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Abstract

Predictor envelopes model the response variable by using a subspace of dimension d extracted
from the full space of all p input variables. Predictor envelopes have a close connection to
partial least squares and enjoy improved estimation efficiency in theory. As such, predictor
envelopes have become increasingly popular in Chemometrics. Often, d is much smaller than p,
which seemingly enhances the interpretability of the envelope model. However, the process of
estimating the envelope subspace adds complexity to the final fitted model. To better understand
the complexity of predictor envelopes, we study their effective degrees of freedom (EDF) in a
variety of settings. We find that in many cases a d-dimensional predictor envelope model can
have far more than d + 1 EDF and often has close to p + 1. However, the EDF of a predictor
envelope depend heavily on the structure of the underlying data-generating model and there are
settings under which predictor envelopes can have substantially reduced model complexity.

Keywords dimension reduction; effective degrees of freedom; envelopes; Monte Carlo

1 Introduction
Cook, Li, and Chiaromonte (2007) first introduced predictor envelopes as a method of sufficient
dimension reduction for “large p” settings, where p denotes the number of input variables. Cook,
Helland, and Su (2013) further developed the predictor envelope model, revealing its connection
to partial least squares (PLS) and proving the efficiency gain of predictor envelopes over PLS.
The predictor envelope model has become increasingly popular in Chemometrics—see Cook
and Forzani (2020) which was published as the cover story of the Journal of Chemometrics.
A substantial amount of work has been devoted to envelope models. We refer readers to Cook
(2018) for a comprehensive treatment of the subject.

The predictor envelope model uses a subspace of dimension d extracted from the full space
of p input variables, drawing on the response variable to find this d-dimensional subspace which
is referred to as the envelope. Compared with the full model using all p variables, a predictor
envelope model can achieve substantial efficiency gains. It is intuitive for users to interpret a
predictor envelope with a d-dimensional subspace as having complexity d + 1 (the extra one
corresponding to the intercept term in the model), but this could be misleading. For instance,
best k-subset regression finds a subset regression model with k input variables that has the
smallest residual sum of squares. The model complexity of best k-subset regression can be far
greater than k because those k “best” input variables are chosen based on the data and the
response variable is involved in the selection—see the simulation results in Janson, Fithian,
and Hastie (2015). The same argument applies to predictor envelopes. If we knew the envelope
subspace then the model complexity would be equal to that of fitting a linear model with d
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features. In reality, we have to estimate the envelope subspace, so the actual model complexity
can be different. To rigorously quantify this phenomenon, we use a more general measure of model
complexity: the effective degrees of freedom (EDF) developed by Efron (1986) based on Stein’s
unbiased risk estimation theory. Critically, the EDF can be used to correct the downward bias of
the training error as an estimator of in-sample prediction error. As such, accurate estimates of
the EDF can prove invaluable to researchers seeking to compare and assess models’ prediction
performance.

In this paper, we explore the complexity of predictor envelopes as measured by their EDF.
Due to the relatively complex nature of the predictor envelope estimator (See Section 2.2 for
details), the analytical expression of its EDF is difficult to obtain. We opt to conduct a Monte
Carlo study of the EDF under various model settings. Since linear models are the foundation for
predictor envelopes, we limit ourselves to linear models: Y = Xβ +ε where Y ∈ R is the response
variable, X ∈ R

p represents the set of covariates, β is the true regression coefficient and ε is the
error term. We find that the number of predictors p and the dimension d of the envelope do
not entirely determine an envelope’s EDF. Rather, the structure of the predictors X and their
relationship with the response Y influence the range of values that the EDF can take. On the one
hand, in many but not all of our experiments, predictor envelopes are as complex as saturated
linear models fit to the same p predictors, with p + 1 EDF. On the other hand, we identify
two scenarios in which predictor envelopes indeed have much smaller EDF compared with the
saturated linear model: (1) when the predictors that explain the variability in Y are highly
correlated and (2) when the covariance matrix of X has a few dominating eigenvalues and the
true data-generating β is linearly dependent on at least one of their corresponding eigenvectors.
The EDF reductions in the first scenario are non-trivial, but fairly modest. The EDF reductions
in the second scenario are far larger: a predictor envelope with the right settings can have EDF
near d + 1, which suggests that the intuitive answer is correct in this scenario.

