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Abstract: In this paper, we propose a nonparametric approach using the
Dirichlet processes (DP) as a class of prior distributions for the distribution
G of the random effects in the hierarchical generalized linear mixed model
(GLMM). The support of the prior distribution (and the posterior distribu-
tion) is large, allowing for a wide range of shapes for G. This provides great
flexibility in estimating G and therefore produces a more flexible estimator
than does the parametric analysis. We present some computation strategies
for posterior computations involved in DP modeling. The proposed method
is illustrated with real examples as well as simulations.
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1. Introduction

Generalized linear models have been very useful for a wide variety of discrete,
continuous, and censored responses in many research areas. Estimation of the
GLMM is discussed by Zeger and Karim (1991) and Breslow and Clayton (1993),
among others. In these models, the distribution G of random effects typically is
assumed to have a parametric distribution form, such as a normal distribution.

Clearly, it is not always the case that random effects come from a known
parametric family of distributions. There are possibilities that the distribution
of the random effects is nonnormal, multimodal, or skewed. Assuming a para-
metric distribution or misspecifying the distribution would impose unreasonably
constraints on the distribution and as a consequence produce poor estimates of
parameters. It is therefore important to use nonparametric approaches to allow
random effects to come from a sufficiently large class. Currently, there are some
references about nonparametric estimation in hierarchical mixed models. Lavine
(1992) proposes Bayesian nonparametric mixing using Polya trees as a prior for
the distribution of random effects in the hierarchical GLMM. This approach is
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limited to the univariate random effects. Walker and Wakefield (1998) propose
a Bayesian nonparametric approach using Dirichlet processes (Ferguson, 1973;
Antoniak, 1974) as a class of prior distributions for the distribution of random
effects in the context of the hierarchical nonlinear mixed model (NLMM) where
the responses are continuous only. The DP has been very popular in modern
nonparametric statistics. There is an extensive discussion on DP models in the
literature. Excellent references include (Escobar and West, 1992, 1995; West,
Muller, and Escobar, 1994; Muller and Rosner, 1997; MacEachern, 1992; Bush
and MacEachern, 1996). In this article, we implement the Dirichlet process in the
hierarchical GLMM by placing a DP prior on the distribution, G, of the random
effects. In this model framework, G itself is assumed uncertain, drawn from a
Dirichlet process on a family of all possible distribution functions on the real line.
The support of the prior distribution is large, allowing for a wide range of shapes
for G. This provides great flexibility in estimating G and therefore produces a
more flexible estimator than does the parametric analysis.

This article is organized as follows. In Section 2 we review the hierarchical
generalized linear model and the Dirichlet process. In Section 3 we present some
computation strategies for posterior computations involved in DP modeling. In
sections 4 and 5 we illustrate the application of the proposed method in real
examples and simulated data. We conclude this article with discussions.

2. Hierarchical GLMMs Based on DP Priors

The general form of the hierarchical generalized linear mixed model can be
described as follows. Let yij be the response for the ith (i = 1, · · · , n) individual
and the jth observation (j = 1, · · · , ni). The hierarchy of the GLMM model
basically comprises three stages. At the first stage, yij follows an exponential
family of the distribution of the form:

f(yij |bi, β, τ) = exp{τ [yijh(ηij) − g(h(ηij))] + d(yij , τ)}, (2.1)

where h(·) is the link function, g(·) is the variance function, ηij = xT
ijβ + zT

ijbi

is the linear predictor, β is a p-vector of fixed parameters, bi is a q-vector of
random effects associated with the ith subject, xij and zij are p-dimensional and
q-dimensional covariates associated with the fixed parameters β and random ef-
fects b = (bi)

