 1.
If sub use = 2, set A2 = 1.
If sub use = 3, set A3 = 1.
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If sub use = 4, set A4 = 1.

Run linear regression with risky as dependent variable and A1, A2, A3,
and A4 as the independent variables.

The results show statistically significant effects for three of the four contrast
variables, A1 : F (1, 11) = 44.47, p < .001; A2 : F (1, 11) = 16.37, p = .007; A4 :
F (1, 11) = 6.74, p = .038. These results supported the hypothesis that different
levels of substance use affected youth levels of riskiness. More specifically, A1
suggests that youth who do not use substances were statistically significantly less
likely to be risky (M = 3.5, SD = 2.12) than those that do use substances (M =
14.4, SD = 4.09). A2 suggests that youth who used substances once or twice a
week were statistically significantly more likely to be risky (M = 13.3, SD = 5.96)
than their peers

Dummy codes have some distinct advantages that cause them to still have
wide usage today despite more advanced coding structures being available. One
such benefit is that dummy code structure works especially well with nominal and
more specifically dichotomous data (McClendon, 1994). Fox (1997) noted that
dummy codes allow the researcher “to avoid a biased assessment of the impact
of an independent variable, as a consequence of omitting another independent
variable that is related to it” (p. 136) when he spoke on the reluctance of using
such two category variables. A second benefit to such a coding structure is
the ease of interpretation. Because for groups coded as 0, the intercept of the
regression equation is the mean of these groups, thus if we know the mean of the 0
coded groups we already understand half of the regression equation (McClendon,
1994).

Such simple interpretation leads us also to one of the limitations of dummy
coding, that being limited ability to make interpretations (Keppel, 1989). Keppel
(1989) stated that one of the main situations in which dummy coding is used is
to test the effects of one group against all other groups, for instance a control
group against multiple treatment groups. Although this information can provide
the researcher with beneficial information, it is much more advantageous to begin
with contrast coding, which allows for more detailed hypothesis testing. Lastly,
dummy coding has the disadvantage that such a design “will result in one or more
erroneous tests of significance for multi-factor designs” (O’Grady & Medoff, 1988,
p. 258).

4.2 Contrast coding

Contrast coding was created as an extension of dummy coding to examine
mean differences between groups (Overall & Spiegel, 1969). This type of cod-
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ing scheme allows the researcher to examine more than simple omnibus tests,
or differences between one group mean and all other group means (Kaufman &
Sweet, 1974). Such contrasts can be very useful to the researcher, as was seen
in our example, because they allow the researcher to test specific hypotheses of
interest between group means, a task that if completed with regular ANOVA
strategies would require post-hoc tests. It has been stated by some that contrast
coding “provides us with the most useful information of all the coding methods”
(Keppel, 1989, p. 113). The basic premise of this coding structure is that it
requires the researcher to assign contrasts that sum to 0 across all subjects (Kep-
pel, 1989). Thus in our example data in Table 2 we can see that for each contrast
(i.e. (A1, A2, A3) the numbers add up to 0.

Although such coding is very helpful, it does have limitations. Kaufman and
Sweet (1974) stated that if such contrasts are created in an orthogonal, balanced
(same n for all groups) design, then interpretation of main effects and interactions
is fairly straightforward and accurate; however, when designs become unbalanced
or non-orthogonal, such interpretations can become confounded. Although such
confounds can be avoided or controlled, this does necessitate the researcher to
utilize caution before conducting such contrasts.

4.3 Effects coding

A final coding type that will be examined is effects coding, which is very
similar to contrast coding, and in fact identical in the two category situation
(Keppel, 1989). With this coding structure the same process is completed as
that for dummy coding except the last group receives a −1 on all contrasts, thus
only k−1 contrasts are used in this coding type (Wendorf, 2004). An example of
such a coding structure from our example data can be viewed in Table 6. Effects
coding has uses that extend past dummy coding, and yet it is not as elaborate
as contrast coding. Effects coding allows researchers to test mean differences
between two groups by using simple contrasts, but does not allow the complex
contrasts of contrast coding (Koslowsky, 1988). Using the example data we can
test the difference between levels of thrill seeking behavior on youth riskiness.
Following are the steps needed to create and test these contrasts.