In Section 2 we briefly review the effective degrees of freedom and predictor envelopes. In
Section 3 we discuss the ordinary Monte Carlo method for numerically computing the EDF
as the design of our study at a high level. More concrete simulation models are described in
Sections 4 and 5, where some “negative” and “positive” messages are reported, respectively.
In Section 6 we confirm the same findings by using input variables from a real data exam-
ple.

2 Preliminaries

2.1 Effective Degrees of Freedom

Suppose we fit a model to n observations {(Xi, Yi)}ni=1, where Yi = f (Xi) + εi and the εi have
mean 0 and variance σ 2, and that this model gives us estimates Ŷi . Ideally, we would like our
model to make accurate predictions on new data. A model with a smaller training error may
not have a smaller in-sample predictor error. It turns out that there is a model complexity term
to the training error that can help correct the bias. The following theorem from Efron (1986)
provides a foundation for doing so.

Theorem 1 (Efron, 1986). Let Yi = f (Xi) + εi where the εi are independent identically dis-
tributed (i.i.d.) with mean 0 and variance σ 2 for i = 1, . . . , n. Suppose that Ŷi are estimates of
f (Xi) from a model fit using the observed Yi. Lastly, let Ỹi be new observations with the same
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covariate values Xi. Then

E

[
n∑

i=1

(Ỹi − Ŷi)
2

]
− E

[
n∑

i=1

(Yi − Ŷi)
2

]
= 2

n∑
i=1

Cov(Yi, Ŷi).

Define the effective degrees of freedom for any model-fitting method FITγ with tuning pa-
rameter γ as follows:

Definition 1 (Effective Degrees of Freedom). Let X ∈ R
p and Y = f (X) + ε, where E(ε) = 0

and Var(ε) = σ 2. Suppose we have n observations (Yi, Xi) and that we fit a model using FITγ .
We define the effective degrees of freedom (EDF) for this model to be

df(X, f, FITγ ) = 1

σ 2

n∑
i=1

Cov(Ŷi, Yi).

An immediate corollary to Theorem 1 is that

E

[
n∑

i=1

(Ỹi − Ŷi)
2

]
= E[RSS] + 2 df(X, f, FITγ )σ 2.

Thus we see that 2 df(X, f, FITγ ) plays the same role as 2 df in Mallows’ Cp statistic (Mallows,
1973) for linear regression. In this way, the EDF provide a meaningful measure of model com-
plexity and serve as a generalization of the degrees of freedom for a linear regression model.
When FITγ is a linear smoother, meaning Ŷ = SY for some smoothing matrix S that does not
depend on Y, we have a closed-form expression for the EDF: df(X, f, FITγ ) = tr(S). For more
sophisticated models, the analytical expression of the EDF can be difficult to obtain.

2.2 Predictor Envelopes

In this section we briefly review the predictor envelope estimation procedure introduced by
Cook, Helland, and Su (2013) and further developed by Cook, Forzani, and Su (2016). Suppose
we have a linear model

Y = μ + βT (X − μx) + ε (1)

with Y ∈ R, μ ∈ R, ε ∈ R, β ∈ R
p, and X ∈ R

p. In this setting, X is a random vector with
E[X] = μx and Var(X) = �X, E[ε] = 0 and Var(ε) = σ 2, and ε is independent of X denoted
by ε ⊥⊥ X. Before we delve into the details of how envelopes achieve predictor reduction, we
need to establish some notation. Suppose we have a matrix M ∈ R

p×p and a subspace S ⊆ R
p.