T , and τ is a scalar dispersion parameter. In logistic and Poisson
regression models, τ is intrinsically equal to 1, as shown in all the examples given
in this paper. For normal random effects models, τ = 1/σ2 is assumed unknown.
At the second stage of the model, the random effects bi typically are assumed to
have a parametric distribution, G, such as a normal distribution. The final stage
of the model specifies the priors for fixed parameters β, the covariance matrix
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of G, and the dispersion parameter τ . For example, β are usually assumed to
have a normal prior with mean µ and variance Σ, the inverse of D has a Wishart
distribution, say, D−1 ∼ W (ρ, (ρR)−1), and for normal random effects models,
τ usually has a Gamma prior as τ ∼ Ga(ν0/2, ν0ω0/2). Here, Ga,W,U denote
respectively a Gamma distribution, a Wishart distribution, and a Uniform distri-
bution; the hyperparameters µ,Σ, ν0, ω0, ρ, R, and d are known. For example, we
can use the following set of priors: µ = 0,Σ−1 = 0, ν0 = 0, ρ = q (the dimension
of bi); R is chosen to be an approximate prior estimate of D and d is a positive
number in a reasonable range.

The parametric form of the distribution of the random effects b may be too
restrictive to account for model features such as multimodality, nonnormality,
and skewness. It is therefore important to use nonparametric approaches for
modeling in order to capture these possibilities. Specifically, we consider here
the Dirichlet process for estimation in the hierarchical GLMM. The idea is that,
instead of specifying a parametric form for G, we assume G to be uncertain and
modeled as a DP with parameters G0 and α, where G0 is a probability measure
and α is a positive real constant. The parameter G0 is a location parameter
for the DP prior. It is the best guess at what G is believed to be and is the
prior expectation of G so that E(G(b|·)) = G0(b|·). The parameter α > 0 is a
measure of the concentration of the prior for G about the guess prior G0. When
G is integrated over its prior distribution G0, a sequence of b1, · · · ,bn can be
generated using a Polya urn scheme (Blackwell and MacQueen, 1973), described
as follows. The first parameter, b1, is chosen from G0. The second parameter,
b2, is chosen from G0 with probability α/(α + i − 1) and is equal to b1 with
probability 1/(α + i − 1). The generation rule for bi|b1, · · · ,bi−1 is to set bi

equal to bj , j < i with probability 1/(α + i − 1) and to choose bi from G0 with
probability α/(α + i − 1); that is,

bi ∼

 G0 w. p.
α

α + i − 1
bj(j 6= i, i = 2, · · · , n) w. p.

1
α + i − 1

.
(2.2)

In other words, the sequence b1, · · · ,bn is actually drawn from a mixture dis-
tribution with mixing probabilities determined by the DP. From this it is easy
to see that, when α is large a sampled G is likely to be close to G0, and that,
when α is small a sampled G is likely to come from just a few existing realized
values of b1, · · · ,bn. Therefore, the parameter α is a type of dispersion parame-
ter for the DP prior. As described by MacEachern (1992), the DP procedure as
demonstrated in (2.2) generates a cluster structure for bi’s. This cluster struc-
ture partitions b1 · · · ,bn into c ≤ n sets. All of the bi’s within a particular set
are identical; those in different sets differ. This produces a rich class of prior
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distributions, allowing for a wide range of shapes for G. The base prior G0 may
be viewed as a “baseline” prior in the context of an analysis of sensitivity to the
assumptions of the baseline parametric model. The closed form of the joint prior
density of b1, · · · ,bn is

f(b1, · · · ,bn) =
n∏
i

αG0(dbi) +
∑i−1

j=1 δ(bj , dbi)
α + i − 1

,

where δ(bj , dbi) denotes a unit point mass at bi = bj :

δ(bj , dbi) =
{

1 when bi = bj

0 when bi 6= bj .

A further stage, therefore, can be added to the hierarchical GLMM model
(2.1) based on the DP prior:

bi ∼ G, G ∼ DP (G0(b|·)). (2.3)

This further stage adds uncertainty about G modeled as a DP, allowing for the
modeling of deviation away from the specific distribution G0. An important
instance of model (2.3) is the normal DP model, in which G0(bi|D) = N(0,D).

