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Abstract: In this paper, we consider analysis of follow-up data where each
event time is either right censored, observed, left censored or left truncated.
In the case of left censoring, the covariates measured at baseline are con-
sidered as missing. The work is motivated by data from the MORGAM
Project, which explores the association between cardiovascular diseases and
their classic and genetic risk factors. We propose a nonparametric multiple
imputation (NPMI) approach where the left censored event times and the
missing covariates are imputed in hot deck manner. The left truncation due
to deaths prior to baseline is compensated by Lexis diagram imputation in-
troduced in the paper. After imputation, the standard estimation methods
for right censored survival data can be directly applied. The performance of
the proposed imputation approach is studied with simulated and real world
data. The results suggest that the NPMI is a flexible and reliable approach
to the analysis of left and right censored data.

Key words: Coronary heart disease, doubly censored data, left truncated
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1. Introduction

We consider data from a follow-up study where a group of subjects (hereafter,
a cohort) has been followed up to a fixed calendar period for fatal and non-fatal
cardiovascular events starting from the baseline examination. Our objective is to
model the effect of some covariates on the risk of coronary heart disease (CHD).
The time of the first event is recorded for each subject using the age of subject
as the time scale. If the first event is non-fatal, the follow-up for death continues
also after the event. If no events have been occurred by the end of the follow-up,
the event time is considered as right censored. If an event has occurred before
the baseline examination, the event time is considered as left censored. Thus,
there are three possibilities for each subject in the cohort (observed data):

1. there are no events neither during the follow-up nor before the follow-up
(right censoring).
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2. an event occurs during the follow-up and there has been no events before
the beginning of the follow-up (event time is observed).

3. there has been an event before the beginning of the follow-up but we do
not know the time when the event took place (left censoring).

Left censoring arises because it is recorded at baseline if there have been CHD
events in the past but the data on the event times are not available. The event
time X is observed only if it is smaller than or equal to the censoring time C and
greater than B, the age of the subject at baseline. Consequently, the observed
time T is obtained as a function of X, C and B

T = min(max(X,B), C).

The observed data can be divided into four sets: right censored observations R0,
non-fatal events during the follow-up R1, fatal events during the follow-up R2

and left censored observations of non-fatal events R3. Let the numbers of the
observations in these sets be n0, n1, n2 and n3, respectively.

The analysis of left censored observations requires that we change the follow-
up to start from an age prior to baseline examination. This leads to the problem
that, by definition, the cohort cannot have members with a fatal event before the
baseline examination, and therefore the cohort followed up e.g. from age 25 is
not comparable with the cohort followed up after the baseline examination. In
other words, we are dealing with left truncation. Fortunately, it turns out that
we can use the observed data to compensate for the potential deaths before the
baseline examination. The left truncated observations can be divided into three
groups. Set R4 contains subjects who had a fatal CHD event before the baseline
examination as their first event. Set R5 contains subjects who first had a non-fatal
CHD event and then later died before the baseline examination. Set R6 contains
subjects who died before the baseline examination without any preceding CHD
events. Both the sets of left truncated subjects R4, R5 and R6 and their numbers,
n4, n5 and n6, respectively, are completely unobserved.

The covariates measured at baseline examination may be divided into two
categories: Sex and genes are examples of permanent covariates that do not
change as a function of time. Cholesterol level, blood pressure, smoking and
body mass index (BMI) are covariates that do change in time although they are
often treated as constant in cohort studies. In particular, they are likely to change
substantially after a CHD event due to intervention to prevent recurrent events.
Therefore the values of the covariates measured after the event are influenced by
the event and cannot be considered as risk factors for this event. Consequently,
if the event time is left censored, the time-varying covariates must be taken as
missing. We use G to refer to permanent covariates and Z to refer to time-varying
covariates.
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Under the assumption of non-informative censoring, the log-likelihood func-
tion related to left truncated and left and right censored data may be expressed
in a general form as∑

i∈R0

log(1 − F (ti|gi, zi)) +
∑

i∈R1∪R2

log(f(ti|gi, zi)) +
∑
i∈R3

log(F (ti|gi,Zi))+∑
i∈R4

log(f(Xi|Gi,Zi)) +
∑
i∈R5

log(f(Xi|Gi,Zi)) +
∑
i∈R6

log(1 − F (Xi|Gi,Zi)),

where zi and gi refer to observed covariates, Zi and Gi refer to unobserved co-
variates, and F (t) and f(t) are the cumulative distribution function (cdf) and the
probability density function (pdf) of the event time, respectively. The different
subject groups are summarized in Table 1. Our primary interest in this paper
is to estimate the effect of the permanent covariates on the event times without
bias and as accurately as possible. It is assumed in this paper that the reader
is familiar with the standard methods for the analysis of right censored survival
data.

Table 1: Different types of observations. The variables in the table are: time
of event xi, age at baseline bi, censoring time ci and time of death di.

