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Abstract

Penalized regression provides an automated approach to preform simultaneous variable selection
and parameter estimation and is a popular method to analyze high-dimensional data. Since the
conception of the LASSO in the mid-to-late 1990s, extensive research has been done to improve
penalized regression. The LASSO, and several of its variations, performs penalization symmet-
rically around zero. Thus, variables with the same magnitude are shrunk the same regardless of
the direction of effect. To the best of our knowledge, sign-based shrinkage, preferential shrinkage
based on the sign of the coefficients, has yet to be explored under the LASSO framework. We
propose a generalization to the LASSO, asymmetric LASSO, that performs sign-based shrinkage.
Our method is motivated by placing an asymmetric Laplace prior on the regression coefficients,
rather than a symmetric Laplace prior. This corresponds to an asymmetric �1 penalty under the
penalized regression framework. In doing so, preferential shrinkage can be performed through
an auxiliary tuning parameter that controls the degree of asymmetry. Our numerical studies
indicate that the asymmetric LASSO performs better than the LASSO when effect sizes are
sign skewed. Furthermore, in the presence of positively-skewed effects, the asymmetric LASSO
is comparable to the non-negative LASSO without the need to place an a priori constraint on
the effect estimates and outperforms the non-negative LASSO when negative effects are also
present in the model. A real data example using the breast cancer gene expression data from
The Cancer Genome Atlas is also provided, where the asymmetric LASSO identifies two po-
tentially novel gene expressions that are associated with BRCA1 with a minor improvement in
prediction performance over the LASSO and non-negative LASSO.

Keywords asymmetric Laplace distribution; high-dimensional statistics; penalized regression;
quantile regularization; variable selection

1 Introduction
Recent developments in data acquisition, collection, and storage have allowed researchers to
obtain a large number of potential predictors in order to avoid missing important factors that
may be associated with the outcome of interest. This is often the case in genomic studies, where
the number of predictors collected is often larger than the sample size. Simultaneous variable
selection and parameter estimation is an essential task in high-dimensional data analysis that
aims to identify a smaller subset of important variables. Penalized regression methods accomplish
this by shrinking the regression coefficients toward zero while setting some coefficients equal to
zero. These methods estimate a sparse vector of regression coefficients by minimizing an objective
function that is composed of both a loss function and a penalty function.
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Figure 1: Density of the asymmetric Laplace distribution. Black solid line corresponds to the
standard Laplace distribution (τ = 0.5). Dotted grey lines correspond to (a): τ = 0.25 and (b):
τ = 0.75.

One of, if not, the most popular penalized regression methods is the LASSO (Tibshirani,
1996). Since its conception in the mid-to-late 1990’s, the LASSO framework has been exten-
sively used in several different research areas including, but not limited to, signal processing
(Angelosante et al., 2009), genomic studies (Huang and Pan, 2003; Ghosh and Chinnaiyan,
2005; Wu and Lange, 2008; Wu et al., 2009, 2011), finance (Wu et al., 2014; Pereira et al.,
2016; Panagiotidis et al., 2018), and text mining (Li et al., 2014; Debortoli et al., 2016). LASSO
performs estimation and selection by forcing the sum of the absolute value of the regression
coefficients (the �1 norm) to be less than a non-negative fixed value which, consequently, forces
some of the coefficients to zero. From a Bayesian perspective, the LASSO is motivated by plac-
ing a Laplace prior on the regression coefficients (see e.g., Tibshirani, 1996; Park and Casella,
2008; Hans, 2009). The density of the Laplace distribution is provided in Figure 1 (solid black
line). The prior is symmetric around 0 implying that the degree of shrinkage for a particular
magnitude is the same regardless of the direction of effect. Several extensions and improvements,
both in estimation and computation, to the LASSO have been proposed in the literature (see
e.g., Tibshirani, 1997; Fan and Li, 2001; Zou and Hastie, 2005; Tibshirani et al., 2005; Yuan and
Lin, 2006; Meinshausen and Bühlmann, 2006; Friedman et al., 2008; Zou, 2006; Wu and Lange,
2008; Friedman et al., 2010; Zhang et al., 2010; Tibshirani et al., 2012).

While extensive research has been done to improve penalization by shrinking the magnitude
of the coefficients differently (Zou, 2006), to the best of our knowledge, preferential shrinkage
based on the sign of the coefficients has yet to be explored. Traditionally, LASSO and other
penalized regression procedures shrink variables symmetrically around 0. That is, the degree of
shrinkage for a particular magnitude is the same regardless of the direction of effect. There are
several motivating scientific questions in which shrinking both positive and negative coefficients
equally may not be preferred in certain situations. Most likely these studies leverage some
previous knowledge in which we expect effects to be favored in one direction over another or if
we are particularly interested in one effect direction. For example, BRCA1 is a DNA damage
repair gene that has been shown to have strong associations with breast and ovarian cancer risk
(Welcsh et al., 2000; Welcsh and King, 2001). Based on this knowledge, we may be interested
in identifying additional genes that are associated with BRCA1 expression; in particular, genes
with a positive association. These genes could implicate mechanisms through which BRCA1
impacts cancer risk and warrant further investigation in future studies. Since we are interested
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in identifying genes that have an elevated effect on BRCA1, we may want to focus our attention
to selecting positive effects, while also allowing for the possibility of identifying strong negative
effects. Additionally, in certain genomic studies designed for the construction of a polygenic risk
score (PRS), there is an emphasis on identifying risk variants for certain diseases (Khera et al.,
2018). Variable selection procedures, such as the LASSO, are often employed to identify relevant
markers that are used in developing a PRS. Finally, certain biomarkers within known biological
pathways may be suspected to be associated with elevated risk (i.e., a positive association
with the disease outcome). In a metabolomic investigation we may be particularly interested
in discovering additional biomarkers with smaller risk effects which may help elucidate the
biological mechanisms of the disease.

Generalizations to the LASSO, such as the constrained LASSO, have been developed to
augment the standard LASSO with linear equality and inequality constraints (Efron et al., 2004;
James et al., 2012; Tibshirani and Taylor, 2011; Wu et al., 2014; Gaines et al., 2018). The non-
negative LASSO is an example of the constrained LASSO that requires the LASSO coefficients to
be nonnegative. At first glance, this formulation seems to solve the issue of preferential shrinkage
since it forces effect estimates to be positive. However, these linear constraints must be specified
a priori and can be problematic if negative effects are present. It would be ideal to develop
a LASSO-based variable selection method that can perform preferential shrinkage without the
need to place a priori constraints on the parameter space.