3. Posterior Computations

Estimation of the DP model has been efficiently implemented by the Gibbs
sampling scheme from the full conditionals of parameters (Escobar, 1988; Esco-
bar and West, 1992, 1995; West, Muller, and Escobar, 1994; Muller and Rosner,
1997; MacEachern, 1992; Bush and MacEachern, 1996). In this section, we
describe the implementation of the Gibbs sampler in our model framework.

Estimation based on the DP for the normal random effects model has been
investigated by several authors, Escobar and West (1992), West, Muller, and
Escobar (1994), Walker and Wakefield (1998), among others. In this article we
focus on DP estimation in logistic and Poisson random effects models in which
τ = 1. For notational convenience, in model (2.1) we simplify d(yij , τ) into d(yij)
and denote s(yij ,bi, β) = yijh(ηij) − g(h(ηij)) + d(yij).

For simplicity and ease of implementation, we consider throughout a normal
baseline prior with mean 0 and covariance matrix D, i.e., G0(b|D) = N(0, D).

3.1 Posterior distribution of bi

Recall in Section 2, the sequence b1, · · · ,bn produced by the DP procedure,
as described in (2.2), can be partitioned into c ≤ n clusters. Let (b̃1, · · · , b̃c)
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denote the set of distinct values. Let b(i) denote the vector with bi removed,
that is, b(i) = (b1, · · · ,bi−1,bi+1, · · · ,bn). Let c(i) denote the number of different
clusters formed by b(i) and c

(i)
k (k = 1, · · · , c(i)) denote the number of observations

sharing the common parameter value b̃(i)
k in the kth cluster.

Conditional on b(i), the prior of bi can be given by:

(bi|b(i), β,D, α) ∝ α

α + n − 1
G0(bi|D) +

1
α + n − 1

c(i)∑
k=1

c
(i)
k δ(bi|b̃(i)

k ), (3.1)

where δ(bi|b̃(i)
k ) denotes a unit point mass at bi = b̃(i)

k . This shows that bi is
distinct from the other parameters and drawn from G0(bi|D) with probability
α/(α+n−1), otherwise, it is chosen from the existing values b̃(i)

k with probabilities
c
(i)
k /(α+n−1). It’s clear that when α → ∞, G → G0 and when α → 0, G → b̃(i)

k .
Therefore in this process the parameter α governs the precision of the guess prior
G0.

With such a cluster feature as shown in (3.1), several algorithms have been
proposed for implementing the Gibbs sampler to resample bi’s in the DP model
(Escobar and West, 1992; MacEachern, 1992; West, Muller, and Escobar, 1994;
Escobar and West, 1995; Muller and Rosner, 1997; Bush and MacEachern, 1996).
Currently MacEachern’s algorithm, outlined as follows, is recommended for use.

Escobar andWest (1995) show that, based on the prior (3.1), the conditional
posterior distribution of bi has the following form:

(bi|b(i),yi, β,D, α) ∝ q0f(yi|bi, β)G0(bi|D) +
c(i)∑
k=1

qkδ(bi|b̃(i)
k ),

where f(yi|bi, β) is the density function of yi conditional on bi and β, and

q0 = α

∫
f(yi|bi, β)dG0(bi|D),

qk = c
(i)
k f(yi|b̃(i)

k , β), 1 = q0 +
∑

k

qk.

The proportion q0 can be computed

q0 ∝ α|D|−1/2

∫
exp

{
− 1

2

[ ni∑
j=1

s(yij ,bi, β) + bi
TD−1bi

]}
dbi.

The above integral generally does not have a closed form solution. We apply the
Laplace’s method for integral approximation:

|Hi|−1/2 exp
{
− 1

2

[ ni∑
j=1

s(yij , b̂i, β) + b̂T
i D−1b̂i

]}
,
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where b̂i and Hi are the mode and Hessian of the function
∑ni

j=1 s(yij ,bi, β) +
bi

TD−1bi.
The proportion qk can be computed directly

qk = c
(i)
k f(yi|b̃(i)

k , β) ∝ c
(i)
k exp

[
− 1

2

ni∑
j=1

s(yij , b̃
(i)
k , β)

]
.