Right censored (observed) R0 = {i |xi > ci}
Non-fatal CHD during the follow-up R1 = {i | bi < xi < ci, di > xi}

(observed)
Fatal CHD during the follow-up R2 = {i | bi < xi = di = ci}

(observed)
Left censored (partially observed) R3 = {i |xi < bi < di}
Left truncated fatal CHD R4 = {i |xi = di < bi}

(unobserved)
Left truncated non-fatal CHD R5 = {i |xi < di < bi}

(unobserved)
Left truncated other death R6 = {i | di < bi, di < xi}

(unobserved)
Death during the follow-up RD = {i | bi < di = ci}

(observed)
Other death during the follow-up without RD0 = {i | bi < di = ci < xi}

preceding non-fatal CHD (observed)
Death during the follow-up with RD13 = {i | bi < di = ci, xi < di}

preceding non-fatal CHD
(observed or partially observed)

The described setup is motivated by data from the MORGAM Project (Evans
et al., 2005). MORGAM is a large international project on cardiovascular epi-
demiology that pools follow-up data from several cohorts. Currently 22 centers
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Figure 1: Illustration of a study design leading to left and right censored data
with left truncation. The Lexis diagram of a cohort study is displayed. The
follow-up period is from the year 1992 to the year 2001 and the age of the
subjects is 25–65 years at the baseline examination. The following variables
are presented: B = age at baseline examination, X = time of first CHD event,
C = censoring time, T = observed time and D = time of death. In the dia-
gram, the data of eight subjects are presented. Two subjects have an event
observed during the follow-up (X = 65 and X = 53). One of the events is fatal
(X = 53 and D = 53) and the other is non-fatal (X = 65 and D = 68). One
subject is right censored (C = 39). Two subjects have a left censored event
(X = 48 and X = 36). At the baseline examination, the existence of a left
censored event is recorded but the exact time of an event remains unknown.
One of the subjects with left censored event dies during the follow-up period
(D = 45); the other survives up to the end of follow-up (C = 64). Three
subjects are completely unobserved (D = 56, D = 49 and D = 34). One of
them had fatal CHD event (X = 34 and D = 34), one had a non-fatal event
(X = 50) and died later (D = 56) and one died (D = 49) without a preceding
CHD event.

(mostly from Europe) are involved and the pooled database contains more than
140 000 subjects. The objective of the MORGAM Project is to explore the asso-
ciation between cardiovascular diseases (CVD) and their classic and genetic risk
factors. Population cohorts, examined at study baseline, are followed up for fatal
and non-fatal CVD events. The first occurrence of CHD is one of the main end-
points of the study. The MORGAM cohorts contain also subjects who had their
first non-fatal CHD event before the baseline examination. For these subjects the
exact event times are unknown. Although in some cases it was possible to find
the exact event times e.g. from the hospital records, the cost of the additional
data collection would be rather high. The percentage of subjects with baseline
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CHD in MORGAM cohorts varies from 0.5 % to 13 %, which is a considerable
proportion when compared to the percentage of first incidence of CHD during
the follow-up that varies from 0.5 % to 17 %. Hence, the inclusion of the baseline
CHD cases in the time-to-event analysis would significantly increase the number
of events and provide more information on the relatively young subjects. The
use of the baseline CHD cases suits well for the analysis of genetic risk factors
because genotypes, contrary to many other risk factors, cannot be affected by a
preceding CHD event. An illustration of a typical study design is presented in
Figure 1.

In this paper, a nonparametric multiple imputation (NPMI) approach is pro-
posed to handle the left censored and left truncated event times. In the NPMI
approach, each left censored observation is replaced by several imputations drawn
from empirical distribution of observed non-fatal event times. Missing covariates
are imputed together with the event time. The use of the Bayesian bootstrap
weights guarantees the sufficient variation between imputations. The left trun-
cated observations are imputed as well using a novel approach that we call Lexis
diagram imputation. After imputation, the standard estimation methods for
right censored survival data can be directly applied. The NPMI approach follows
the general idea of the multiple imputation introduced by Rubin (1987) but the
essential difference is that the left censored observations are partially observed.
The proposed approach can be characterized as multiple hot-deck imputation
(Levy, 1998) where the set of donors is conditional on the left censored event
time.

Several authors have used multiple imputation in survival analysis and public
health studies. Multiple imputation of interval censored data is studied in (Pan,
2000; Glynn and Rosner, 2004; Geskus, 2001; Pan, 2001). Additional examples
on the use of multiple imputation can found in (Zhou et al., 2001; Taylor et al.,
2002; Mishra and Dobson, 2004). The main difference between these works and
the approach proposed in this paper is that the NPMI does not use a parametric
model for the imputation. We also impute observations that are completely
unobserved.