Motivated by this idea, we propose a new variation of LASSO penalization that accom-
plishes asymmetric shrinkage. Our proposed method, asymmetric LASSO, replaces the standard
�1 penalty with an asymmetric �1 penalty. In doing so, the asymmetric LASSO performs prefer-
ential shrinkage through an auxiliary tuning parameter that controls the degree of asymmetry.
While estimation is focused under a penalized regression framework, we provide a Bayesian in-
terpretation that motivates the use of the asymmetric �1 penalty. Specifically, one can view the
asymmetric LASSO as placing an asymmetric Laplace prior on the regression coefficients. We
also show that the standard LASSO is a special case of the asymmetric LASSO. Since the objec-
tive function is convex, we employ an efficient optimization algorithm for our implementation.

The paper is organized as follows. In Section 2 we introduce the asymmetric LASSO under
a generalized linear model framework. We provide insight into the behavior of the estimator
under the ordinary least squares model with orthogonal design. Simulation studies are provided
in Section 3 to explore the empirical properties of asymLASSO and compare its performance
to both the traditional LASSO and non-negative LASSO across several scenarios. We provide
a real data example using the breast cancer gene expression data from The Cancer Genome
Atlas (TCGA) in Section 4. Finally, parting comments and future directions and discussed in
Section 5.

2 Methodology

2.1 The Asymmetric LASSO

Let us consider the generalized linear model (GLM) with a response vector y and design matrix
X = (x1, . . . , xn)

T , assume that the observations vi = (xT
i , yi)

T , i = 1, . . . , n, are mutually
independent, and that, conditional on xi , yi belongs to the exponential family with the following
density

fY (y; x, φ) = exp

{
yθ − a(θ)

b(φ)
− c(y, φ)

}
, (1)
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where θ is defined as the canonical parameter, φ > 0 is the scale (dispersion) parameter and
a(φ), b(θ), and c(y, φ) are known functions whose values depend on the distribution (McCullagh
and Nelder, 1983; Dobson and Barnett, 2018). If we assume that a(·) is twice differentiable, then
Model (1) indicates that E(yi |xi ) = μi = a′(θi) and var(yi |xi ) = a′′(θi)b(φi). Furthermore, the
canonical parameter θ is connected to xi through a prespecified link function h(μi) = xT

i β for
some β = (β1, . . . , βp)T . Examples of commonly used GLMs with canonical link include linear
regression, logistic regression, and Poisson regression. We can now define the likelihood function
for β,

L(β; vi ) ∝
n∏

i=1

exp(yiθi − a(θi)). (2)

Consequently, the log-likelihood is defined as l(β) = log L(β; vi ). The regression coefficients β

are typically estimated through minimizing the negated log-likelihood function. Typically, not
all of the p covariates that are included in the data are associated with the outcome and interest
lies in estimating a sparse β (i.e., several values of β are 0). This is especially the case in the high-
dimensional (p > n) setting. Penalized regression provides an automated approach to perform
simultaneous variable selection and parameter estimation.

To conceptualize asymmetric penalization, we motivate the idea under a Bayesian frame-
work where we propose to model the regression coefficients using an asymmetric Laplace prior

π(βj |λ, τ) = 2λτ(1 − τ) exp{−2λβj (τ − I (βj < 0))}, (3)

where λ � 0 is the scale parameter and τ ∈ (0, 1) is the skewness parameter that controls
the asymmetry. Two examples of the asymmetric Laplace distribution are provided in Figure 1
(dotted grey line) for τ = 0.25 (Figure 1a) and τ = 0.75 (Figure 1b). In both figures, we see
that the distribution is still concentrated at 0; however, the behavior of the tails is asymmetric.
When τ = 0.25, the left and right tail of the density are narrower and wider than the standard
Laplace distribution, respectively. More mass is reserved for positive-valued β than for negative-
valued β. The converse is true when τ = 0.75. We can allow that data to dictate the choice
of τ , allowing us to perform sign-dependent shrinkage in a data-driven manner rather than a
prespecified constraint as in the constrained LASSO.

In the context of penalized regression, the LASSO estimates are obtained by minimizing
an objective function that is composed of the negated log-likelihood function plus an �1 penalty
function. It is easy to show that the �1 penalty, |β|, is proportional to the negated log-density
of the standard Laplace distribution. Like LASSO, imposing an asymmetric Laplace prior on β

has a direct correspondence to estimation using a penalized likelihood. By rewriting the check
function f (x) = x(τ − I (x < 0)) = (|x| + (2τ − 1)x)/2, the asymmetric Laplace distribution
will correspond to an asymmetric �1 penalty, |βj | + (2τ − 1)βj and our asymmetric LASSO
(asymLASSO) estimator is defined as

β̂(τ ) = arg min
β

⎧⎨
⎩−l(β) + λ

p∑
j=1

(|βj | + (2τ − 1)βj

)⎫⎬⎭ . (4)

The use of the check function as the basis for the penalization term in (4) and placing an
asymmetric Laplace prior on β are intrinsically connected to quantile estimation and quantile
regression (Koenker and Basset, 1978; Yu and Moyeed, 2001; Yu and Zhang, 2005; Kozumi
and Kobayashi, 2011; Takeuchi et al., 2006). Specifically if β follows an asymmetric Laplace
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distribution with location parameter 0, scale parameter 1/(2λ), and skew parameter τ , as in
(3), then Pr(β < 0) = τ and Pr(β > 0) = 1 − τ , and therefore 0 can be interpreted as the τ -th
quantile of the distribution. In the following section we show how τ impacts estimation when
compared to the standard LASSO.

2.2 The Behavior of asymLASSO Under Orthogonal Design
To better understand the behavior of asymLASSO, we investigate the OLS model under an
orthogonal design matrix (i.e., XT X = Ip with p < n). Under these conditions, asymLASSO

leads to the following closed-form solution

β̂j (ols; τ) = S(β̂ols
j − λ(2τ − 1), λ), (5)

where S(a, b) = sgn(a)(|a|−b)+ is the soft-thresholding operator (Donoho and Johnstone, 1994)
defined for λ � 0 and β̂ols

j = xT
j y is the OLS estimate. Equation (5) follows a modified version of

the LASSO and, in fact, is equivalent to the LASSO when τ = 1/2. Thus LASSO can be viewed
as a special case of asymLASSO. Furthermore, as λ → 0 we have that β̂j (ols; τ) → β̂ols

j , which
implies that if λ = o(1), then β̂(ols; τ) is a consistent estimator for all τ ∈ (0, 1).