We define the M-inner product as 〈s, t〉M = sT Mt . We let PS(M) denote the projection onto S
in the M-inner product and let QS(M) = I − PS(M). Note that when projecting onto a subspace
in the usual inner product, we drop M from our notation. Lastly, let S⊥ denote the orthogonal
complement of S in the usual inner product.

Suppose that we find a subspace S ⊆ R
p such that (i) corr(QSX, PSX) = 0 and (ii)

corr(Y, QSX|PSX) = 0. Conditions (i) and (ii) tell us that PSX provides all of the informa-
tion about Y that we can extract linearly from X while QSX does not provide us with any
additional information about either Y or PSX. Cook, Helland, and Su (2013) proved that when
(1) is the true model, conditions (i) and (ii) are equivalent to (a) �XS ⊆ S and �XS⊥ ⊆ S⊥
and (b) span(β) ⊆ S, respectively. The smallest subspace S satisfying these conditions is called
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the �X-envelope of B = span(β) and is denoted by E�X
(B). The term “envelope” comes from the

fact that E�X
(B) “envelopes” the column space of β in satisfying condition (b).

Let d = dim(E�X
(B)), where d < p, and � ∈ R

p×d be a semiorthogonal basis matrix for
E�X

(B). If we know �, then we can express (1) as

Y = μ + αT {�T (X − μx)} + ε

and estimate μ ∈ R and α ∈ R
d as in standard linear regression with the reduced predictors

�T (X − μx). In practice, however, we need to estimate the basis matrix �. Let C = (XT , Y T )T

and let SC denote the sample version of �C = Var(C). Cook, Helland, and Su (2013) used a
likelihood-based approach to estimate �C , minimizing the objective function

Fd(SC, �C) = log |�C | + tr(SC�−1
C ).

The structure of E�X
(B) allows us to express �C as a function of � and a few other parameters.

Let SX denote the sample covariance matrix of X and s2
Y denote the sample of variance Y .

Define Z = s−1
Y Y and let SXZ denote the sample covariance between X and Z. After minimizing

Fd(Sc, �C) over every parameter except �, we only need to minimize

Ld(G) = log |GT (SX − SXZST
XZ)G| + log |GT S−1

X G|, (2)

giving us the estimator
�̂ = arg min

G
Ld(G).

For this study, we use the R package Renvlp (Lee and Su, 2020), which finds �̂ using the algorithm
outlined by Cook, Forzani, and Su (2016). In practice we do not know d = dim(E�X

(B)) and
therefore treat d as a modeling parameter. Throughout this paper, we use Envd to denote the
predictor envelope model fitting procedure with the envelope dimension set to d.

The analytical expression of the EDF for a predictor envelope (df(X, f, Envd)) is difficult to
obtain. Hence, in this study we use Monte Carlo to numerically compute the EDF of predictor
envelopes in order to gain some insight into their complexity in different settings. We anticipate
that df(X, f, Envd) will vary considerably with d. If we set d = p, then the predictor envelope has
no reduction and df(X, f, Envp) = p +1. In actual applications of using predictor envelopes, d is
often a small number (d � p). In such settings, we expect that df(X, f, Envd) will fall between
d + 1 and p + 1. If we knew � beforehand and fit a linear model to �T X, that linear model
would have d + 1 degrees of freedom. As such, we can think about decomposing df(X, f, Envd)

into the d + 1 degrees of freedom used to fit a linear model to �̂T X and the additional degrees
of freedom used in estimating the envelope.

3 Computing the EDF via Monte Carlo
We use Monte Carlo to numerically compute df(X, f, FITγ ) for a given design matrix X ∈ R

n×p,
data-generating model f , and model-fitting method FITγ . This is the standard approach for
studying the EDF of a model when an analytical expression is not available (see, also, Janson,
Fithian, and Hastie (2015)). We create M datasets with X, f , and a pre-specified error variance
Var(ε) = σ 2 as follows: for each j ∈ {1, . . . , M} we generate εij

i.i.d.∼ N(0, σ 2), i = 1, . . . , n, then
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set Yij = f (Xi) + εij . We then use method FITγ to obtain fitted values Ŷij . Using these, we
estimate Cov(Ŷi, Yi) over the M Monte Carlo iterations by