Instead of imputation, we could, at least in principle, construct a parametric
model for left and right censored data and estimate the model parameters using
Bayesian approach or EM-algorithm. Nevertheless, it is not self-evident how left
truncation should be taken into account in these models. If we forget the left
truncation, the described setup can be seen as a special case of interval censored
data where the observed intervals have form [0, t] (left censored), [t, t] (observed
event) or [t,∞] (right censored). Examples on the analysis of interval censored
data can be found e.g. in (Kim et al., 1993; Zhao et al., 2005; Komarek et
al., 2005). Alioum and Commenges (1996) proposed a method for estimation of
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proportional hazards model under censoring and truncation. The method is an
extension of Turnbull’s nonparametric maximum likelihood estimator (Turnbull,
1974) and may suffer from identifiability problems. Our motivation to propose an
imputation based solution is fourfold: First, the NPMI provides a straightforward
way to deal with left censoring, left truncation and covariates not missing at
random. Second, in exploratory analysis of a great number of potential covariates,
the computational speed of the NPMI is an important practical benefit. Third,
the use of the NPMI is not restricted to proportional hazards model. Fourth, the
NPMI works as a benchmark for more complicated models.

The paper is organized as follows. The NPMI approach is introduced in
Section 2. Simulation studies comparing imputed event times and covariates
with their true values are presented in Section 3. Regression estimates from the
NPMI approach and from the analysis of baseline healthy subjects are compared
as well. A real world example using MORGAM data is presented in Section 4.
Section 5 concludes the paper.

2. Nonparametric Multiple Imputation of Left Censored Event Times

2.1 Overview

In this section, we introduce a nonparametric multiple imputation (NPMI)
method for the analysis of left and right censored data. Each imputation round
contains generation of Bayesian bootstrap weights, imputation of left censored
event times and Lexis diagram imputation of left truncated observations. The
left censored event times are imputed by several values drawn from their empir-
ical distributions. The imputation is carried out in hot deck manner selecting
the donors conditionally on age at baseline examination and estimated lifetime.
The missing covariates are imputed simultaneously by the covariates of the cho-
sen donor. In Lexis diagram imputation of left truncated observations, we first
generate the number of missing subjects from the Poisson distribution and then
draw a random sample from all observed deaths. The sampling weights are pro-
portional to the unobserved time in the Lexis diagram divided by the follow-up
time.

2.2 NPMI with non-fatal events only

First we consider a simplified situation where all subjects are followed up
at least to the age bmax = maxi bi and all events are non-fatal. We observe
the age at baseline examination b ≤ bmax and want to impute the left censored
event time X. To do this we consider all subjects who had their first event
during the follow-up and before age b. Let Q = {i ∈ R1 |xi ≤ b} be the set of
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these subjects. If we wish our imputation scheme to be proper, each imputation
round must be started with the Bayesian bootstrap (Rubin, 1987). The Bayesian
bootstrap assigns a random weight wi for each observation in the cohort. The
weights are generated by taking differences of ordered uniform random numbers.
More precisely, if the sample size is n, we generate n − 1 numbers uniformly
distributed on the interval [0, 1], sort them, include the endpoints 0 and 1, and
calculate the differences of consecutive numbers. The donor j is randomly chosen
from set Q with probabilities proportional to the weights wi. The imputation
for the missing event time X will be xj and the covariates z are replaced by the
covariates zj . The same weights are used for all left censored observations in
one imputation round. The imputation transforms the data into right censored
survival data and the standard analysis methods for such data are applicable.
Imputation modifies the follow-up period to start from the age bmin = mini bi for
all subjects. After each imputation round, we fit a survival model to imputed
data without the bootstrap weights and store the estimates β̂k, where k is the
number of the imputation round. The number of imputation rounds can be as
small as K = 5 but moderate values such as K = 20 are preferable if we are
also interested in estimating variance of β̂ reliably. After all imputation rounds,
estimates β̂1, β̂2, . . . , β̂K are combined

β̂ =
1
K

K∑
k=1

β̂k (2.1)

V̂ar(β̂) =
1
K

K∑
k=1

V̂ ar(β̂k) +
K + 1

K(K − 1)

K∑
k=1

(β̂k − β̂)2, (2.2)

where the combined variance is the sum of within-imputation variance and between-
imputation variance. The formulae for the combined mean and variance are the
same as those routinely used for multiple imputation of missing data (Rubin,
1987).

The imputation need to be stratified by all relevant permanent covariates.
This is done simply performing the imputation independently for each subgroup
defined by strata. Stratification by continuous covariates requires that they are
suitably categorized. If the sample size is small, it is necessary to keep the number
of subgroups small in order to guarantee that there are eligible donors in each
subgroup.

The use of hot deck imputation implies that the imputed event times cannot
be smaller than the smallest observed non-fatal event time xmin = min xi, i ∈ R1

in the data. Therefore, successful imputation requires that the observed event
times include also young subjects. If the data contains left censored observations
with t < xmin, we recommend that they are excluded from the analysis. A large
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number of such observations in a data set would indicate that the NPMI is not
an appropriate analysis method for the data set.