Figure 2 illustrates the behavior of the asymmetric LASSO soft-thresholding operator pro-
vided in Equation (5) under orthogonal design with τ = 0.25, 0.5 and 0.75. We can compare the
three panels in terms of their effect on both bias and sparsity. Note that β̂j (ols; τ) = 0 whenever
−2λ(1 − τ) � β̂ols

j � 2λτ . As discussed earlier, asymLASSO with τ = 0.5 (Figure 2a) reduces
to the LASSO. In this panel we see that β̂j (ols; 0.5) = 0 whenever −λ � β̂ols

j � λ. Furthermore,
the nonzero values are penalized by a constant factor, λ, as indicated by the difference between
the dotted gray line (true value of β) and solid black line (asymLASSO shrinkage). Figure 2b
illustrates asymLASSO with τ = 0.25 and we see that the thresholding function is shifted
to the right. When compared to the LASSO (Figure 2a) positive-valued estimates will be less
biased and less likely to be shrunk to 0 compared to negative-valued estimates of the same mag-
nitude. Therefore, scenarios where we expect more positive-valued (and smaller) effect estimates
will benefit from asymLASSO over the standard LASSO. We see the opposite relationship in
Figure 2c where we set τ = 0.75. In this situation, asymLASSO favors negative-valued effect
estimate over positive-valued effect estimates. Under the orthogonal design, we can explicitly
quantify the shrinkage seen in Figure 2 for general τ . To understand these properties better, we
can think about the solution path as two components:

Case 1: β̂ols
j > 0. For this case we are only concerned with the positive estimates of asym-

LASSO. Here β̂j (ols; τ) = 0 whenever β̂ols
j ∈ [0, 2λτ ]. Hence when τ < 1/2, β̂j (ols; τ) is shrunk

to 0 over a smaller interval than LASSO. In fact, estimates where β̂ols
j ∈ (2λτ, λ] will be 0 for

LASSO and nonzero for β̂j (ols; τ). Therefore, asymLASSO with τ < 1/2 will select smaller
positive effect estimates than the LASSO. When β̂ols

j > 2λτ , β̂j (ols; τ) = β̂ols
j −2λτ . Again when

τ < 1/2, β̂ols
j < β̂ols

j − 2λτ < β̂ols
j − λ, and asymLASSO provides a less biased estimate when

compared to LASSO. However when τ > 1/2, we have λ < 2λτ and therefore asymLASSO

tends to overshrink and produce more biased estimates compared to LASSO.
Case 2: β̂ols

j < 0. Focusing on negative estimates of asymLASSO, β̂j (ols; τ) = 0 whenever
β̂ols

j ∈ [−2λ(1 − τ), 0] and β̂j (ols; τ) = β̂ols
j + 2λ(1 − τ) when β̂ols

j < −2λ(1 − τ). For τ < 1/2 we
have λ < 2λ(1 − τ) and when τ > 1/2, 2λ(1 − τ) < λ. Therefore asymLASSO shrinks smaller
negative effects to 0 and produces more biased estimates compared to LASSO for τ < 1/2 and
retains smaller negative effects and produces less biased estimates for τ > 1/2.
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Figure 2: Behavior of the soft-thresholding function for asymLASSO under orthogonal design
for: (a) τ = 0.5 (LASSO), (b) τ = 0.25, and (c) τ = 0.75. The dotted grey line represents the
true value of β. Symmetry of sparsity and bias are dependent on the value of τ .

If we relax the orthogonal design matrix condition, we also have the following results for
the asymLASSO estimator under the ordinary least squares model.

Lemma 2.1. Suppose l(β) = 1
2 ‖y − Xβ‖2

2, as in the ordinary least squares model and let A be
the event that {λ(1 + |2τ − 1|) �

∥∥εT X
∥∥∞}, where ε = y − Xβ and ‖·‖∞ is the uniform norm.

Defining β̂ as the solution to (4), if A holds, then
∥∥∥X(β − β̂)

∥∥∥2

2
� 4(1 + |2τ − 1|)λ ‖β‖1 ,

under mild regularity conditions.

The proof is provided in the Online Supplementary Material and mirrors similarly to the
proof for the ordinary LASSO estimator. Note that (1 + |2τ − 1|) ∈ (1, 2) and equals one when
τ = 1/2. Therefore these bounds can be larger (up to a constant) than the bounds for ordinary
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LASSO estimator. Consequently, if XT X = Ip, then we also have ‖β̂−β‖2
2 � 4(1+|2τ −1|)λ ‖β‖1

since
∥∥∥X(β − β̂)

∥∥∥
2

=
√

(β − β̂)T XT X(β − β̂) =
∥∥∥β − β̂

∥∥∥
2
.

2.3 Implementation via Cyclic Coordinate Descent
For notational convenience, we suppress the dependence of τ in β̂. Letting ∇l(β) = ∂l(β)/∂β =
XT u and ∇2l(β) = ∂2l(β)/∂β∂βT = XT WX, we approximate the log-likelihood based on a Taylor
series expansion about the current iteration β(m):

l(β) ≈ 1

2
(ỹ − Xβ)T W(ỹ − Xβ),

where ỹ is the working response vector ỹ = Xβ(m) + W−1u. Note here that u, W , and ỹ are de-
pendent on β(m). With this approximation, efficient convex optimization algorithms can be used
to minimize (4). We employ cyclic coordinate descent, a widely-used algorithm for penalization
(Wu and Lange, 2008; Friedman et al., 2010; Breheny and Huang, 2011), for our implementation.

The algorithm starts by setting all p variables to some initial value (e.g. β(0) = 0). It
then solves a one-dimensional optimization problem by setting the first variable (j = 1) to
a value that minimizes the objective function while holding all other variables constant. This
process is repeated for the second variable, third variable, and so on. When the algorithm cycles
through all the variables, it returns to the first variable and repeats the cycling process until
some convergence criterion is met. For asymLASSO, the one-dimensional update for the jth
covariate at the (m + 1)th iteration is

β
(m+1)
j ← S(rj − λ(2τ − 1), λ)

vj

, (6)

where vj is the jth diagonal element of V = XT WX and rj is the jth element of r = XT Wu +
V β(m).