3.2 Posterior distribution of β

The conditional density of β can be computed

f(β|b,y,D, α) ∝ f(β)
n∏

i=1

f(yi|bi, β,D, α)

∝ f(β) exp
[
− 1

2

n∑
i=1

ni∑
j=1

s(yij ,bi, β)
]
, (3.2)

where f(β) is the density of β. Posterior density (3.2) typically cannot be written
into a closed form and therefore direct sampling β is not available. Alternatively,
we can use the Metropolis–Hastings (M–H) algorithm to obtain samples without
knowing the analytical form of the posterior distribution. We choose the candi-
date distribution, I(β), as follows. Because (3.2) is known up to a normalization
constant, we can compute its mode β̂ and Hessian V using numerical optimiza-
tion techniques. This yields a natural choice of the candidate distribution, a
normal distribution with mean β̂ and variance V. Then we can implement the
Metropolis–Hastings algorithm as follows. Denote βt the current value of β at
the tth iteration. A new value β∗ is drawn from the candidate distribution I(β).
The acceptance probability is computed

min
{

1,
f(β∗)f(y|b, β∗,D, α)I(βt)
f(βt)f(y|b, βt,D, α)I(β∗)

}
.

Note that there is no need to compute the normalization constant because it
cancels out in the acceptance probability.

3.3 Posterior Distribution of D

The posterior distribution depends on b only. Using a convenient prior for
D−1, a Wishart distribution W (ρ, (ρR)−1) as specified in Section 2, it can be
shown that the posterior of D−1 is the following Wishart distribution (Wakefield,
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Gelfand, Racine-Poon and Smith, 1995):

(D−1|b,y, β, α) ∼ W

(
ρ + n,

[
ρR +

n∑
i=1

bibi
T

]−1)
, (3.3)

where W denotes a Wishart distribution, ρ is the Wishart degrees of freedom
index which may be chosen to be the dimension of the random effects, and the
matrix R is an approximate estimate of D.

3.4 Posterior distribution of α

Suppose α ∼ Ga(τ1, τ2), a Gamma distribution with a shape parameter τ1 > 0
and a scale parameter τ2 > 0. Given this Gamma prior, α can be resampled from
a mixture of two gammas:

(α|ξ, c) ∼ πξGa(τ1 + c, τ2 − log(ξ)) + (1 − πξ)Ga(τ1 + c − 1, τ2 − log(ξ)), (3.4)

where ξ is a latent variable sampled from a Beta distribution, (ξ|α, c) ∼ Beta(α+
1, c), and πξ is the weight computed by πξ/(1−πξ) = (τ1 + c−1)/[c(τ2− log(ξ))].
When both τ1, τ2 are small, the Gamma prior puts weight on both high and low
values of α; when both τ1, τ2 are large, the Gamma prior favors low values of α.

3.5 Prediction and density estimation

Predictions of future values of bn+1 can be obtained by extending n to n +1:

(bn+1|b, β,D, α) ∼ α

α + n
G0(bn+1|D) +

1
α + n

c∑
i=1

ciδ(bn+1|b̃i), (3.5)

where bn+1 is a new independent draw from G0.
Estimation of the densities of b can be obtained using Monte Carlo approxi-

mations (Escobar and West, 1995), described as follows. First, we run the Gibbs
sampler for M iterations, where M is a sufficiently large number, so that con-
vergence of the the Gibbs sampler has achieved. With the obtained samples
bM , βM ,DM , and αM , we compute Monte Carlo approximations to f(bn+1|y)
as follows:

f(bn+1|y) ≈ 1
M0

M+M0∑
m=M

f(bn+1|bm, βm,Dm, αm),

where M0 is a large number required for Monte Carlo approximation, and
f(bn+1|bm, βm,Dm, αm) is the density for (3.5) computed at the mth iteration.
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The posterior distribution of D−1 and α have a closed form, and therefore
estimates of their marginal densities can be obtained by using the empirical dis-
tributions (Gelfand and Smith, 1990) of the sampled values D and α:

f(D−1|y) ≈ 1
M0

M+M0∑
m=M

f(D−1|bm,y, βm, αm),

f(α|y) ≈ 1
M0

M+M0∑
m=M

f(α|ξm, cm),

where f(D−1|bm,y, βm, αm) and f(α|ξm, cm) are the densities given in (3.3) and
(3.4). As seen from (3.2), the posterior density f(β|b,y,D, α) is not analyti-
cally available. With large data sets, it may be reasonable to use a Gaussian
distribution as an approximation to β|b,y,D, α.

4. Illustrative Examples

4.1 Pups data

Ochi and Prentice (1984) analyzed the data, previously presented by Weil
(1970), collected from an experiment comprising two treatments. One group
of 16 pregnant female rats was fed a control diet while a second group of 16
pregnant females was fed a chemically treated diet. For each litter, the number
mi (i = 1, · · · , 32) of pups alive after 4 days and the number zi of pups that
survived to 21 days were recorded. Denote the two levels of response yi by success
and failure, that is, yi = 1 if the survival time exceeds 0 and 0 otherwise. Hence,
zi is the number of successes among the mi observations in the ith litter. The
number of survivors varies among litters in a manner that substantially exceeds
that consistent with a standard binomial error structure. This extra-binomial
variation, or overdispersion, reflects the fact that the binary responses of rats
from the same litter tend to be more alike than are the responses from distinct
litters at the same diet. To account for this overdispersion, a general probit model
has been considered for the counts zi, allowing the binary responses yi’s to have
separate probabilities for control and treated groups:

(zi|bi) ∼ Binomial(mi, pi), and
pi = P (yi = 1) = Φ(β1x1i + β2x2i + bi), (4.1)
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where x1i and x2i are binary indicators defined as

x1i =
{

1 if the litter receives the control diet
0 otherwise,

x2i =
{

1 if the litter receives the treated diet
0 otherwise,

β1 and β2 represent the treatment means for control and treated groups, pi is
the probability of the binary observation in the ith litter, and Φ is the standard
normal cumulative distribution function. The q = 1 dimensional random effects
are bi ∼ N(0, D1x1i+D2x2i), allowing for separate variations, say, D1 and D2, for
control and treated groups respectively. Here, the bi’s represent the litter effects,
used to describe the greater alikeness of the binary response within a litter as
compared to that between litters for control and treated groups.

To illustrate the DP analysis for these data, we make a slight modification
to model (4.1) by assuming a common covariance matrix D for the control and
treated groups: bi ∼ N(0, D). In other words, we assume homoscedasticity of
variance for random effects among the control and treated groups. Basically, we
want to see if the DP model might be useful to detect potential heterogeneity in
random effects among the two groups.

To implement the Gibbs sampler, we choose the prior for β to be
N((0, 0)T , 10000I2), where I2 is the 2 × 2 identity matrix. The prior for D−1 is
a Wishart distribution with ρ = 1, R = 1. The parameter α is modeled with
a Gamma prior Ga(0.1, 1), inducing a range of small values of α. We run the
Gibbs sampler for 20,000 iterations, discarding the first 1,000 iterations and using
the remaining 19,900 iterations to compute parameter estimates. Convergence
is assessed graphically. Figure 1 displays the posterior densities by applying a
Gaussian kernel estimate to the sampled values. The top row of Figure 1 is from
Ga(0.1, 1) and the bottom row is from the fully parametric analysis. These are the
predictive distributions computed without knowledge of group membership. It’s
evident that the density under the Gamma prior is bimodal, suggesting separate
variances for control and treated groups respectively. Following this, we fit the
two groups separately using model (4.1). The parameter estimates for the two
groups are computed as β1 = 1.33, β2 = −0.47, D1 = 0.24, and D2 = 1.32,
indicating a small litter effect among the control litters and a strong effect a
mong the treated litters. This can also be seen from the predicted distribution
under DP analysis as shown in Figure 1, in which the mode on the left, due to
the control diet, appears to be smaller than that on the right, due to the treated
diet. In summary, analyses of these data indicate that the DP prior is useful in
detecting some particular model features of interest.
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Figure 1: Estimated posterior density of b under parametric (dotted line) anal-
ysis and DP analysis (solid line) for the pups data.