2.3 NPMI with fatal and non-fatal events

Next we consider a more realistic situation where some events are fatal and
the follow-up times are shorter implying that some subjects are not followed
up to the age bmax. The imputation procedure for left censored observations
is essentially the same as in Section 2.2 but the expected remaining life times
must be estimated for the subjects that are withdrawn alive from the study. In
addition to the notation defined above, we use D to indicate the time of death.
Our cohort is sampled from the population that is alive at baseline, i.e. it always
holds D ≥ T . The right censoring has now two possible reasons: death, when
D = C, or the end of follow-up for any other reason, when D > C. For each
subject, age at baseline bi, censoring time ci and the time of death di (if it is
not after ci) are recorded in addition to observed time ti and type of event. If
a subject was withdrawn alive from the study, the time of death is not known
but the vital status at the end of follow-up is still known. For the estimation,
we need a working assumption that given the age at censoring, the time from
the first event does not have an impact on the remaining life time. Statistically,
D−C and C −X are assumed to be independent given C. The data can be used
to estimate the probabilities to live an additional year on the condition that an
event has occurred in the past:

P̂ (t, t + 1) ≡ P̂ (D > t + 1|D > t,X < t) =∑
i∈R1∪R3

I(ci > t + 1)I(ti < t)∑
i∈R1∪R3

I(ci > t + 1)I(ti < t) +
∑

i∈R1∪R3

I(t < di < t + 1)I(ti < t)
. (2.3)

Estimated probabilities for survival of v additional years are obtained by chain
calculations

P̂ (t, t + v) ≡ P̂ (D > t + v|D > t,X < t) =

P̂ (t, t + 1)P̂ (t + 1, t + 2) . . . P̂ (t + v − 1, t + v). (2.4)

The imputation of left censored observations is carried out similarly to the sim-
plified situation but the sampling probabilities for selecting the donor j are pro-
portional to the product of the weight wi and the estimated survival probability
P̂ (bcic, bbc), where the notation b·c refers to the full years of the age.
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2.4 Lexis diagram imputation

When analyzing real world cohorts we also have to take into account that
there are subjects who are excluded from the cohort due to a fatal CHD event
or death for other reason prior to baseline examination and are therefore com-
pletely unknown (left truncation). In this paper we consider a novel approach
where the missing subjects are imputed to the data. The approach can be moti-
vated by a Lexis diagram (Keiding, 1998) and is therefore called Lexis diagram
imputation. An illustration of the idea can be seen in Figure 2. The left panel of
Figure 2 presents deaths that are observed during follow-up and deaths that are
not observed because they occurred before the baseline examination. The three
types of unobserved deaths correspond to the sets R4, R5 and R6, and the three
types of the observed deaths correspond to the sets R2, RD13 and RD0. T he
right panel of Figure 2 shows the geometry of the Lexis diagram. We observe
the deaths inside the follow-up parallelogram ABCD and use them to impute the
deaths occurred in the triangle ADE. In other words, we create a cohort where
the follow-up for deaths starts from the age of 25 years for everyone and subjects
who did not survive until the actual baseline in the reality are represented by the
imputed subjects. In the right panel of Figure 2 we have an observed death in
year 1995 at age di = 50, which is represented by the point on the line segment
PG. For this age, the line segment PG represents the 10 years of follow-up time
and the line segment PF = PA represents 65 − 50 = 15 years of unobserved time.
Assuming that the death rates have not changed in calendar time, the expected
number of the unobserved deaths corresponding the observed deaths is the ratio
of PF to PG which equals to 15/10 = 1.5. The estimated expected number of
deaths in the triangle ADE is the sum these ratios over all observed deaths and
the number of deaths to be imputed follows the Poisson distribution with this
sum as the mean parameter.

The subjects who died during the follow-up are donors in the Lexis diagram
imputation. The imputed subject receives the age at death as well as the type of
death from the donor. Taking the Bayesian bootstrap weights into account, the
weights of donors in the Lexis diagram imputation become

ηi = wi
bmax − di

l
, i ∈ RD, di ≤ bmax

where RD is the set of subjects who died during the follow-up and l is the length
of the follow-up period. The number of deaths to be imputed N456 is generated
from the Poisson distribution with the mean parameter N

∑
ηi. Then N456 im-

putations are drawn from RD using sampling probabilities proportional to ηi.
Note that this is equivalent to performing the imputation separately for R4, R5

and R6.
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Figure 2: An illustration of Lexis diagram imputation. The left panel presents
deaths that are observed during follow-up and deaths that are not observed
because they occurred before the baseline examination in 1992. The right
panel shows the geometry of the Lexis diagram. We are interested in all deaths
inside the polygon BCDE but observe only the deaths inside the parallelogram
ABCD. The deaths in the triangle ADE are imputed using the observed deaths.
The ratio of line segments PF and PG gives the expected number of unobserved
deaths corresponding to a death at age di.

2.5 NPMI procedure

After imputation the log-likelihood function of the data may be presented as
follows∑

i∈R0

log(1 − F (ti|gi, zi)) +
∑

i∈R1∪R2

log(f(ti|gi, zi)) +
∑
i∈R3

log(f(x̂i|gi, ẑi))+∑
i∈R4

log(f(x̂i|ĝi, ẑi)) +
∑
i∈R5

log(f(x̂i|ĝi, ẑi)) +
∑
i∈R6

log(1 − F (t̂i|ĝi, ẑi)),

where x̂i stands for the imputed event times and ĝi and ẑi stand for imputed
permanent and time-varying covariates, respectively. Note that the choice of the
survival model is independent from the imputation.