Typically, we are interested in obtaining estimates for β̂ over a range of values between a
maximum value λmax for which all coefficient estimates are 0 to a minimum value λmin at which
the model becomes excessively large (saturated) or ceases to be identifiable. For the LASSO,
λmax = maxj {|rj |} when the quadratic approximation is taken with respect to the intercept-
only model (Friedman et al., 2010). This is due to the fact that the LASSO estimates are
zero whenever |rj | � λ for all j . The asymLASSO estimates, however, are zero whenever
|rj − λ(2τ − 1)| � λ. This complicates finding a value for λmax since shrinkage is not symmetric
about 0. We propose to use a conservative value for λmax given by λmax = maxj

{ |rj |
2τ

,
|rj |

2(1−τ)

}
.

This bound is equivalent to the LASSO bound when τ = 1/2 and larger otherwise.

2.4 Selection of τ and λ

Model complexity depends critically on the choice of the tuning parameters. As evident in
Section 2.2, τ induces a “sign-specific shrinkage tradeoff” that determines whether emphasis is
placed on shrinking positive or negative-valued effects. While one can consider specific biological
scenarios in which τ can be selected a priori, as shown in Section 3.2, a naively prespecified value
can lead to biased estimation and improper shrinkage. The penalization parameter λ dictates
the degree of shrinkage and therefore must be carefully selected. In practice, one generally
implements a penalization method across a grid of tuning parameters and selects the tuning
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parameter that minimizes some criterion. Since estimating both τ and λ is of interest, we use
a two-dimensional grid search to select the optimal pair (τ opt , λopt ). Several criteria have been
proposed in the literature including, but not limited to, k-fold cross validation, generalized cross
validation (Golub et al., 1979), the Akaike information criterion (Akaike, 1974) and the Bayesian
information criterion (Schwarz et al., 1978).

3 Numerical Studies
A series of simulations are conducted to illustrate the performance of asymLASSO under various
design settings. All computations are carried out using the R programming language. The design
matrix X = (xT

1 , . . . , xT
n ) is generated from a multivariate Gaussian distribution with mean 0 and

variance-covariance matrix 
. We allowed for mild correlation between covariates by specifying
an autoregressive covariance structure, 
 = 0.5|i−j |. The data are generated from a normal linear
model via y|x ∼ N(μ + xT β∗, σ 2

y ), where μ is the intercept term. Clarification of the simulation
parameters, such as the structure of β∗, is provided in the corresponding subsections.

3.1 Sensitivity to τ

As noted earlier Section 2.4, preferential shrinkage of positive or negative effects is dictated
by τ . We investigate the effect τ has on the selection performance of asymLASSO. We used
an evenly-spaced grid on the interval [0.05, 0.95] for τ . For each value of τ , we used five-fold
cross validation over a data-driven grid of 20 values to estimate λ. We set n = 400, μ = 0.10,
and β∗ = (−0.03, 0, 0, −0.03, −0.03, 0.03, 0.03, 0, 0, 0.03) and vary σy ∈ {0.3, 0.5}. Furthermore,
we let 
 = I10 so that the covariates are independent. We compared the following approaches:
1) asymLASSO with fixed τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95} and 2) asymLASSO with τ also
being estimated via cross validation, and evaluated their selection performance through the
inclusion probability (Pj ), the proportion of simulations that correctly identify β∗

j as non zero.
We report our findings in Table 1 where the results are averaged over B = 100 Monte Carlo
replicates.

We can see that for τ < 0.5, asymLASSO has a higher probability of selecting the positive-
signed effects (P6, P7, and P10) over the negative-signed effects (P1, P4, and P5) the degree to
which is determined by the value of τ ; whereas, the opposite is true for τ > 0.5. By construction of
the parameter vector, we do not expect to prefer shrinking positive effects over negative effects or
vice versa. In fact, when τ = 0.5 (i.e., the standard LASSO) we see that the inclusion probabilities
for all six non-zero variables are comparable. Furthermore, the estimated optimal value for τ ,
averaged over all 100 simulations, is close to 0.5, suggesting that a data-driven method should be
used to select τ rather than a prespecified value. We also assessed selection performance under
correlated covariates (Tables S1 and S2 in the Online Supplementary Material). As expected,
selection performance worsens when correlation is present; however, the conclusions generally
remain consistent with what we observe in Table 1.

3.2 Finite Sample Performance Compared to the LASSO

In this section we study the finite sample performance of asymLASSO compared to both LASSO
and the non-negative LASSO (nLASSO). We let β∗ = (β0, 0p−10), where we set μ = 0.10 and
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Table 1: Asymmetric LASSO (asymLASSO) with varying values for τ where n = 400, 
 = I10,
μ = 0.10, and β∗ = (−0.03, 0, 0, −0.03, −0.03, 0.03, 0.03, 0, 0, 0.03). The tuning parameter λ

was selected using five-fold cross validation between an evenly-spaced grid [0.05, 0.95]. Results
are averaged over 100 simulations. τ̂CV is the average value of τ selected via cross validation for
each of the 100 simulations (Pj = proportion of simulations where βj is correctly identified as
non-zero). See Section 3.1 for more details.

σy Method P1 P4 P5 P6 P7 P10

0.5 τ̂CV = 0.41 0.39 0.33 0.35 0.38 0.37 0.37
τ = 0.05 0.30 0.25 0.29 0.52 0.51 0.54
τ = 0.25 0.32 0.28 0.33 0.54 0.54 0.53
τ = 0.50 0.45 0.42 0.45 0.42 0.40 0.39
τ = 0.75 0.46 0.40 0.43 0.29 0.26 0.27
τ = 0.95 0.47 0.45 0.46 0.25 0.22 0.22

0.3 τ̂CV = 0.47 0.70 0.73 0.69 0.78 0.77 0.81
τ = 0.05 0.61 0.61 0.59 0.88 0.87 0.90
τ = 0.25 0.63 0.66 0.64 0.88 0.86 0.92
τ = 0.50 0.82 0.87 0.82 0.86 0.79 0.85
τ = 0.75 0.87 0.88 0.84 0.73 0.70 0.74
τ = 0.95 0.88 0.90 0.86 0.70 0.68 0.70

σy = 0.5 and considered the following scenarios for β0:

Model 1: β0 = (0.03, 0, 0, 0.03, 0, 0.05, 0.08, 0, 0, 0.10)

Model 2: β0 = (−0.03, 0, 0, 0.03, 0, 0.05, 0.08, 0, 0, −0.10)

Model 3: β0 = (−0.03, 0, 0, −0.03, 0, 0.05, 0.08, 0, 0, 0.10)

Model 4: β0 = (0.03, 0, 0, 0.03, 0, 0.05, −0.08, 0, 0, −0.10).