Create three variables (A1, A2, andA3), set their values to 0.

If thrlseek = 1, set A1 = 1.
If thrlseek = 2, set A2 = 1.
If thrlseek = 3, set A3 = 1.
If thrlseek = 4, set A1 = −1, A2 = −1, and A3 = −1.

Run linear regression with risky as dependent variable and A1, A2,
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and A3 as the independent variables.

The results show statistically significant effects for two of the three con-
trast variables, A1 : F (1, 11) = 88.20, p = .002;A3 : F (1, 11) = 9.07, p = .046.
These results supported the hypothesis that different levels of thrill seeking af-
fected youth levels of riskiness. More specifically, A1 suggests that youth who
are very low thrill seekers were statistically significantly less likely to be risky
(M = 5, SD = 3) than those that were high thrill seekers (M = 19, SD = 1).
A2 showed that there was no statistically significant difference between low thrill
seekers (M = 11, SD = 1) and high thrill seekers (M = 19, SD = 1;F [1, 11] =
.60, p = .604), regarding youth riskiness. Finally, A3 suggests that youth who
were medium high thrill seekers were statistically significantly less likely to be
risky (M = 15.33, SD = 1.53) than those that were high thrill seekers (M =
19, SD = 1).

Table 6: Effects coding for a four-level way

Id Riskiness Thrill Seeking A1 A2 A3
(id) (risky) (thrlseek)

1 5 1 1 0 0
3 8 1 1 0 0
7 2 1 1 0 0
4 10 2 0 1 0

10 11 2 0 1 0
12 12 2 0 1 0
2 14 3 0 0 1
5 17 3 0 0 1
9 15 3 0 0 1
6 19 4 −1 −1 −1
8 20 4 −1 −1 −1

11 18 4 −1 −1 −1

Note. The 4 levels of the one−way design are Thrill seeking: 1 = very low, 2 =
low, 3 = medium high, 4 = high.

As with dummy coding, one of the benefits of this coding structure is the
ease of interpretation. With effects coding, the slope is simply the difference
between the mean of the group coded as 1 and the grand mean of all the groups
(McClendon, 1994). However, one limitation of this coding structure is it only
tests the difference between simple contrasts and does not allow the researcher
to test hypotheses for both simple and complex contrasts.
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5. Conclusion

As explained here, researchers have many options available to them to test
both mean differences and mean trends in data through the use of MRA. The
end conclusion is that the type of coding structure should be determined by
researchers according to the type of hypotheses they wish to answer. One of
the largest benefits of the coding structures discussed earlier is the thought that
needs to be put into the analysis (Thompson, 2006). Such a decision tree is shown
in Figure 1. First, researchers must determine whether previous literature or
knowledge allows them to determine specific hypotheses, if not then non-planned
contrasts need to be examined to find where effects lie. If, however, researchers
do have a reason to suspect specific hypotheses they move onto the next decision,
which is whether they want to compare group means against each other, or look
at the trend of the means. If trend tests are desired, then polynomial or trend
contrasts will be created to see how the means react across levels of the way. If
tests of mean differences are desired, then researchers move onto another decision,
which is what type of mean differences they wish to examine. If researchers wish
to compare a single group against all groups, then simple dummy coding can be
created easily. If researchers instead wish to test individual group means against
each other, then effects coding is the desired choice. Or, if researchers determine
that they wish to examine both of these types of mean differences, then the most
complex coding type of contrast coding should be applied. The last decision that
researchers should make is whether their desired contrasts should be uncorrelated
with each other, which will allow more easily interpretable results.
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Figure 1: Decision tree for determining appropriate coding structure
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