4.2 Seed data

Breslow and Clayton (1993) analyzed the data, previously presented by Crow-
der (1978), on the seeds that germinated on each of 21 plates. Two factors, seed
variety (S) and type of root extract (R), were examined, yielding a 2×2 factorial
structure. The binary response indicator yi was 1 if the ith seed germinated and
0 otherwise. The within-group variation was observed to exceed that predicted
by binomial sampling theory. To account for this extraneous plat-to-plate vari-
ability, a logistic modeling analysis of treatment and interaction effects was used
to model the germination rate:

logit P (yi = 1|bi) = β0 + β1Si + β2Ri + β3(Si × Ri) + bi,

where q = 1 and bi ∼ N(0, D), i = 1, · · · , 21, represented random effects associ-
ated with each plate.

We choose the priors for β and D in a similar fashion to the pups data. The
precision parameter α is modeled with each of the following three Gamma priors:
Ga(10, 10), Ga(100, 0.1), and Ga(1000, 0.1). We find that estimation results from
these four Dirichlet processes are similar. For brevity, our presentation is limited
to the analysis under the Ga(10, 10) prior only. Table 1 summarizes posterior
sample means and standard errors (SE) from the Ga(10, 10) prior and the para-
metric analysis. It can be seen that parameter estimates from the two methods are
very close. In general, the parametric method produces smaller standard errors,
indicating that it tends to underestimate parameters. This is not surprising in
the sense that under parametric analysis G is restricted to be normal while under
DP analysis G varies in a larger range of distributions. Figure 2 displays posterior
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densities under the four Gamma priors and the parametric method. The four rows
in Figure 2, from top to bottom, are from Ga(10, 10), Ga(100, 0.1), Ga(1000, 0.1),
and the fully parametric analysis. We see that there are various shapes including
bimodal and skewed densities under the DP analysis. The Ga(10, 10) prior seems
to induce a more severe clustering of the bi’s, while each of the other two pri-
ors Ga(100, 0.1) and Ga(1000, 0.1) seems to induce more of a blend between the
baseline predictive distribution and the predictive distribution from a standard
normal model with each of the Ga(100, 0.1) and Ga(1000, 0.1) priors. This is ex-
pected because the Ga(10, 10) prior induces much smaller α values than the other
two. These DP predicted distributions show us flexibility provided by the DP
prior in modeling the distribution of random effects. The DP prior specification
for these data allows for an arbitrary distribution of the plate effects, and results
in effective estimation of the treatment effects across a wide range of distributions
for the plate effects.

Table 1: Posterior means and standard errors (SE) for the seed data

DP method Parametric method

Mean SE Mean SE

β0 -.56 .045 -.55 .013
β1 .15 .026 .13 .023
β2 1.32 .022 1.32 .019
β3 -.78 .036 -.78 .032
D .012 .006 .012 .004

−0.4 −0.2 0.0 0.2 0.4
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Figure 2: Estimated posterior density of b under DP and parametric analyses
for the seed data
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4.3 Longitudinal data