For asymLASSO, we used an evenly-spaced grid on the interval [0.05, 0.95] to select τ . Oracle
estimates were retrieved from OLS regression using the underlying true model. Both LASSO
and the non-negative LASSO were performed using the glmnet package (Friedman et al., 2010).
A data-driven grid of 20 λ values was employed for all three methods and five-fold cross validation
was used to select the final model.

We evaluate the approaches by their variable selection, parameter estimation, and prediction
performance. For variable selection, we used the probability of inclusion measures defined in
Section 3.1 as well as the mean number of false positives (FP) and mean number of false negatives
(FN). Estimation bias is estimated using the mean squared bias, MSB = 1

B

∑B
j=1

∥∥∥β̂j − β∗
∥∥∥

2
,

where B is the number of simulations. Lastly, prediction performance is estimated using the
predicted mean squared error (PMSE) derived from a test set of n = 1,000. Results are averaged
over B = 100 Monte Carlo replicates and are presented in Table 2 for Model 1 when n = 400
and 800, p = 50 and 200, and 
 = (0.5|i−j |)ij .

First, we observe that estimation and prediction performance between the three methods
are comparable. However, both nLASSO and asymLASSO have better selection performance
than the traditional LASSO across all five true non-zero coefficients, especially for the smaller
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Table 2: Comparison of asymLASSO to LASSO and the non-negative LASSO (nLASSO) based
on 100 Monte Carlo replicates. (MSB = mean squared bias; FP = mean number of false positives
(out of 45); FN = mean number of false negatives (out of 5); Pj = proportion of simulations
where βj is correctly identified as non-zero; PMSE = Averaged predicted mean squared error.)
See Section 3.2 for more details.

n Method MSB FP FN P1 P4 P6 P7 P10 PMSE

p = 50 400 Oracle 0.06 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.09 5.91 1.67 0.39 0.43 0.81 0.79 0.91 0.26

nLASSO 0.08 4.33 1.49 0.40 0.47 0.86 0.83 0.95 0.26
asymLASSO(τ̂ = 0.20) 0.08 5.58 1.49 0.41 0.47 0.85 0.83 0.95 0.26

800 Oracle 0.04 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.07 7.28 0.92 0.57 0.62 0.96 0.93 1.00 0.25

nLASSO 0.06 4.94 0.77 0.63 0.68 0.97 0.95 1.00 0.25
asymLASSO(τ̂ = 0.23) 0.07 6.55 0.77 0.63 0.68 0.97 0.95 1.00 0.25

p = 200 400 Oracle 0.06 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.09 6.69 2.57 0.11 0.36 0.61 0.58 0.77 0.26

nLASSO 0.09 6.31 2.18 0.23 0.43 0.69 0.66 0.81 0.26
asymLASSO(τ̂ = 0.24) 0.09 7.70 2.24 0.22 0.40 0.68 0.65 0.81 0.26

800 Oracle 0.04 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.07 8.41 1.53 0.35 0.46 0.80 0.88 0.98 0.26

nLASSO 0.07 8.13 1.30 0.45 0.54 0.84 0.88 0.99 0.26
asymLASSO(τ̂ = 0.22) 0.07 9.48 1.34 0.43 0.54 0.83 0.87 0.99 0.26

effect sizes. For example, when n = 400, the probability of inclusion for β∗
04 = 0.03 for the

LASSO is 43% compared to 47% for nLASSO and asymLASSO. Our estimated value for τ

using cross validation is τ̂ = 0.20 < 0.50, which is expected since our true model is comprised
of only positive signals. Furthermore, nLASSO tends to identify less false positives compared
to LASSO and asymLASSO. As the sample size increases (n = 800), all three methods have
improved overall performance but the patterns between them remain the same. In Table S3 of
the Online Supplementary Material we repeat the same scenario but under two different cor-
relation structures (
 = I and 
 = (

0.801(i 
=j
)
ij
). When the covariates are independent, the

results mirror what we observe in Table 1. Surprisingly, under high equicorrelation, all three
methods perform similarly in terms of selection while asymLASSO identifies slightly more false
positives.

In our previous example, the performance of asymLASSO falls somewhere between the
LASSO and nLASSO. asymLASSO had better selection performance than the LASSO but at
the expense of identifying more false positive than nLASSO. Moreover, we expected nLASSO
to perform well under the previous setting since the effect sizes were all positive. A predeter-
mined constraint was placed to ensure that only positive effects were retained in the model
for nLASSO; whereas asymLASSO allowed the data to dictate the shrinkage, which preferred
selecting positive effects over negative ones. In models where negative effects are present, we
would expect nLASSO to perform poorly. We further illustrate this in Table 3 where we allow
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Table 3: Comparison of asymLASSO to LASSO and nLASSO based on 100 Monte Carlo repli-
cates with n = 400, p = 50 and under various sign effects. Model 2: β0 = (−0.03, 0, 0, 0.03,

0, 0.05, 0.05, 0, 0, −0.08); Model 3: β0 = (−0.03, 0, 0, −0.03, 0, 0.05, 0.05, 0, 0, 0.08); Model 4:
β0 = (0.03, 0, 0, 0.03, 0, 0.05, −0.05, 0, 0, −0.08). (MSB = mean square bias; FP = mean number
of false positives (out of 45); FN = mean number of false negatives (out of 5) Pj = proportion
of simulations where βj is correctly identified as non-zero; PMSE = Averaged predicted mean
squared error.) See Section 3.2 for more details.