Ĉov(Ŷi, Yi) = 1

M − 1

M∑
j=1

(Ŷij − Ŷ i·)(Yij − Y i·)

where Y i· = 1
M

∑M
j=1 Yij and Ŷ i· = 1

M

∑M
j=1 Ŷij . Since we specify σ 2 for the simulations, our

estimate of df(X, f, FITγ ) is simply

d̂f(X, f, FITγ ) = 1

σ 2

n∑
i=1

Ĉov(Ŷi, Yi).

Throughout this study we set M = 400 and σ 2 = 1.
We use different design matrices X across our simulations. Though we limit ourselves to

linear data-generating models, f (X) = Xβ, which is the foundation for predictor envelopes,
we vary β across simulations as well. We want to understand how the structure of X and f

impact the EDF rather than simply find the EDF for specific X and β. As such, we run each
case 100 times, using the same simulation settings to generate different design matrices Xk and
different coefficient vectors βk for each of the 100 iterations. This gives us 100 different estimates
d̂f(Xk, βk, FITγ ) from design matrices and true coefficient vectors generated using the same set-
tings. Throughout Sections 4, 5, and 6 we provide the mean and 1-standard deviation bars for
the EDF for each set of simulation settings. To emphasize the role of the underlying structure
of the data in shaping the EDF we report the mean of the estimates for each combination of
settings for X and β:

d̂f(X, β, FITγ ) = 1

100

100∑
k=1

d̂f(Xk, βk, FITγ ).

4 Envelope Complexity in Different Cases
In this section, we examine three cases to find how the structure of the joint distribution of
(X, Y ) and the envelope dimension impact df(X, f, Envd):

Case 1. X has a compound symmetric covariance matrix.
Case 2. X has a block covariance matrix with 5 predictors in each block.
Case 3. X has an order-1 auto-regressive (AR1) covariance matrix.

Let �ρ = Cov(X). We can express the first three correlation structures as follows:
Case 1. (�ρ)ij = ρ if i 
= j , (�ρ)ii = 1 for all i.
Case 2. (�ρ)ij = ρ if i 
= j and � i−1

5 � = � j−1
5 �, (�ρ)ij = 0 if i 
= j and � i−1

5 � 
= � j−1
5 �, and

(�ρ)ii = 1 for all i.
Case 3. (�ρ)ij = ρ|i−j | for all i, j .

We vary parameter ρ from 0 to 0.8 in each case. In all three cases, we generate i.i.d. Xi ∼ N(0, �ρ)

and εi ∼ N(0, 1) with p = 50 and n = 150. In the compound symmetric and AR1 cases, we
generate βj ∼ Gamma(2, 2) for 5 randomly selected j ∈ {1, . . . , p} and set the 45 remaining βj

to 0. In the block covariance case, we generate βj ∼ Gamma(2, 2) for j ∈ {1, . . . , 5}, so that the
significant predictors all fall in the same block, and set the 45 remaining βj to 0. In all three
cases, we fit predictor envelopes with envelope dimensions ranging from d = 1 to 10.
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Figure 1: Envelope EDFs with different predictor correlation structures.

Figure 1 shows EDFs for predictor envelopes in the three cases outlined above. These plots
include 1-standard deviation bars to show the variation across Monte Carlo iterations with
different βk. We see modest EDF reductions when d = 1, X has either a compound-symmetric
or block covariance structure, and the informative predictors are highly correlated. All three of
these conditions appear to be necessary here, as the envelopes’ EDF reductions quickly disappear
when either the informative predictors are not as strongly correlated or d > 1. Moreover, we can
see that there is a considerable amount of variation in the EDF in the cases where we see some
reduction, indicating that βk also affects d̂f(Xk, βk, Envd). It is precisely because of this variation
that we choose to report the average EDF across Xk and βk generated with the same settings:
if we picked a single X and β to use across all 100 iterations, we might not be able to generalize
beyond that case.