Thall and Vail (1990) presented the data arising from a clinical trial of 59
epileptics who were randomized to receive either a new drug or a placebo as an
adjustment to the standard chemotherapy. The number of epileptic seizures, the
response variable, occurring over the previous two weeks was recorded at each
of four successive clinic visits. There were five covariates: the binary indicators
for treatments (T) (T=1 if the epileptic received the new drug and 0 otherwise),
the logarithm of 1/4 the 8-week baseline seizure counts (B), the logarithm of age
in years (A), the visit (V), coded V1 = −3, V2 = −1, V3 = 1, V4 = 3, and the
interaction between baseline seizure counts and treatment (BT). Four covariance
models, each in a log-linear form, were considered for these data. We focus on
the following two. The logarithm of the response variable yij , the seizure count
for patient i on the jth visit (i = 1, · · · , 59, j = 1, · · · , 4), is assumed to be
Poisson-distributed with mean computed

log µij = β0 + β1V4 + β2Ti + β3Bi + β4(BT )i + β5Ai + bi0, (4.2)
log µij = β0 + β1V4 + β2Ti + β3Bi + β4(BT )i + β5Ai + bi0 + bi1Vj/10, (4.3)

where q = 2 and b = (bi0, bi1) are bivariate normal random effects from N(0,D),
which represent the residual level and rate of change in the event rate for the ith
subject.

We choose the priors for D as follows: ρ = 2, R =
(

1 0
0 0

)
for (4.2) and

R = I2 for (4.3). The Gamma prior for α is Ga(1000, 0.001), inducing quite large
α values and therefore indicating no anticipation of departures from normality.
Table 2 gives posterior sample means and standard errors from each model. In
general, the DP and parametric analyses agree reasonably well in each case. This
indicates that, when random effects are likely to come from a normal distribution,
the DP and parametric models are equivalent.

Table 2: Results for the longitudinal data

Model (4.2) Model (4.3)

DP method Parametric method DP method Parametric method

Mean SE Mean SE Mean SE Mean SE
β0 -1.35 .30 -1.18 .14 -1.33 .30 -1.37 .14
β1 -.16 .005 -.16 .005 -.16 .10 -.27 .03
β2 -1.06 .24 -.93 .05 -.81 .25 -.92 .04
β3 .90 .04 .87 .02 .89 .04 .88 .01
β4 .41 .14 .34 .03 .28 .14 .34 .02
β5 .49 .09 .45 .04 .48 .09 .49 .04
D11 .42 .08 .41 .08 .18 .04 .18 .04
D12 — — — — -.03 .06 -.0008 .04
D22 — — — — .30 .07 .27 .06
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5. Simulation Studies

5.1 Simulation 1

Zeger and Karim (1991) presented a simulation study involving n = 100
subjects of size ni = 7. Two models, each in a logistic regression form, were
considered for these data:

P (yij = 1|bi) = β0 + β1tj + β2xi + β3(tjxi) + bi0, (5.1)
P (yij = 1|bi) = β0 + β1tj + β2xi + β3(tjxi) + bi0 + bi1tj , (5.2)

where xi = 0 for half the sample and xi = 1 for the other half and tj = j − 4, i =
1, · · · , 100, j = 1, · · · , 7. The regression coefficients were fixed at β0 = −2.5, β1 =
1.0, β2 = −1.0, and β3 = −0.5. Zeger and Karim generated q = 2 dimensional
random effects bi = (bi0, bi1) from a bivariate normal distribution. Here, to
illustrate the DP method, for model (5.1) we generate bi0 from a mixture of
two normals, with means equal to -0.5 and 0.5; variance 1. For model (5.2) we
generate bi0 from a mixture of two normals, with means equal to -0.5 and 0.5;
variance 0.49; bi1 are generated from N(0, 0.25). The mixing probability for each
model is 0.5. Under this mixture of normals, it can be easily verified that the
mean and variance of bi0 are 0, 1.25 for model (5.1) and 0, 0.74 for model (5.2).

