
Journal of Data Science 11(2013), 249-267

Bayesian Small Area Estimates of Diabetes Incidence by United
States County, 2009

Lawrence E. Barker∗, Theodore J. Thompson, Karen A. Kirtland,
James P. Boyle, Linda S. Geiss, Mary M. McCauley and Ann L. Albright

Centers for Disease Control and Prevention

Abstract: In the United States, diabetes is common and costly. Programs to
prevent new cases of diabetes are often carried out at the level of the county,
a unit of local government. Thus, efficient targeting of such programs re-
quires county-level estimates of diabetes incidence−the fraction of the non-
diabetic population who received their diagnosis of diabetes during the past
12 months. Previously, only estimates of prevalence−the overall fraction of
population who have the disease−have been available at the county level.
Counties with high prevalence might or might not be the same as counties
with high incidence, due to spatial variation in mortality and relocation of
persons with incident diabetes to another county. Existing methods cannot
be used to estimate county-level diabetes incidence, because the fraction of
the population who receive a diabetes diagnosis in any year is too small.
Here, we extend previously developed methods of Bayesian small-area esti-
mation of prevalence, using diffuse priors, to estimate diabetes incidence for
all U.S. counties based on data from a survey designed to yield state-level
estimates. We found high incidence in the southeastern United States, the
Appalachian region, and in scattered counties throughout the western U.S.
Our methods might be applicable in other circumstances in which all cases
of a rare condition also must be cases of a more common condition (in this
analysis, “newly diagnosed cases of diabetes” and “cases of diabetes”). If ap-
propriate data are available, our methods can be used to estimate proportion
of the population with the rare condition at greater geographic specificity
than the data source was designed to provide.
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1. Introduction

In the United States, diabetes has an enormous social cost (American Diabetes
Association, 2008). Persons with diabetes are at increased risk of devastating
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complications that include blindness (Kertes and Johnson, 2007), hearing loss
(Kakarlapudi et al., 2003), and kidney failure (Centers for Disease Control, 2011),
and a person with diabetes is at about twice the risk of death as a person of
similar age without diabetes (Centers for Disease Control, 2011). Having diabetes
approximately doubles one’s medical costs (Centers for Disease Control, 2011).

Diabetes is common, and becoming more so. In 2010, the national incidence
(fraction of the population diagnosed in the preceding twelve months) was 8.6
per 1000 person years and the national prevalence (fraction of population who
have the condition) of diagnosed diabetes was 6.0% (Centers for Disease Control
and Prevention, 2012a). By 2050, the national diabetes incidence is projected
to be 15 per 1000 and the national prevalence is projected to be at least 14.8%
(Boyle et al., 2010). A child born in 2000 in the United States has a more than 1
in 3 risk of developing diabetes sometime in his or her life (Narayan et al., 2003).

Programs to prevent new cases of diabetes and to prevent complications and
diabetes mortality are generally conducted locally, often at the level of the county
(a unit of local government in the United States) or county equivalent (hereafter
“county”). State-level estimates of the prevalence of diagnosed diabetes have
long existed, based on data from the Behavioral Risk Factor Surveillance Sys-
tem (BRFSS), an ongoing, state-based, random-digit-dialed telephone survey of
non- institutionalized adults aged > 18 years in all 50 states, the District of
Columbia, and some territories (Centers for Disease Control and Prevention,
2012b). County-level prevalence estimates, pinpointing the counties with the
greatest need for programs to prevent complications and death among persons
with diabetes, have recently been developed, using model-based small area esti-
mation techniques (Cadwell et al., 2010, Congdon and Lloyd, 2010, Srebotnjak,
Mokdad and Murray, 2010).

Diabetes incidence and prevalence are obviously related; a person who devel-
ops diabetes, with rare exceptions, has the condition for life. However, incidence
might or might not be high in areas of high prevalence, with differences stem-
ming from spatial variability in mortality among persons with diabetes (a county
with high incidence could have low prevalence, if mortality among persons with
diabetes was large) and in mobility; for example, if incident cases in county A
relocate to county B, they influence the incidence rate in A but not B, and the
prevalence rate in B but not A.

To effectively target programs to prevent diabetes, we must identify areas
of high incidence. However, historically, only state-level estimates of diabetes
incidence have been available, and only for states that opted to conduct more in-
depth interviews of persons with diabetes to determine when they were diagnosed.