The whole procedure of the NPMI has the following steps

1. Identify the covariates used as strata and perform imputation independently
for each subgroup.

2. Calculate the survival probabilities as in equations 2.3 and 2.4.

3. At the beginning of each imputation round, generate weights wi for all
observations according to the Bayesian bootstrap.

4. Sample a donor for each subject with left censored event time.
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5. Apply Lexis diagram imputation to draw a random sample compensating
for the left truncation.

6. Fit a survival model to imputed data without the bootstrap weights and
store the estimates.

7. After a suitable number of imputation rounds, combine the estimates using
equations 2.1 and 2.2.

3. Simulation Example

The performance of the NPMI approach is studied in simulations. We con-
sider a cohort of size n0 + n1 + n2 + n3 + n4 = 3000. The age at baseline Bi is
generated from Uniform(30, 65) distribution. The event times Xi are generated
from Weibull distribution with shape parameter 8. An event is fatal with proba-
bility 0.3 and non-fatal otherwise. There are no competing causes of death. The
mean event time for zero covariates is set to be m = 65 or m = 80 years and the
length of the follow-up is l = 5 or l = 10 years. One thousand simulation runs
are generated for each combination of mean event time and length of follow-up.
Covariates Z1 and Z2 follow bivariate normal distribution with correlation 0.55.
Covariate G is Bernoulli distributed with probability 0.5 and independent from
Z1 and Z2. The model coefficients for Z1, Z2 and G are β1 = 0.2, β2 = 0.5 and
α = 0.8, respectively.

For the modeling we use the Cox’s proportional hazard model (Cox, 1972)

λi(t | z1i, z2i, gi) = λ0(t) exp(β1z1i + β2z2i + αgi), (3.1)

where λ(t) is the hazard rate, z1i, z2i, and gi denotes the covariates of the ith
subject and β1, β2 and α represent the model coefficients to be estimated. Com-
parisons are made between the NPMI with 20 imputation rounds and the ex-
clusion (Excl.) approach where the left censored observations are ignored and
the regression model is estimated from the rest of the data that is right-censored
data. Besides the estimated model parameters, we also compare the imputed and
the true distribution of left censored event times and the imputed and the true
values of covariates.

The distribution of the imputed event times is studied in Figure 3. It can
be seen that the empirical cumulative distribution function (cdf) of imputed
event times closely resembles the empirical cdf of true left censored event times.
The small difference of the curves in smallest event times can be explained by
the exclusion of subjects when the left censored event time is smaller than the
smallest event time during the follow-up, i.e. bi < xmin, i ∈ R3. The number
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of these subjects was small, five or less in 95% of simulation runs. Instead of
exclusion of these subjects we also tried the use of measured covariates and age
at baseline examination as event time but with exclusion the results were better.
It can be also seen from Figure 3 that the distribution of event times during the
follow-up clearly differs from the distribution of left censored event times.
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Figure 3: Imputed and true distribution of left censored event times in the
simulation example. The left panel presents empirical cdfs in a typical realiza-
tion and the right panel shows empirical cdfs calculated from 100 simulation
runs. Solid line represents the NPMI and dashed line represents the true event
times. For comparison, event times observed during the follow-up are also plot-
ted (dotted line). The results are from Simulation B; the results from the other
simulations are essentially similar.
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Figure 4: Imputed and true distribution of covariate z2 for subjects with left
censored event time. The left panel presents empirical cdfs in a typical realiza-
tion and the right panel shows empirical cdfs calculated from 100 simulation
runs. Solid line represents the NPMI and dashed line represents the true co-
variate values. For comparison, covariates of subjects with an event during the
follow-up are also plotted (dotted line). The results are from Simulation B; the
results from the other simulations are essentially similar.
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Table 2: Results of the simulation example. Means of the estimates are reported
together with RMSE 3.2 and the square roots of the average variances estimated
from the model. The estimation methods in the comparison are the NPMI
without compensation for left truncation (NPMI-N), the NPMI with the Lexis
diagram imputation (NPMI-LX) and exclusion of left censored observations
(Excl.). The sample size is 3000 (including left truncated subjects) and the
reported numbers are means from 2000 experiments. Simulation parameter m
is the mean event time for zero covariates and parameter l is the length of
the follow-up. Numbers n1, n2 and n3 indicate the mean number of non-fatal
events, fatal events and left censored events, respectively.