Model Method MSB FP FN P1 P4 P6 P7 P10 PMSE

2 Oracle 0.06 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.09 5.08 2.21 0.20 0.37 0.81 0.61 0.80 0.26

nLASSO 0.11 2.08 3.35 0.01 0.33 0.77 0.54 0.00 0.26
asymLASSO(τ̂ = 0.44) 0.09 5.52 2.18 0.22 0.38 0.83 0.64 0.75 0.26

3 Oracle 0.06 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.09 5.14 2.31 0.31 0.22 0.55 0.76 0.85 0.26

nLASSO 0.09 3.59 2.70 0.01 0.00 0.60 0.81 0.88 0.26
asymLASSO(τ̂ = 0.26) 0.09 4.92 2.36 0.23 0.12 0.62 0.80 0.87 0.26

4 Oracle 0.06 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.10 5.03 2.98 0.35 0.30 0.34 0.28 0.75 0.26

nLASSO 0.11 1.25 4.39 0.25 0.19 0.17 0.00 0.00 0.26
asymLASSO(τ̂ = 0.54) 0.10 4.58 3.09 0.31 0.27 0.26 0.30 0.77 0.26

the coefficient estimates to vary in sign under Models 2, 3, and 4. In general, nLASSO produces
sparser models than both LASSO and asymLASSO. Under Model 2, where the smallest and
largest effects are negative, nLASSO fails to select the largest effect. Surprisingly, nLASSO se-
lected the smallest negative effect but erroneously estimated its effect as positive. We see this
same pattern in Models 3 and 4 where the two largest and two smallest effect sizes are negative,
respectively. Focusing our attention to LASSO and asymLASSO, both methods have compara-
ble performance and there is difficulty in preferring asymLASSO over LASSO and vice versa.
For example, in Model 3, asymLASSO has better selection performance for the positive-signed
coefficients compared to the LASSO but worse selection performance for the two negative-signed
coefficients due, in part, by their magnitude. We also see that asymLASSO is aiming to bal-
ance the sign-specific shrinkage trade off based on the sign and magnitude of the effects that
are present in the data, as reflected by the estimated value for τ for each model, providing a
data-driven approach to asymmetric penalization that doesn’t require an a priori constraint as
in the constrained LASSO.

Lastly, we compare all three methods in a high-dimensional setting with n = 400, p = 2,000,

 = (0.5|i−j |)ij , and under Models 1 and 2. We increase the signal size of the smallest effect to
0.08 (Table 4). We notice similar results to what we have observed previously (Tables 2 and 3).
While asymLASSO identifies slightly more false positives; the mean false positive rates (the
number of false positives over 1,995) are comparable across all three methods.
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Table 4: Comparison of asymLASSO to LASSO and nLASSO in a high-dimensional OLS
setting. Results based on 100 Monte Carlo replicate with n = 400 and p = 2,000. Model 1:
β0 = (0.08, 0, 0, 0.08, 0, 0.10, 0.10, 0, 0, 0.15); Model 2: β0 = (−0.08, 0, 0, 0.08, 0, 0.10, 0.10, 0, 0,

−0.15). (MSB = mean square bias; FP = mean number of false positives (out of 1,995); FN =
mean number of false negatives (out of 5); Pj = proportion of simulations where βj is correctly
identified as non-zero; PMSE = Averaged predicted mean squared error.) See Section 3.2 for
more details.
Model Method MSB FP FN P1 P4 P6 P7 P10 PMSE

1 Oracle 0.06 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.14 15.88 0.50 0.69 0.85 0.99 0.97 1.00 0.27

nLASSO 0.13 13.82 0.43 0.74 0.87 0.99 0.97 1.00 0.27
asymLASSO(τ̂ = 0.26) 0.14 16.85 0.40 0.75 0.89 0.99 0.97 1.00 0.27

2 Oracle 0.06 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.25
LASSO 0.16 16.68 1.02 0.46 0.67 0.98 0.90 0.97 0.28

nLASSO 0.20 6.86 2.56 0.00 0.61 0.96 0.87 0.00 0.29
asymLASSO(τ̂ = 0.48) 0.16 18.06 1.18 0.36 0.65 0.97 0.92 0.92 0.28

3.3 Assessing Sign-Dependent Shrinkage
Our simulations from Section 3.2 show that asymLASSO outperforms LASSO in terms of
variable selection when the true effects are in the same direction. In the presence of mixed-sign
and mixed-magnitude effects, asymLASSO and LASSO have their own respective benefits and
drawbacks. When the covariates in the model are independent (i.e., 
 is a diagonal matrix),
simple transformations on the columns of the design matrix will change the magnitude and/or
direction of the corresponding coefficient estimate. For example, negating the entries in a column
will switch the sign of the estimate from positive to negative (or vice versa).

In the following study, we compare the performance of LASSO and nLASSO to asym-

LASSO under simple sign transformations of the design matrix. Our simulation setup fol-
lows similarly to Section 3.2 except that 
 = Ip to ensure independence among the covari-
ates and we set σy = 0.5. Furthermore, we set the two smallest signals to be negative, i.e.,
β0 = (−0.03, 0, 0, −0.03, 0, 0.05, 0.05, 0, 0, 0.08) as in Model 2. Our interest lies in comparing
the probability of inclusion for the two smallest signals β∗

1 = −0.01 and β∗
4 = −0.01 before and

after we switch the signs of the first and fourth columns of X. In other words, we generate a
design matrix X, simulate the outcome y|X, and create a new design matrix X̃ such that for all
i = 1, . . . , n:

X̃ij =
{

Xij j /∈ {1, 4}
−Xij j ∈ {1, 4}.

Thus, X̃ only differs from X in the first and fourth column where the entries of X̃ are negated
entries of X. In doing so, regressing the outcome y on X̃ will produce positive effect estimates for
the first and fourth coefficients and thus will be in the same effect direction as the other non-zero
values. Unlike LASSO, asymLASSO is sign variant and we believe that selection performance
will improve when using X̃ as the design matrix in the model over X. We evaluate the selection
performance of LASSO, nLASSO and asymLASSO when using either X or X̃ and present the
results in Figure 3 when n = 400 and p = 50.
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Figure 3: Box plot (mean ± 3 standard deviations) of the inclusion probability (Pj ) for the first
and fourth nonzero coefficients (β01 = β04 = −0.03) when n = 400, p = 50, and 
 = I . A grid
search between [0.05, 0.95] is used to select τ for asymLASSO. Five-fold cross validation is used
to select the final model for LASSO, nLASSO, and asymLASSO. Results are averaged over 100
Monte Carlo simulations. (X): Uses the design matrix X in the model fit; (X̃): Uses the design
matrix X̃ in the model fit, where X̃ and X are identical except that the first and fourth columns
are negated. See Section 3.3 for more details.