Here, expanding on the work of Cadwell et al. (2010), in which BRFSS data
were used to estimate county-level prevalence, we provide the first estimates of
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diabetes incidence for all 3,143 U.S. counties. Our underlying method is based on
noticing that all incident cases of diabetes must also be prevalent cases. We first
estimate county-level prevalence. We then estimate the county-level proportion
of prevalent cases that are incident cases. Multiplying these together yields an
estimate of incidence.

2. Methods

2.1 Data Sources

We use BRFSS data to model diabetes incidence. The BRFSS is a collec-
tion of cross-sectional random-digit-dialing telephone surveys, conducted in all
U.S. states and the District of Columbia. Every year, states conduct monthly
telephone surveillance using a standardized questionnaire to determine the distri-
bution of risk behaviors and health practices among noninstitutionalized adults.
We use U.S. Census data to post-stratify the modeled estimates to be represen-
tative of U.S. counties in 2009.

County of residence for BRFSS respondents, while not included in the all
versions of the data, was obtained for this study. For respondents with miss-
ing county of residence, we used the county most likely associated with the
respondent’s telephone number. To make inferences from the sample to the
population, post-stratification weights were attached to estimates. This use of
post-stratification weights guarantees that our estimates are consistent with U.S.
Census estimates of county population size.

For respondents indicating that they had diagnosed diabetes, an optional
diabetes module was administered in some states in some years. On average, 41
states administered the diabetes module during 2008 through 2010, the years of
data we used (combining three years of data follows the precedent set by Cadwell
et al., and this approach was chosen because using fewer years resulted in some
unstable estimates, due to smaller sample size). This results in some states having
one year of data, some two years, and some three. One state had no diabetes
module data.

The U.S. Census Bureau publishes population estimates by demographic char-
acteristics (unit-level auxiliary information) for all counties (U.S. Census, 2012);
the Census provides no information on diabetes status. We used the 2009 U.S.
Census county projections to obtain estimates for the number of persons in each
of the classes into which we group BRFSS data.

2.2 Diabetes Information Gathered

All BRFSS respondents were asked, “Have you ever been told by a doctor
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that you have diabetes?” Those who responded “no” were considered to not
have diagnosed diabetes. Males who responded “yes” were considered to have
diabetes. Females who responded “yes” were asked if they were told only during
pregnancy. Those who indicated this had happened were considered have had
gestational diabetes, which resolves at delivery, and were not considered to have
diabetes. Females who had been told at any other time were considered to have
diabetes. Respondents who did not know or refused to answer the question were
considered to have missing diabetes status.

Those who indicated that they had diagnosed diabetes and resided in states
that administered the optional diabetes module were asked, “How old were you
when you were told you have diabetes?” Age at the time of the survey and age
at diagnosis, both self-reported, are measured in years and used to estimate the
number of incident cases (2012a). If the difference between a respondent’s age
and age at diagnosis is two or more years, the person is not considered an incident
case. If the difference is zero years, the person is considered an incident case. If
the difference is one year, the person is weighted as half an incident case; this
method has been used previously to estimate diabetes incidence (Centers for
Disease Control and Prevention, 2012a).

2.3 Incidence Modeling with Missing Data

The general framework for our model-based approach includes multilevel mod-
eling followed by post-stratification (Gelman and Hill 2007, Chapter 14). Because
of missing data, we use an approach analogous to “factoring the likelihood” (Lit-
tle and Rubin 2002, Chapter 7). We specify a full Bayesian probability model
that allows the posterior distribution to be factored into two parts that are esti-
mated separately. Unlike the perhaps more familiar complete case analysis, this
methods uses all the information on diabetes in the responses for which diabetes
incidence status is missing.

Let Z1 = 1 if an individual was diagnosed with diabetes within the past year;
Z1 = 0 otherwise. Let Z2 = 1 if an individual was diagnosed with diabetes;
Z2 = 0 otherwise. Since the distribution of prevalence given incidence, p(Z2|Z1),
equals one, the distribution of incidence, p(Z1), can be written as p(Z1, Z2) =
p(Z1|Z2)p(Z2). We develop separate models for incidence conditioned on the
person being a prevalent case, p(Z1 |Z2), and for prevalence, p(Z2). The estimates
from the two models are combined to obtain an estimate of incidence, p(Z1).
Assuming the parameters in the conditional incidence model and the prevalence
model are distinct allows the distribution of incidence to be split into these two
parts. See Appendix 1 for details.