Simulation A: m = 80, l = 10 Simulation B: m = 80, l = 5
n1 = 186, n2 = 80, n3 = 89 n1 = 74, n2 = 31, n3 = 89

NPMI-N NPMI-LX Excl. NPMI-N NPMI-LX Excl.
β1 = 0.2 0.2019 0.2005 0.2012 0.2012 0.1994 0.1996q

Var(β̂1) 0.0680 0.0680 0.0649 0.1120 0.1099 0.1037

RMSE(β̂1) 0.0705 0.0701 0.0652 0.1275 0.1203 0.1048
β2 = 0.5 0.5065 0.5029 0.5035 0.5116 0.5053 0.5037q

Var(β̂2) 0.0695 0.0698 0.0666 0.1142 0.1112 0.1058

RMSE(β̂2) 0.0727 0.0727 0.0665 0.1262 0.1191 0.1054
α = 0.8 0.8135 0.8091 0.8063 0.8240 0.8172 0.8091p

Var(α̂) 0.1129 0.1187 0.1296 0.1555 0.1747 0.2093
RMSE(α̂) 0.1132 0.1195 0.1269 0.1643 0.1819 0.2117

Simulation C: m = 65, l = 10 Simulation D: m = 65, l = 5
n1 = 451, n2 = 193, n3 = 352 n1 = 205, n2 = 88, n3 = 353

NPMI-N NPMI-LX Excl. NPMI-N NPMI-LX Excl.
β1 = 0.2 0.2062 0.2007 0.2007 0.2087 0.2011 0.2005q

Var(β̂1) 0.0429 0.0421 0.0420 0.0663 0.0622 0.0623

RMSE(β̂1) 0.0456 0.0437 0.0428 0.0702 0.0655 0.0624
β2 = 0.5 0.5140 0.5001 0.5016 0.5199 0.5004 0.5010q

Var(β̂2) 0.0453 0.0442 0.0442 0.0692 0.0652 0.0653

RMSE(β̂2) 0.0476 0.0444 0.0437 0.0755 0.0687 0.0664
α = 0.8 0.8212 0.8006 0.7981 0.8353 0.8061 0.8011p

Var(α̂) 0.0674 0.0708 0.0818 0.0859 0.0955 0.1214
RMSE(α̂) 0.0704 0.0708 0.0812 0.0941 0.0989 0.1193

The distribution of an imputed covariate is studied in Figure 4. The dis-
tributions are clearly similar and the distribution of covariates of subjects with
an event during the follow-up is only slightly different. We conclude from Fig-
ures 3 and 4 that the imputed event times and covariates are unbiased or almost
unbiased.

Estimated parameters of model 3.1 are presented in Table 2 for different
simulation settings. Two versions of the NPMI are present: the NPMI-N does
not compensate for left truncation whereas the NPMI-LX uses Lexis diagram
imputation for left truncated observations. It can be seen that the NPMI-N
produced biased estimates in all simulation experiments as expected. For the
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NPMI-LX and the Excl. it seems that there is some bias when the number
of events is small (Simulation B) but the bias decreases when the number of
events increases and in Simulation C both the NPMI-LX and the Excl. produced
unbiased estimates. We conclude that left truncation may have a significant effect
on the estimates and recommend using the NPMI only with compensation for left
truncation.

The accuracy of the estimators was measured by root mean square errors
(RMSE)

RMSE(β̂method) =
√

Mean
(
(βtrue − β̂method)2

)
, (3.2)

where β̂method is one of following β̂NPMI-N, β̂NPMI-LX, β̂Excl. The RMSEs are
compared to the square root of the average of variance estimates from 2000 sim-
ulation runs. It can be seen that the square roots of the estimated variances are
close to RMSEs. Comparison between the NPMI and the Excl. reveals that the
Excl. resulted slightly smaller RMSEs for parameters β1 and β2 but for param-
eter α the NPMI was clearly better in terms of RMSEs. It also seems that the
difference in RMSEs for parameters β1 and β2 between the NPMI and the Excl.
decreases when the number of events increases. In simulation C, the RMSEs of
β1 and β2 were almost the same for the NPMI and the Excl. The result can be
understood if we consider the amount of information available in the NPMI and
the Excl. Covariate G is observed for all subjects and consequently exclusion of
observations in the Excl. increases the variance of parameter α. On the other
hand, covariates Z1 and Z2 are missing for left censored subjects and the imputed
covariates contain same amount information as the non-imputed covariates. A
small number of events handicaps the NPMI but when the number of events is
sufficiently large the variances of covariates Z1 and Z2 should be the same for the
NPMI and the Excl.

4. Example with Real Data

To test the NPMI with real world data we consider FINRISK cohorts (Ku-
lathinal et al., 2005; Vartiainen et al., 2000) that are a part of the MORGAM
Project. The baseline examinations of the cohorts were in 1982, 1987, 1992 and
1997, and all cohorts were followed up to the end of year 2001 except 1997 cohorts
that were followed up to the end of year 2003. In our example, an event is defined
as the first incidence of the CHD (fatal or non-fatal) and the follow-up is set to
end at the age of 75 years at the latest. The numbers of different events for each
cohort are summarized in Table 3. The age at baseline varies from 25 years to
64 years (the upper limit was 74 years in 1997 cohorts but we exclude subjects
over 64 years at baseline). The NPMI is suited for this data because there are
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practically no CHD events before the age of 25 years.