To ensure that these results are not limited to one choice of n and p, we rerun the compound
symmetric case with n = 200 and p = 100. Figure 2 shows that the EDFs for predictor envelopes
in this case follow the same pattern as when n = 150 and p = 50.

While there are a couple of scenarios in which EDF reductions are worth highlighting, we
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Figure 2: Envelope EDFs in the compound symmetric case with n = 200, p = 100.

should not overlook that d̂f(X, β, Envd) is approximately p + 1 in most of the settings. In the
AR1 simulations, d̂f(X, β, Envd) ≈ p+1 for all values of d, with little variation across simulations
with different βk. This suggests that the additional degrees of freedom used in estimating the
envelope subspace E�X

(B) are nearly p −d in these cases. Returning to Definition 1, this tells us
that the algorithm used to estimate E�X

(B) is relying heavily on information from the response,
as the fitted values Ŷi and the observed Yi are highly correlated. In the compound symmetric
and block correlation cases, on the other hand, the algorithm relies less on information from the
response and more on information from the correlation structure of the predictors, leading to
lower EDFs.

5 Settings for Reducing Envelope Complexity
Given the relatively “negative” message from Section 4, it is worth exploring whether there are
scenarios in which a fitted predictor envelope model truly has substantially reduced EDF. In this
section we consider the following set of three conditions: (1) a few eigenvalues of Cov(X) = �X

dominate its remaining eigenvalues, (2) the envelope dimension d is no bigger than the number of
eigenvectors with dominating eigenvalues, and (3) the true data-generating β is linearly related
to a least one of the eigenvectors with a dominating eigenvalue.

We recall from Section 2.2 that E�X
(B) is the smallest subspace S such that (a) �XS ⊆ S

and �XS⊥ ⊆ S⊥ and (b) span(β) ⊆ S. A subspace A generated by orthogonal eigenvectors
of �X satisfies (a) (Cook, Helland, and Su, 2013). If β falls in the space generated by those
eigenvectors, then (b) is satisfied as well. In this case, the envelope subspace E�X

(B) falls within
A and the true envelope dimension d∗ is equal to the number of generating eigenvectors. As
such, we anticipate that the EDF of predictor envelopes can drop to near d + 1 when all three
of our conditions are satisfied.
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Suppose that �X has p normalized, orthogonal eigenvectors v1, . . . , vp with eigenvalues
λ1 � λ2 � · · · � λp. We simulate the following cases:

Case 1. β = v1 and λ1 � λi , i = 2, . . . , p.
Case 2. β = v1 + v2 and λ1 = λ2 � λi , i = 3, . . . , p.
Case 3. β = v1 and λ1 = λ2 � λi , i = 3, . . . , p.
Case 4. β = v1 + v2 and λ1 � λi , i = 2, . . . , p.
Case 5. β = v2 and λ1 � λi , i = 2, . . . , p.

Within each of these scenarios, we vary the sizes of the dominating eigenvalues while fixing the
remaining eigenvalues at λi = 1

2 . As before, we generate i.i.d. Xi ∼ N(0, �X) and εi ∼ N(0, 1)

with p = 50 and n = 150 and estimate the EDF for predictor envelopes with dimension d =
1, 2, . . . , 10.

We pick these five cases and the settings we vary within them to highlight a few meaningful
contrasts. Let V denote the set of eigenvectors of �X with dominating eigenvalues and let W

denote the set of eigenvectors of �X on which β is linearly dependent. With this notation, we
can express the conditions under which we see substantial EDF reductions succinctly: (1) V 
= ∅,
(2) d � |V |, and (3) V ∩ W 
= ∅. We can verify the importance of the first two conditions by
focusing on how d̂f(X, β, Envd) varies with λ1 and d within each of the first four cases, as λ1 and
d determine whether V 
= ∅ and d � |V |. We must compare results across cases to establish the
importance of the third condition, as only Case 5 is designed so that V ∩ W = ∅.