For each of the 3,143 U.S. counties, sampled persons were cross-classified
by age group (20-44, 45-64, 65+ years), sex (male, female) and race/ethnicity
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(non-Hispanic white, other); sample sizes did not support a finer division of
race/ethnicity. This results in 12 classes per county. The number of people
sampled in each class who have diabetes can be determined. Specifically, let nij
= the number of sampled people in county i, class j = 1, · · · , 12, and yij= the
number of sampled people with diagnosed diabetes in county i, class j. In some
years, in some counties, nij = 0. For each of these, the corresponding yij = 0. Let
yij∗ = the number of sampled people with diagnosed diabetes in county i, class
j = 1, · · · , 12, whose incident status is known and rij = the number of sampled
people with incident diabetes in county i, class j.

2.4 Prevalence Model

We fit a Bayesian multilevel model to the three years of BRFSS data, using
methods similar to Cadwell et al., 2010, but differing in several ways (e.g., we used
a Binomial distribution with a logit link instead of the Poisson distribution and
logarithmic link that Cadwell et al. used). Our model and Cadwell et al.’s model
yield similar, but not identical, estimates. Our changes reduce the number of
approximations (e.g., Cadwell et al. used the Poisson distribution to approximate
the Binomial, while we used the Binomial).

Our model relates observed quantities to the twelve classes. In particular,

yij ∼ Binomial(pij , nij); i = 1, · · · , 3143, j = 1, · · · , 12, (2.1)

where pij = the prevalence of diagnosed diabetes in county i, class j. Let s(i)
denote the state s that contains county i. The regression model includes:

(a) logit link function log(pij/(1− pij)).

(b) fixed effect intercept for each class (age by sex by race/ethnicity group) αpj ;
j = 1, · · · , 12.

(c) random effects by county and class µpij ; i = 1, · · · , 3143, j = 1, · · · , 12.

(d) random effects by state and class νps(i)j ; s(i) = 1, · · · , 51, j = 1, · · · , 12.

(e) spatial effects by state and class ωps(i)j ; s(i) = 1, · · · , 51, j = 1, · · · , 12.

Parameters under (c) and (d) are modeled via 12-dimensional multivariate normal
priors (Gelfand, Hills, Racine-Poon and Smith, 1990). Parameters under (e) are
modeled via 12-dimensional multivariate normal conditional autoregressive priors
(Besag, York and Mollie, 1991). The subscript “p” is used to indicate prevalence.
Thus the regression model is

logit(pij) = αpj + µpij + νps(i)j + ωps(i)j . (2.2)
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To assess this extended model, we consider a basic model (Rao, 2003) as a bench-
mark. The basic model includes fixed effects for class and a spatially unstructured
random effect for county. The basic regression model is

logit(pij) = αpj + εi. (2.3)

All prior distributions appear in Appendix 2.

2.5 Conditional Incidence Model

The conditional incidence model is similar to the prevalence model:

rij ∼ Binomial(qij , y
∗
ij); i = 1, · · · , 3143, j = 1, · · · , 12, (2.4)

where qij = the probability of incident diabetes among people with diabetes in
county i, class j. Let s(i) denote the state s that contains county i. The regression
model includes:

(a) logit link function log(qij/(1− qij)).

(b) fixed effect intercept for each class (age by sex by race/ethnicity group) αcj ;
j = 1, · · · , 12.

(c) random effects by county and class µcij ; i = 1, · · · , 3143, j = 1, · · · , 12.

(d) random effects by state and class νcs(i)j ; s(i) = 1, · · · , 51, j = 1, · · · , 12.

(e) spatial effects by state and class ωcs(i)j ; s(i) = 1, · · · , 51, j = 1, · · · , 12.

The subscript “c” is used to indicate “conditional incidence”, and to clearly
distinguish these parameters from the ones in the prevalence model. As before,
parameters under (c) and (d) are modeled via 12-dimensional multivariate normal
priors. Parameters under (e) are modeled via 12-dimensional multivariate normal
conditional autoregressive priors. Thus the regression model is:

logit(qij) = αcj + µcij + νcs(i)j + ωcs(i)j . (2.5)

We again consider a basic model as a benchmark. The basic model includes fixed
effects for class and a random effect for county. The basic regression model is

logit(qij) = αcj + εi. (2.6)

All prior distributions appear in Appendix 2.