Table 3: Summary of the FINRISK cohorts used in the example. n is the total
number of subjects, n1 and n2 indicate the number of non-fatal and fatal events
during the follow-up and n3 is the number of left censored events.

Cohorts Men Women
n n1 n2 n3 n n1 n2 n3

1982 4465 478 209 124 4564 248 85 45
1987 2802 176 80 132 3009 99 26 54
1992 2833 126 30 120 3166 51 8 31
1997 3293 77 18 110 3640 22 8 38
Combined 13393 857 337 486 14379 420 127 168

Cox’s proportional hazard model explaining the event times by classic CHD
risk factors is fitted to the data. Age of the subject is used as the time scale.
The covariates in the model are the ratio of total to high-density lipoprotein
(HDL) cholesterol (MORGAM variable RCHOL), mean of systolic and diastolic
blood pressure (BPM), body mass index (BMI), daily smoking (yes or no, DSMOKER)
and family history of CHD (defined as the answer to the question: “Has your
father had any of the following diseases before the age of 60 years: myocardial
infarction or angina pectoris”, FHISCHD). The model is fitted separately for men
and women and is stratified by the cohort baseline year and the geographical
region (East or West).

We compare two approaches for the left censored event times: the NPMI and
the Excl. In the Excl. approach 486 men and 168 women are removed from the
analysis due to CHD event prior to baseline. Additional 187 men and 127 women
are removed because of stroke prior to baseline and 7 men and 6 women are
removed because missing covariate measurements (mainly missing BMI). Further,
15 men and 5 women are excluded because of very high RCHOL values (> 15).
High values of the cholesterol ratio indicate that total cholesterol is very high
and/or HDL cholesterol is very low. Both very high total cholesterol and very
low HDL cholesterol are associated with high CHD risk but are best handled
as special cases. We are interested in modeling the risk of RCHOL values widely
represented in our cohorts and outlying values may have an undesirable impact
on the parameter estimates. Missing values of covariates DSMOKER and FHISCHD
are combined with category ‘no’.

In the NPMI, left censored event times and covariates RCHOL, BPM, BMI and
DSMOKER are imputed. Imputation is stratified by sex, family history (FHISCHD),
the year of baseline and the region. Family history (FHISCHD) is taken as a
permanent covariate although in principle there is a chance for a change from
‘no’ to ‘yes’ as time passes. The 187 men and 127 women who had stroke but
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not myocardial infarction prior to baseline were excluded from the imputation
and the analysis. Same exclusion criteria for missing covariates and for very high
RCHOL values as in the Excl. approach was used.

The number of imputation rounds is 20. The sunflower plot in Figure 5
presents five imputed event times for each left censored observation. There are
relatively few observed events for younger subjects which causes the same donor
to be used in several times and is seen as overlapping points in the plot. Figure 5
also illustrates the difference in the CHD incidence between men and women.
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Figure 5: Imputed event times in FINRISK. The number of sunflower leaves is
equal to the number of multiple observations.

The distribution of the imputed covariates for R3∪R4∪R5 is shown in Figure 6.
The distribution of the covariates of the subjects with an event during the follow-
up is plotted for comparison. For men the distributions are rather similar but
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for women there differences especially in BMI. The difference or equality of the
distributions does not tell about the performance of the imputation but reflects
the changes in the covariates as a function of age.
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Figure 6: Distribution of imputed covariates (solid line) and distribution of
covariates of subjects with an event during the follow-up (dotted line) in FIN-
RISK.

The parameter estimates from the Cox’s proportional hazard model are sum-
marized in Table 4. Covariates BPM, RCHOL, DSMOKER and FHISCHD have a statisti-
cally significant effect at 95 % risk level in all models. BMI is significant for men.
These results are in the agreement with the previous knowledge of these associa-
tion. The variance of the NPMI estimate of the permanent covariate FHISCHD is
smaller than the variance of the Excl. estimate as we could except on the basis
of the simulation example. The variance of the other covariate are in general
slightly smaller for the Excl. estimates, which is also in the agreement with the
simulation results. There are some differences between the NPMI estimates and
the Excl. estimates that might not be completely explicable by random variation.
We do not have a comprehensive explanation for the differences but the potential
explanations include non-proportional hazards, changes in the covariates in the
time and unbalanced cohort due to non-response. The detailed analysis of these
data will be carried out as a part of the general MORGAM analysis plan.

Figure 7 illustrates the relative importance of the covariates in the cohort.
Each covariate is ordered in ascending order and the relative hazard compared to
the median of the covariate is plotted as a function of cumulative covariate dis-
tribution. This gives insight on the epidemiological significance of the covariates
and makes it possible to compare covariates measured on the different scale.
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Table 4: Estimated covariate effects for the FINRISK data. Estimates and
their standard errors (se) are presented together with relative hazard estimates
(exp(estim.)) and their 95 % confidence intervals.