Figure 3 shows the simulation results for the five cases outlined above. We start by focus-
ing on the first four cases. A clear trend emerges among the simulations for which λ1 = 100:
d̂f(X, β, Envd) is near d + 1 when d � |V | and near p + 1 for d > |V |. There is a clear fault
line between d = |V | and d = |V | + 1 in all four of these cases. We see that d̂f(X, β, Envd) is
constant for d � |V | in both Case 2 and Case 3 and that d̂f(X, β, Envd) increases slowly in d

past d = |V | + 1. We see similar patterns for λ1 = 5, 10, and 25, though the jumps in the EDF
between d = |V | and d = |V | + 1 are less dramatic.

Intuitively, we might also expect that the number of eigenvectors of �X which provide
us with information about β would similarly play a major role in determining the EDF for a
predictor envelope. In Cases 3 and 4, however, we do not see major changes in d̂f(X, β, Envd)

between d = |W | and d = |W |+1. Thus |V |, rather than |W |, appears to be the salient threshold
for the envelope dimension when it comes to EDF reduction.

Next, we focus on making comparisons across different λ1 for fixed d. We see that the relative
size of λ1 determines how far d̂f(X, β, Envd) drops below p + 1 for d ∈ {1, . . . , |V |}. That is, the
difference between d̂f(X, β, Env|V |) and d̂f(X, β, Env|V |+1) grows as the gap between λ1 and λ|V |+1

increases. In fact, when λ1 = 1 predictor envelopes appear to hardly deliver any EDF reductions
at all. Thus it seems necessary that V 
= ∅ for predictor envelopes to achieve substantial EDF
reductions.

Lastly, we focus on the role of the eigenvectors of �X which provide us with information
about β. We set V ∩ W = ∅ in Case 5. Here we see that even when d = |V | = 1, d̂f(X, β, Envd)

is only slightly below p + 1. Contrast this result with Case 1. In both cases |V | = |W | = 1, yet
we see dramatically different behavior when d = 1. This comparison suggests that at least one
of the eigenvectors in V needs to provide some information about β for envelopes to achieve
substantial EDF reductions.

As in the previous section, we rerun one of our simulations to ensure our findings generalize
beyond our initial choice of n and p. Figure 4 shows the EDFs for predictor envelopes when
n = 200, p = 100, and X and Y are generated as in Case 1. The overall pattern remains the
same.
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Figure 3: EDFs in settings for reducing envelope complexity.
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Figure 4: Envelope EDFs in Case 1 with n = 200, p = 100.

6 A Real Data Example
In this section, we turn to a real data example to study the EDF of predictor envelopes. Our data
set characterizes the student populations of Minneapolis district schools in 1972 and contains
n = 63 observations and p = 9 predictors (Cook, 1998).

In our first set of simulations, we only use the design matrix from this data set. We simulate
our response variable from a linear model as described in Section 3, using different coefficient
vectors βk to generate Y in each of 100 simulation iterations. In these simulations, we generate
β1, . . . , β5 ∼ Gamma(2, 2) and set β6 = · · · = β9 = 0. For our second set of simulations, we first
fit an envelope model with dimension 1 to the complete data, then use the estimated regression
coefficients β̂ and response variance σ̂ 2 from that model as the “true” data-generating values
for Monte Carlo simulations. In doing so, we treat the fitted envelope model as the “true”
model for these simulations. In both sets of simulations, we fit predictor envelopes with envelope
dimensions from d = 1 to 5.

Figure 5 shows the results from the first set of simulations. We see that d̂f(X, β, Envd) is
about 10 regardless of the envelope dimension. These results align with our findings from Section
4 for settings in which the significant predictors are not highly correlated. In the results for the
second set of simulations, we see from Figure 6 that d̂f(X, β, Envd) ≈ 2 for a predictor envelope
with dimension 1, mirroring the results from the ideal setting simulations in Section 5. As in the
ideal simulations, the EDF remains below p + 1 for models with higher envelope dimensions as
well. These results reveal that when the “true” model for (X, Y ) has an envelope structure (as
it does in this case because we generated Y from such a model), estimating the envelope adds
few degrees of freedom to the overall fitting procedure.