2.6 Estimates of Diabetes Incidence

Let Nij = the estimated number of people in county i, class j = 1, · · · , 12,
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in 2009 from U.S. Census Bureau. Let p̃ij and q̃ij be draws from the posterior
distributions of pij and qij , respectively. Our estimate of the number of incident
diabetes cases in county i is the mean of the posterior predictive distribution of:∑

j

p̃ij q̃ijNij . (2.7)

The estimate of the annual incidence rate in county i is the mean of the posterior
predictive distribution of: ∑

j p̃ij q̃ijNij

[
∑

j Nij −
∑

j p̃ij(1− q̃ij)Nij ]
. (2.8)

Note that the denominator in the above expression is an estimate of the number
of nondiabetic persons in county i at the start of 2009. The estimate of the age
specific number of incident diabetes cases in county i, age group k is the mean
of the posterior predictive distribution of:∑

j∈Ak

p̃ij q̃ijNij , (2.9)

where Ak is the set of classes for age group k. The estimate of the age spe-
cific annual incidence rate in county i, age group k is the mean of the posterior
predictive distribution of:

p̂ik =

∑
j∈Ak

p̃ij q̃ijNij[∑
j∈Ak

Nij −
∑

j∈Ak
p̃ij(1− q̃ij)Nij

] . (2.10)

Then the age-adjusted annual incidence rate for county i is the mean of the
posterior predictive distribution of:

p̂i =
∑
k

wkp̂ik, (2.11)

where wk is the proportion of the U.S. population in age group k as measured by
the 2000 U.S. Census.

All posterior distributions were simulated in WinBUGS (Lunn et al., 2000).
The 2.5th and 97.5th percentiles of the posterior distributions provide the 95%
posterior intervals for county incidence of diagnosed diabetes. We treat the pos-
terior intervals as confidence intervals. We run two chains, each with a burn-in
of 1000 iterations followed by an additional 12,000 iterations. We check con-
vergence by visual inspection of history and autocorrelation plots and using the
Gelman-Rubin statistic, as modified by Brooks and Gelman (1998).
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2.7 Model Comparisons

We evaluate the frequentist properties of the Bayesian estimates that we cal-
culate using the model selection criterion developed in Gelfand and Ghosh (1998).
This criterion depends on a statistic D, which combines goodness-of-fit and vari-
ability. Calculating D requires replicating the entire data set for each posterior
draw of the model parameters. Using these replicates, we compute the posterior
predictive mean and variance for each observation. We calculate G, a goodness
of fit measure, as the sum over all observations of the squared difference between
the data and its posterior predictive mean. We calculate P, a measure of expected
mean square measure, as the sum over all observations of the posterior predic-
tive variances. The statistic D is defined as G+P. Models with smaller D values,
meaning that modeled values are more similar to observations, are preferred.

2.8 Model Checking

We implemented posterior predictive checks to examine the consistency of the
model with the data (Gelman et al., 2004, Chapter 6.3). In posterior predictive
checking, the entire data set is replicated for each posterior draw of the param-
eters. A discrepancy or test measure that reflects relevant aspects of the model
is calculated for each replicate. We used the deviance (McCullagh and Nelder,
1989, Chapter 2.3) as the discrepancy measure. A Bayesian p-value associated
with the test measure is calculated; Bayesian p-values differ from the more famil-
iar frequentist p-values in that a value between 0.1 and 0.9 indicates reasonable
model fit.

We check our model by comparing it to direct estimates. The BRFSS provides
direct, design-based, complete-case estimates of diabetes incidence for 48 states
and DC for 2009 (Centers for Disease Control and Prevention, 2012a). These
estimates are based on the combined 2008, 2009, 2010 BRFSS data. We aggregate
our modeled county estimates to the state level and plot them against the direct
estimates, allowing a comparison of modeled and direct estimates.

In an additional model check, we set up a simulation study to evaluate the
two-part, prevalence and conditional incidence, modeling approach. Fifteen years
of BRFSS data (1996-2010) were combined to create the test population. This
test population includes 3,183,766 people, 285,851 with diabetes and 29,048 with
incident diabetes. This population is too small to evaluate our model at the
county level so we use the fifty states and DC as our “small areas”. The evaluation
proceeds as:

1. Sample 20,000 individuals from our population. This approximates the
average number of observation per county in three years of BRFSS times
51.
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2. Fit the prevalence and conditional incidence models to obtain incidence
estimates by the 51 small areas. These models exclude the µij terms.