Men: Without baseline CVD (Excl.)
estimate se exp(estim.) conf. int.

BPM (mmHg) 0.0165 0.0022 1.0167 (1.0123,1.0210)
RCHOL 0.2071 0.0159 1.2301 (1.1924,1.2690)
BMI (kg/m2) 0.0166 0.0082 1.0168 (1.0005,1.0333)
DSMOKER (0/1) 0.5312 0.0624 1.7010 (1.5052,1.9222)
FHISCHD (0/1) 0.3610 0.0659 1.4348 (1.2611,1.6325)

Men: Imputed event times and covariates for baseline CHD cases (NPMI)
estimate se exp(estim.) conf. int.

BPM (mmHg) 0.0063 0.0026 1.0063 (1.0013,1.0114)
RCHOL 0.2034 0.0158 1.2255 (1.1881,1.2642)
BMI (kg/m2) 0.0270 0.0086 1.0274 (1.0102,1.0448)
DSMOKER (0/1) 0.6167 0.0663 1.8528 (1.6269,2.1101)
FHISCHD (0/1) 0.4725 0.0572 1.6040 (1.4339,1.7942)

Women: Without baseline CVD (Excl.)
estimate se exp(estim.) conf. int.

BPM (mmHg) 0.0156 0.0033 1.0158 (1.0093,1.0223)
RCHOL 0.2967 0.0257 1.3454 (1.2793,1.4149)
BMI (kg/m2) 0.0141 0.0099 1.0142 (0.9948,1.0340)
DSMOKER (0/1) 0.5723 0.1308 1.7724 (1.3715,2.2904)
FHISCHD (0/1) 0.3140 0.1013 1.3689 (1.1224,1.6695)

Women: Imputed event times and covariates for baseline CHD cases (NPMI)
estimate se exp(estim.) conf. int.

BPM (mmHg) 0.0106 0.0032 1.0106 (1.0043,1.0170)
RCHOL 0.2558 0.0273 1.2914 (1.2242,1.3624)
BMI (kg/m2) 0.0027 0.0105 1.0027 (0.9822,1.0236)
DSMOKER (0/1) 0.6602 0.1332 1.9353 (1.4904,2.5128)
FHISCHD (0/1) 0.4303 0.0890 1.5378 (1.2917,1.8307)

According to Figure 7, RCHOL and DSMOKER seem to be the most serious covari-
ates in the FINRISK cohorts. The differences between the NPMI and the Excl.
estimates of DSMOKER, FHISCHD and BPM and are visible also in Figure 7.

5. Conclusion

In this paper, we considered the estimation of regression models from left
and right censored survival data and proposed the NPMI approach that converts
the left and right censored data into multiple right censored data sets. The
left truncation due to deaths prior to baseline is compensated by Lexis diagram
imputation. The imputation of left censored data is done without reference to the
underlying distribution or model of the event time and hence the procedure can
be applied to more general model than the Cox’s proportional hazards model. In
simulations it was found that the distributions of the imputed event times and
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Figure 7: Relative hazard as a function of ordered covariates. Relative hazard
is calculated respect to the median of the covariate that is displayed in the
legend. Cumulative probability is used in the x-axis instead of the actual
covariate values to allow displaying all covariates in the same plot.

the imputed covariates are very close to the true distributions. Good performance
was also observed when analyzing real world data from FINRISK cohorts.

The NPMI is specifically designed for the data arising from the MORGAM
Project but the approach may be applicable for other studies as well. The main
requirement for the NPMI approach is the existence of prospective follow-up data
for all relevant ages. In the genetic sub-study of MORGAM, the NPMI need to
be adapted to the case-cohort design. This does not require any changes to
imputation itself.

Compared to the Excl. the main benefit of the NPMI is the gain of efficacy
when estimating the effect of permanent covariates. This has practical impor-
tance in the MORGAM Project where one of the main goals is the testing of
candidate genes. The primary interest is then on the statistical significance of
the candidate genes and the classic risk factors in the model have secondary im-
portance. Compared to parametric imputation, the NPMI is robust against to



170 Juha Karvanen, Olli Saarela and Kari Kuulasmaa

imputation model misspecification. Compared to full likelihood alternatives (e.g.
EM algorithm or Bayesian methods) the benefits of the NPMI are speed and
straightforward implementation (standard methods and software may be used).
In fact, we are not aware of any practical full likelihood based approach that
would be directly applicable to the described setup with left truncation. The
drawbacks of the NPMI are the need of multiple analyses and small loss of effi-
cacy compared to the Excl. when estimating the effect of imputed covariates from
data with small number of the events. A small bias might be also unavoidable if
the number of the events is small.

The results in this paper suggest that the inclusion of left censored observa-
tions without compensating for left truncation leads to biased estimates. This
conclusion is not restricted to the NPMI but applies to all analyses where the
events may be fatal or non-fatal and the follow-up is modified to start from a
time prior to the recruitment of the cohort. The bias, however, is not necessarily
large compared to the standard errors of estimates in moderately sized cohort
studies.
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