While the data generation scheme is slightly different, the results for all three methods using
X as the design matrix reflect what we observed for Model 2 in Table 6. Specifically, the prob-
abilities of inclusions, P1 and P4, are lower for asymLASSO than LASSO since asymLASSO

prefers selection of positive effects (τ̂ = 0.23). Similarly, nLASSO incorrectly assigns positive
effect estimates to both β1 and β4. We see a drastic improvement in selection performance when
we use X̃ as the design matrix for asymLASSO since the effects of interest are coded to be in
the same direction as the other (larger) non-zero effects (τ̂ = 0.22). The same is true for the
nLASSO. Additionally, due to LASSO shrinking symmetrically around zero, the performance
of LASSO is unchanged. We perform additional simulations (Figures S1 and S2 in the Online
Supplementary Material) where we introduce correlation between the covariates. The overall
conclusions are consistent to what we observe in Figure 3. Furthermore, as previously men-
tioned, the selection performance for asymLASSO is similar to the LASSO when the covariates
are highly correlated (
 = (

0.81(i 
=j)
)
ij
).

These results show that by cleverly transforming the design matrix such that the expected
effects are mostly (or all) in one direction, asymLASSO demonstrates better selection per-
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Table 5: Comparison of asymLASSO to LASSO and nLASSO in a logistic regression setting.
Results based on 100 Monte Carlo replicate with n = 400, p = 50, 
 = (0.5|i−j |)ij . Model 1:
β0 = (0.08, 0, 0, 0.10, 0, 0.12, 0.15, 0, 0, 0.25); Model 2: β0 = (−0.08, 0, 0, 0.10, 0, 0.12, 0.15, 0, 0,

−0.25). (MSB = mean square bias; FP = mean number of false positives; FN = mean number
of false negatives; Pj = proportion of simulations where βj is correctly identified as non-zero;
AUC = Area under curve estimate from the test set.) See Section 3.4 for more details.

Model Method MSB FP FN P1 P4 P6 P7 P10 AUC

1 Oracle 0.24 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.60
LASSO 0.31 3.25 3.34 0.13 0.19 0.40 0.39 0.55 0.56

nLASSO 0.30 3.12 2.99 0.21 0.29 0.46 0.47 0.58 0.56
asymLASSO(τ̂ = 0.29) 0.32 3.80 3.10 0.18 0.29 0.43 0.45 0.55 0.56

2 Oracle 0.26 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.58
LASSO 0.32 3.13 3.66 0.11 0.11 0.31 0.43 0.38 0.54

nLASSO 0.34 1.84 4.07 0.03 0.15 0.33 0.42 0.00 0.53
asymLASSO(τ̂ = 0.38) 0.33 3.38 3.53 0.10 0.19 0.33 0.45 0.40 0.54

formance of small effects compared to the LASSO. This is particularly applicable in genomics
studies where covariates may be coded a priori in the risk direction where increases in the
covariate value correspond to higher risk for the outcome and thus potentially allows for the
discovery of small effects that may have been erroneously shrunken to zero by the LASSO.

3.4 Binary Outcome

To highlight the application within the GLM framework, we compared LASSO and nLASSO to
asymLASSO under a binary outcome. Similar to Section 3.2, we set β∗ = (β0, 0p−10) and gen-
erated X from a multivariate Gaussian distribution with an autoregressive covariance structure.
We simulated the outcome from the following logistic regression model y|x ∼ Bernoulli{π(μ +
xT β∗)} where π(·) = exp(·)/{1 + exp(·)}. The intercept term μ = 0.50 corresponded to a case
rate of approximately 60%. We evaluated prediction performance using the area under the
curve (AUC) in a test set of n = 1,000. The results comparing asymLASSO to LASSO for
the logistic regression model are displayed in Table 5 under two models – Model 1: β0 =
(0.08, 0, 0, 0.10, 0, 0.12, 0.15, 0, 0, 0.25; Model 2: β0 = (−0.08, 0, 0, 0.10, 0, 0.12, 0.15, 0, 0, −0.25).
Results were averaged over 100 Monte Carlo simulations. Our conclusions mimic what was re-
flected in the OLS scenario (see Tables 1 and 2) and we also observed consistent patterns,
not reported, under different sample sizes, effect sizes, parameter dimensions, and correlation
structures.

4 Real Data Analysis: Breast Cancer Gene Expression
BRCA1 is a DNA damage repair gene that produces tumor suppressor proteins. Pathogenic
variants in BRCA1 and BRCA1 expression have been shown to have strong associations with
breast and ovarian cancer risk (Welcsh et al., 2000; Welcsh and King, 2001). BRCA1 is known
to interact with many other genes, particularly in response to DNA damage. In this analysis,
we aimed to identify genes associated with BRCA1 expression, as such genes could implicate
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Table 6: TCGA Breast Cancer Gene Expression Analysis. Number of positive and negative
signals kept in the final model using the training (n = 357) set. Predicted R2 was calculated
using the test (n = 179) set. Ten-fold cross validation was performed across a grid of 20 λ

values for all three methods. The skewness parameter τ was estimated across a grid of 19 values
between [0.05, 0.95].

Method # Positive # Negative Pred. R2

asymLASSO 101 21 0.574
LASSO 73 35 0.560

nLASSO 126 0 0.562

mechanisms through which BRCA1 impacts cancer risk and warrant further investigation in
future studies. We applied LASSO, nLASSO, and asymLASSO to identify such genes.

Gene expression data were available for 17,814 genes measured in breast cancer tissue sam-
ples from 536 women with breast cancer from The Cancer Genome Atlas (TCGA). The data are
available at http://cancergenome.nih.gov and has been previously analyzed in Breheny (2019).
We excluded 491 genes due to expression values missing in one or more women. Expression val-
ues of the remaining 17,322 genes were log-transformed and standardized. A broad grid between
[0.05, 0.95] was used to estimate τ for asymLASSO. Similar to our simulation study, LASSO,
nLASSO, and asymLASSO were performed using 10-fold cross validation. We randomly split
the data into both a training (n = 357) and test (n = 179) set. Table 6 summarizes the number
of selected variables and predicted R2 for each method.