3. Calculate direct design-based incidence estimates for the 51 small areas.

4. Repeat steps 1, 2 and 3 a total of fifty times.

5. Compare the modeled estimates to the true values from the test population.

6. Compare the direct design-based estimates to the true values from the test
population.

Comparisons statistics in step 5 include the difference between the modeled and
true values and the root mean squared error divided by the true incidence. Values
of the root mean squared error divided by true value less than 0.25 are consid-
ered evidence of useful estimates. We generate box plots to visually present the
dispersion in the difference between the modeled and true values. In step 6, we
calculate the root mean squared error of the design-based estimates divided by
the true incidence.

3. Results

3.1 Description of Data

Table 1 provides details (BRFSS data unweighted in this table, since we de-
scribe the sample and, at this stage, do not yet make inference to the population)
on the number counties and the number of adults 20 years of age or older enumer-
ated in the 2009 Census and surveyed in the 2008-2010 BRFSS. The number of
respondents who self-reported diabetes and whose incident status is known also
appears. Twelve percent of the BRFSS sample participants reported diagnosed
diabetes. Of those, 73% have known incidence status.

Table 1: Descriptive statistics of the Census and BRFSS data

BRFSS 2008-2010

Census 2009 Diabetes Prevalence Conditional Incidence

Counties 3143 3140 2981

Responses - 152,391 9676

median (min, max) - 18 (0, 13000) 1 (0, 88)

per county

Observations 223,585,859 1,255,029 110,765

median (min, max) 18885 (36, 7057285) 142 (2, 11967)* 14 (1, 1127)*

per county

*Among counties with greater than zero observations.
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3.2 Estimates

There was relatively little variation in county-level conditional incidence (pro-
portion of prevalent cases which are also incident cases); estimated county-level
conditional incidence ranged from 0.07 to 0.12, with a median value of 0.10. We
looked for spatial patterns in conditional incidence, such as geographic clustering
or a tendency to correlate with some demographic, but found no evidence of such
patterns (data not shown).

Estimates for incidence for all counties appear in Figure 1. Incidence estimates
of diabetes were 0.38%-2.1% (mean 1.1%). The average coefficient of variation
was 18% (range, 8%-26%). We also calculate age-adjusted estimates (standard-
ized to the 2000 U.S. population). These differed little from non-age-adjusted
ones, and are not reported.

 Figure 1: Map of 2009 diabetes incidence for 3143 U.S. counties

3.3 Model Comparisons

Table 2 displays G, P, and D, the model selection criteria. For both prevalence
and conditional incidence, the basic model provides a much poorer fit than its
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competitors. For both prevalence and conditional incidence, the extended model
without the spatial effects provides a slightly better fit than the model including
the spatial effects. Spatial effects require substantially longer simulation runs
for little or no gain. Therefore, we did not include spatial effects in our final
estimates.

Table 2: Model selection criterion

Outcome Model Goodness of Fit G Predictive Error P D*

Prevalence Basic 153,335 143,990 297,225

Extended 65,368 175,465 240,833

Extended, 66,310 174,444 240,755

without spatial

Conditional

Incidence Basic 7084 8765 15,849

Extended 5594 9783 15,377

Extended, 5635 9727 15,362

without spatial

*Smaller is better.

The lack of spatial effects in the final model could be viewed as counter-
intuitive, since the prevalence of diabetes in the United States (Barker et al., 2011)
exhibits strong spatial correlation. However, age, race/ethnicity, and state of
residence, factors explicitly considered in our model, are also spatially correlated.
These factors also serve as surrogates for factors that directly contribute to the
incidence of type 2 diabetes (90-95% of diabetes in the United States [Centers for
Disease Control, 2011]), such as obesity, physical inactivity, and lower income/
educational achievement. Thus, it is likely that the spatial autocorrelation that
remained, after accounting for age, race/ethnicity, and state of residence, was
small.