Table 3: Results for the simulated data fitted by models (5.1) and (5.2)

Model (5.1) Model (5.2)

DP method Parametric method DP method Parametric method

Mean SE Mean SE Mean SE Mean SE
β0 -2.60 .30 -2.53 .29 -2.31 .19 -2.39 .034
β1 1.03 .13 1.03 .13 1.19 .17 1.08 .02
β2 -.75 .43 -.68 .43 -.85 .14 -.86 .05
β3 -.73 .20 -.73 .20 -.64 .11 -.66 .03
D11 1.15 .18 1.09 .17 .73 .10 .72 .10
D12 — — — — .42 .14 .38 .07
D22 — — — — .47 .24 .31 .06

For each model, we analyze the data using both DP and parametric meth-
ods. The Gamma priors for α are Ga(1, 1) and Ga(1, 10) for models (5.1) and
(5.2), suggesting that low values of α are favored. Table 3 presents sample means
and standard errors obtained from each model. Overall, estimates from the DP
method are in close agreement with those from the parametric method. Figures 3
and 4 display the posterior densities. The posterior densities under the DP anal-
ysis appear to be less diffuse over the data range than those under the parametric
analysis. Bimodality of the densities under the DP analysis is evident, which is
consistent with the distribution of b0. However, this fact is not suggested by the
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parametric method. Results for these data show that, when the random effects
are not likely to come from a normal distribution, the DP analysis performs bet-
ter than the parametric analysis in that it detects some particular feature of the
model while the parametric analysis can not.
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Figure 3: Estimated densities of b0 for model (5.1). The solid line is the DP
density, and the dotted line is the parametric density.

5.2 Simulation 2

In this simulation, we generate 100 independent Poisson counts, yi, i = 1, · · · , 100,
with means

µi = β0 + β1xi + bi0 + bi1xi,

where xi = i/100, β0 = 10, β1 = 1, q = 2, bi0 are generated from a mixture of three
normal distributions with means equal to -1, 0, 1; variance 4; and corresponding
weights 0.33, 0.34, and 0.33; bi1 are generated from N(0, .25). It can be verified
that the mean and variance of bi0 resulting from this mixture of normals are 0 and
4.66. The Gamma prior for the parameter α is Ga(1, 50). Table 4 summarizes
results from both parametric and DP analyses. In general, sample means and
standard errors of parameters produced by the DP method are larger than those
produced by the parametric method. Figure 5 displays posterior densities of
b0 and b1 under both methods. From Figure 5, three spikes are indicated in
the posterior density of b0 under the DP prior. The spike on the left is due to
N(−1, 4), the spike in the middle is due to N(0, 4), and the spike on the right is
due to N(1, 4). However, the parametric analysis fails to capture this feature. In
summary, our conclusion on the two methods for these simulated counts data is
similar to that for the first simulation study.
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Table 4: Results for the simulated counts data

DP method Parametric method

Mean SE Mean SE
β0 10.16 .34 9.89 .13
β1 2.31 .45 2.22 .09
D11 5.09 1.02 4.21 .67
D22 .11 .02 .10 .01
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Figure 4: Estimated densities of b0 and b1 for model (5.2). The solid line is the
DP density, and the dotted line is the parametric density.
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Figure 5: Estimated posterior densities of b0 and b1 for the simulated counts
data. The solid line is the DP density, and the dotted line is the parametric
density.

6. Conclusion
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In this paper, we have presented a Bayesian nonparametric analysis using the
DP prior for the hierarchical generalized linear model. The use of the DP prior
provides great flexibility in estimating the distribution of random effects, and
therefore allows us to explore the particular model features of interest. We have
applied this method to real examples as well as simulated data. We find that
when the distribution of the random effects is likely to be normal the DP and
parametric methods give similar estimation results. However, when the random
effects come from a distribution other than the normal distribution, as shown in
the pups example and the two simulation studies, the DP analysis clearly is more
useful than the parametric analysis in detecting some particular model features
of interest.
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