The asymLASSO approach exhibits a minor improvement in the predicted R2 when com-
pared to both the LASSO and nLASSO. Furthermore, the number of variables retained in the
model (122) is similar to both LASSO (108) and nLASSO (126). The asymLASSO prefers
selecting positive effects over negative effects (τ̂ = 0.45; Figure 4). As a comparison, we also
performed LASSO by forcing only negative coefficients in the model (non-positive LASSO). The
predicted R2 (not reported in Table 6) of the model is 0.36, which is substantially worse than
asymLASSO, LASSO, and nLASSO. Thus, one can infer that the positive estimates in the
model are driving the predictive performance, which is in line with what we see in Figure 4
where the cross validation error is largest for asymLASSO when τ > 0.5.

All three methods overlap in 57 of the gene expressions and nine were uniquely identified in
asymLASSO (8 positive effects, 1 negative effect). Notable uniquely-identified gene expressions
in this set include MND1 and JARID2, which correspond to the two largest effects in this subset.
MND1 is a protein coding gene that has been shown to interact with the human oncogene GT198,
which is located within the BRCA1 locus (Ijichi et al., 2000; Ko et al., 2002; Tsubouchi and
Roeder, 2002; Enomoto et al., 2004, 2006). The protein coding gene JARID2 has been previously
shown to be essential for the maintenance of tumor initiating cells in bladder cancer Zhu et al.
(2017) and for ovarian cancer (Cao et al., 2017). Recently, JARID2 has been shown to be widely
expressed in various breast cancer cell lines and patients with JARID2 mutation were shown to
have a significantly shorter period of disease-free survival (Zhang et al., 2020).
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Figure 4: Plot of the mean cross validation error (with respect to optimizing λ) for asymLASSO

across different values of τ used in the TCGA Breast Cancer Gene Expression analysis (Sec-
tion 4). The final model selected for the analysis corresponds to the τ that minimizes the mean
cross validated error (τ̂ = 0.45).

5 Discussion
We develop a generalization to LASSO penalization that asymmetrically penalizes coefficients
based on sign. We provide both a Bayesian and frequentist interpretation of our method. Un-
der the Bayesian paradigm, shrinkage of the estimates is performed by placing an asymmetric
Laplace prior on the regression coefficients. In doing so, the prior probability that a coefficient
is less than (or greater than) zero is determined by the skew parameter τ ∈ (0, 1). Furthermore,
the asymmetric Laplace prior corresponds to an asymmetric �1 penalty for penalized regression.
To better understand the behavior of asymLASSO and its relation to the LASSO, we present
a closed-form solution for the OLS model under orthonormal design. Preferential shrinkage
of positive or negative effect estimates can be achieved based on the value of τ . Unlike the
constrained LASSO, where constraints are predetermined, asymLASSO achieves asymmetric
shrinkage through the tuning parameter τ , which can be estimated using the data. We implement
our approach using cyclic coordinate descent.

Our simulations demonstrate that asymLASSO outperforms LASSO in selecting smaller
signals when effect estimates are generally in the same direction for both low- and high-di-
mensional covariates at the expense of identifying slightly more false positives. While this may
seem concerning at first, both LASSO and asymLASSO are not expected to be model selection
consistent. To this end, the goal of asymLASSO is to provide a more flexible approach to the
LASSO that allows for asymmetric shrinkage, potentially allowing for the discovery of smaller
effects that may have been previously missed. Additionally, in the presence of mixed-sign effects,
it is difficult to prefer one approach over the other. These challenges are due to the “sign-
specific shrinkage tradeoff” that is inherent to asymLASSO providing both advantages and
disadvantages. However, in mild circumstances, we observe that the selection performance of
asymLASSO can be substantially improved if we have a priori knowledge about the direction
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of effects and transform the design matrix accordingly. In general, while it may be difficult
for practitioners to code the covariates accordingly in advance, the ability to improve selection
performance by manipulating the design matrix is a unique benefit to asymmetric shrinkage
when compared to the standard LASSO and non-negative LASSO.

We apply our approach to breast cancer gene expression data from the TCGA to iden-
tify genes associated with BRCA1 expression and compare its performance with LASSO. Our
method identified nine genes that were not identified by either LASSO or nLASSO. Two of
these genes, MND1 and JARID2, have been previously reported to be associated with BRCA1
or with breast cancer progression and provides evidence to further understand their biological
relationship within the context of BRCA1 gene expression.

We envision several paths to improve asymmetric penalization. While the motivation of the
asymmetric LASSO is derived from a Bayesian perspective, parameter estimation and variable
selection is performed through minimizing a penalized log-likelihood. We are currently inves-
tigating the performance of the asymmetric LASSO under a fully Bayesian framework. The
asymmetric �1 penalty does not overcome some of the theoretical and practical shortcomings
that are well known to LASSO penalization. The LASSO has been shown to exhibit model
selection consistency under strict conditions on the design matrix (Zhao and Yu, 2006). We con-
jecture that these results hold for the asymLASSO under certain assumptions on τ . Another
approach to ensure model selection consistency is to extend asymmetric penalization to oracle-
based procedures (Fan and Li, 2001). In Section 2.2, we show that asymLASSO can produce
more biased estimates than the LASSO for certain coefficient estimates based on the value of τ .
Similar to overcoming the bias issue for larger estimates for the LASSO, we can weight the
shrinkage parameter for each coefficient differently and perform adaptive asymmetric LASSO
penalization. We provide a graph (Figure 5) of the soft thresholding function under orthogonal
design for both asymLASSO (solid black line) and adaptive asymLASSO (dashed black line)
which clearly shows that adaptive asymLASSO reduces the bias for larger estimates in both
directions. Proving the oracle property for asymmetric versions of, for example, adaptive LASSO
(Zou, 2006), SCAD (Fan and Li, 2001), and MCP (Zhang et al., 2010), will require additional
conditions on τ and λ. Lastly, when dealing with high-dimensional data, strong rules (Ghaoui
et al., 2010; Tibshirani et al., 2012; Zeng et al., 2021) to safely and effectively discard large
number of inactive predictors have been implemented for computational efficiency. These rules
have been well studied for symmetric penalties around zero and we expect that modifications to
these rules can be generally implemented for asymmetric penalization.

Supplementary Material
The following supplemental material are provided: R files necessary to reproduce the simulation
results reported in this manuscript, and PDF providing supplemental tables and figures and the
proof of Lemma 2.1.
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Figure 5: Behavior of the soft-thresholding function for adaptive asymLASSO (dotted black
line) under orthogonal design for: (a) τ = 0.25 and (b) τ = 0.75. The dotted grey line rep-
resents the true value of β. Solid black line: The soft thresholding operator for the standard
asymLASSO.
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