3.4 Model Checking

All models considered had Bayesian p-values between 0.1 and 0.9 (minimum
0.36, maximum 0.81), indicating reasonably good model fit. Figure 2 is a scat-
terplot of incidence rate per 1000 person-years for direct, design-based estimates
(available for 48 states and DC) versus modeled (aggregated up to the state level)
estimates. There is good agreement between the estimates with the modeled es-
timates being slightly higher, on average, than the direct estimates.
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Figure 2: Scatterplot of design-based state incidence versus model-based county
incidence aggregated to the state level for 48 states and the District of Columbia

The simulation study showed the modeled estimates to be quite good. Figure
3 displays the root mean squared error over the true value. For all but six of the
estimates, the value is less than 0.25. All but four are less than 0.30, and, for
most, the ratio is close to 0.15.

Figure 3: Scatterplot of root mean squared error of model-based incidence
estimates over population value versus area. Results are averaged over 50
random samples from the test population
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Figure 4 displays boxplots of differences (population minus modeled estimate).
Only four states, out of 51 (counting the District of Colombia), have differences
that are statistically significantly different from zero at the 0.05 level. The direct,
design-based estimates from the simulation study are not usable because of large
relative error. For the design-based estimates, the root mean squared errors
divided by true values were over 0.30 for all 51 areas, and the median value was
0.54.

Figure 4: Box plots of difference in incidence, population minus model-based,
by area. Each plot box represents 50 random samples from the test population

4. Discussion

We found a concentration of high-incidence counties in the U.S. southeast
and in Appalachia, with a scattering of high-incidence counties in the U.S. west,
primarily in counties with large American Indian populations. The map, Figure
1, also shows a concentration of low-incidence counties in the state of Colorado.
The pattern of county-level diabetes incidence in the U.S. is roughly similar to
the pattern of county-level prevalence, in the sense that high-prevalence counties
tend to be high-incidence counties as well. Both high- incidence and prevalence,
and low- incidence and prevalence counties correlate well with the county-level
prevalence of obesity (CDC, 2012), a strong risk factor for type 2 diabetes. The
prevalence of obesity is high in the southeast and in Appalachia, and low in
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Colorado (CDC, 2012). The scattered counties in the west with high diabetes
incidence have high prevalence of poverty, another risk factor for type 2 diabetes,
and have relatively large populations of American Indians, who are at greater risk
of type 2 diabetes than non-Hispanic whites, the majority of the U.S. population.

The strong association of prevalence and incidence estimates suggests that
mortality among those with diagnosed diabetes and the rate of relocation to
another county after developing diabetes, both of which could cause incidence
and prevalence to look very different, are likely be relatively constant across the
U.S. This was not known prior to this analysis.

Modeled estimates tended to be slightly larger than direct estimates, as de-
picted in Figure 2. This is probably due to direct estimates not accounting for
those whose incidence status is unknown. Thus, the two estimates have somewhat
different denominators, and therefore might be expected to differ.

Among the values of root mean squared error over the true value, Figure 3,
there were four possible outliers: Alaska, District of Colombia, Hawaii, and Min-
nesota. Alaska, District of Colombia, and Hawaii are geographic/demographic
outliers in the U.S. We have no explanation for Minnesota’s being on this list.

Our study is subject to several limitations. First, instead of “incidence of
diabetes”, we are actually estimating “incidence of diagnosed diabetes”. An
estimated 27% of all U.S. diabetes cases are undiagnosed (Centers for Disease
Control, 2011). People can have type 2 diabetes, which comprises 90-95% all
diabetes (Centers for Disease Control, 2011), for years and be unaware of their
condition. No national data set allows us to distinguish “incidence of diabetes”
from “incidence of diagnosed diabetes”. Second, our study is subject to the limi-
tations of the BRFSS, such as not adequately representing households that have
no land-line telephone (Centers for Disease Control, 2012b). Another limitation
of BRFSS is recall bias: people might have simply misremembered the date at
which their diabetes was diagnosed (although, for this study, respondents need
only categorize diagnosis as: within the current calendar year; in the preced-
ing calendar year; or before the preceding calendar year). In any survey, social
desirability bias can exist, although self-report of diagnosed diabetes is usually
correct (Okura et al.). Some of the participants in the study whose county of
residence was imputed from telephone number might have been incorrectly cat-
egorized. This would tend to bias county estimates toward the overall mean.
Also, BRFSS does not allow us to distinguish type 2 diabetes from the much less
common type 1 diabetes. In our analysis, uncertainty in U. S. Census projections
was ignored. This uncertainty is probably small, but not zero; however, the U.S.
Census provides what is, by far, the best available estimates of Nij . Finally, di-
abetes incidence rates are likely to vary over time. Our methods require at least
three years of BRFSS data to produce stable estimates. Thus, we are estimating
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a running average over time of incidence rates instead of the incident rate for a
single year.