538 Jacobson, T. and Zou, H.

Figure 5: Envelope EDFs with predictors from Minneapolis school data.

Figure 6: Envelope EDFs assuming an envelope model for Minneapolis school data.

7 Discussion
We have found that while the fundamental idea of predictor envelopes is to reduce the full space
of the original p input variables down to a much-reduced subspace �T X ∈ R

d for the purpose of
modeling Y , the actual estimation process tends to have a dramatic impact on the complexity
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of the fitted predictor envelope model. In many reasonable settings predictor envelopes tend to
have far more than d + 1 effective degrees of freedom. In fact, the EDF is often close to p + 1.
This suggests that under those settings estimating the subspace �T X adds nearly p − d degrees
of freedom to the overall fitting procedure. By comparing the EDF across several simulation
settings, we have found that the structure of the joint distribution of (X, Y ) plays a critically
important role in the EDF.

The scenarios identified in Section 5 gave us results close to the usual perception that
the complexity is d + 1, suggesting that the process of estimating E�X

(B) adds few degrees of
freedom in these settings. In particular, we found that the EDF is close to d + 1 when the
“true” model is a predictor envelope and d � d∗, the true envelope dimension. When we set an
envelope model with dimension 1 as the “true” model for simulations in Section 6 we saw similar
results: predictor envelopes with d = 1 used only 2 degrees of freedom. In this regard, predictor
envelopes follow a pattern seen in other dimension reduction techniques. Mukherjee et al. (2015)
identified a similar phenomenon for reduced-rank estimators: their unbiased estimator for the
EDF approaches the “naïve estimator,” the number of free parameters in the model, when the
model rank r is close to the true underlying rank r∗.

We know from Theorem 1 that the EDF measures how much the training RSS differs
from the in-sample test RSS. As we have found, EDFs for predictor envelopes (and therefore
the corrections needed for the training RSS) are often much larger than one might assume. We
compute the EDF, RSS and in-sample test RSS for predictor envelopes in a few of our simulation
studies. Figures 7 and 8 plot these values for the compound symmetric case with ρ = 0.8 (from
Section 4) and the first reduction case with λ1 = 25 (from Section 5), respectively. In both
cases the RSS provides a gross underestimate of the in-sample test RSS. Moreover, in the latter
case we see that different values of d minimize the RSS and the in-sample test RSS. The large
EDF can be interpreted as the high complexity of the fitted envelope model, which implies high

Figure 7: EDF, RSS, and test RSS in compound symmetric case with n = 200, p = 100.



540 Jacobson, T. and Zou, H.

Figure 8: EDF, RSS, and test RSS in reduction Case 1 with n = 200, p = 100.

estimation variance contributing to the high test RSS. These results underscore that users need
accurate estimates of the EDF to correctly compare and assess predictor envelopes.

Lastly, we point out that the EDF of partial least squares (PLS) was examined in Krämer
and Sugiyama (2011) where it was observed that the EDF can be far greater than d + 1 (here d

denotes the number of components used in PLS) and often can be close to p + 1. As mentioned
earlier, predictor envelope models and PLS are related in the sense that they share the same
population target, though the former uses a likelihood approach for estimation and has improved
efficiency over the latter. Our findings that the correlation structure of the design matrix shapes
the EDF of predictor envelopes align with the findings in Krämer and Sugiyama (2011).

Supplementary Material
Code and data for reproducing our results can be found at https://github.com/TateJacobson/
Envelope-EDF. This repository contains the following folders:
• Cleaning Output: Contains an R script for cleaning saved simulation output and generating

plots from it.
• edf: An R package for computing the effective degrees of freedom
• Simulations: Contains R scripts for the simulations run in “Do Predictor Envelopes Really

Reduce Dimension?”
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