Incidence estimates stratified by demographics, such as age or race/ethnicity
would have been desirable, since they would have provided insights into the causes
of variability among counties in diabetes incidence. However, due to sample
size limitations, such estimates have coefficients of variation that we consider
unacceptably large. Therefore, we do not report such estimates.

While identifying counties of high and low diabetes incidence is of utility in
directing public health interventions in the U.S., our methods have a broader
applicability. Neither the methods developed in Cadwell et al. (2010) nor the
modified version introduced here can be used to estimate rates of sufficiently rare
events, such as diabetes incidence in a single state. However, if the outcome of
interest is rare, but all cases of that outcome must also be cases of a more common
outcome, our methods might be useful. The fraction of the population with the
more common outcome can be estimated. Then the proportion of persons with
the rare outcome who also have the more common outcome can be estimated.
These estimates can be combined to estimate the faction of the population with
the rare outcome. This opens up the possibility of data from BRFSS, or similar
surveys in other countries, being used to provide small-area estimates of events
that are too rare to be estimated in a one-stage model.

Appendix 1. Factoring the Full Probability Model

Let Z1 = 1 if an individual was diagnosed with diabetes within the past year;
Z1 = 0 otherwise. Let Z2 = 1 if an individual was diagnosed with diabetes;
Z2 = 0 otherwise. Let θ = (θ1, θ2) be the parameters associated with conditional
incidence and prevalence, respectively. Assuming θ1 is distinct from θ2 and their
prior distributions are independent then

(θ|Z1, Z2) =
p(Z1, Z2|θ)p(θ)∫
p(Z1, Z2|θ)p(θ)dθ

=
p(Z1|Z2, θ)p(Z2|θ)p(θ)∫
p(Z1|Z2, θ)p(Z2|θ)p(θ)dθ

=
p(Z1|Z2, θ1)p(θ1)p(Z2|θ2)p(θ2)∫ ∫
p(Z1|Z2, θ1)p(θ1)p(Z2|θ2)p(θ2)dθ1dθ2

(A.1)

=
p(Z1|Z2, θ1)p(θ1)∫
p(Z1|Z2, θ1)p(θ1)dθ1

× p(Z2|θ2)p(θ2)∫
p(Z2|θ2)p(θ2)dθ2

.

Therefore the posterior distribution factors into two independent posterior dis-
tributions. Each part of the posterior can then be evaluated separately.
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Appendix 2. Prior Assumptions

The intercepts by class are assigned improper flat priors, α ≺ 1.

The spatially correlated effects by county and class, ω, are assigned a multi-
variate normal (MVN) conditional autoregressive prior (Besag, York and Mollie,
1991). Let ωi = (ωi1, ωi2, · · · , ωi12)′. Then

ωi|ω(−i) ∼MVN (ω̄i,Σω), (A.2)

where ω(−i) equals the matrix ω′ with the ith column removed, ω̄i =
∑

j∈δi ωj/ni,
and δi and ni denote the set of labels of the neighbors of county i and the number
of neighbors, respectively, where counties are consider to be “neighbors” if they
have a common border. The inverse of Σω is assigned a Wishart prior with scale
matrix Sω and 12 degrees of freedom. The matrix Sωhas ones along the main
diagonal and 0.001 for all other elements (Rao, 2003).

The spatially unstructured effects by county and class, µ, are assigned a
multivariate (of dimension 14) normal prior with mean zero and variance matrix
Σµ. The inverse of Σµ is assigned a Wishart prior with scale matrix Sµ and 14
degrees of freedom. The matrix Sµ has ones along the main diagonal and 0.001
for all other elements (Rao, 2003). The spatially unstructured effects by state
and class, ν, are assigned the same types of priors as µ.

The error terms, ε, in the basic models are assigned a proper half-Cauchy
(Gelman and Hill, 2007, Chapter 19) prior distribution with median equal to
one. This is a diffuse prior. For this model, its use greatly speeds convergence.
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