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Abstract

Tumor cell population is a mixture of heterogeneous cell subpopulations, known as subclones.
Identification of clonal status of mutations, i.e., whether a mutation occurs in all tumor cells
or in a subset of tumor cells, is crucial for understanding tumor progression and developing
personalized treatment strategies. We make three major contributions in this paper: (1) we
summarize terminologies in the literature based on a unified mathematical representation of
subclones; (2) we develop a simulation algorithm to generate hypothetical sequencing data that
are akin to real data; and (3) we present an ultra-fast computational method, Mutstats, to infer
clonal status of somatic mutations from sequencing data of tumors. The inference is based on
a Gaussian mixture model for mutation multiplicities. To validate Mutstats, we evaluate its
performance on simulated datasets as well as two breast carcinoma samples from The Cancer
Genome Atlas project.
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1 Introduction
Tumor cell population is known to be a mixture of heterogeneous cell subpopulations (Nowell,
1976; Marusyk and Polyak, 2010; Swanton, 2012; Yates and Campbell, 2012). Each subpopula-
tion is characterized by its distinct genome and is referred to as a subclone. With the advancement
of next generation sequencing (NGS) technology, whole-genome or whole-exome sequencing data
have enabled researchers to study the genomic profile of tumor subclones in detail within the
same patient or among different patients. In particular, data of sequence variations such as single
nucleotide variants (SNVs) and structural variations such as copy number aberrations (CNAs)
are widely used for subclone inference.

For a heterogeneous tumor sample with multiple subclones, understanding of its mutational
profile, such as the clonal status of the mutations, is crucial for accurate disease prognosis and
precision medicine. A mutation is called clonal if it occurs across all the tumor cells. On the
other hand, a mutation is called subclonal if it only occurs in a subset of tumor cells. Figure 1(a)
provides a stylized illustration of tumor heterogeneity and clonal and subclonal mutations. The
“G” mutation at the first locus and the “C” mutation at the third locus are only possessed
by a fraction of tumor cells and are subclonal, while the “T” mutation at the second locus is
possessed by all tumor cells thus is clonal. Inference on clonal status can shed light on the timing
of mutational processes and thus provides important information for personalized treatment
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Figure 1: (a) Illustration of tumor heterogeneity, clonal and subclonal mutations, and copy
number aberrations. In this example, we have 3 genomic loci that we record mutations, and a
total of 3 tumor subclones. (b) Representation of tumor subclones using L, Z and w.

strategy. For example, for patients with chronic lymphocytic leukemia, the presence of subclonal
driver mutations leads to more rapid disease progression (Landau et al., 2013). The acquisition of
a drug resistance allele in a fraction of tumor cells can result in clinical drug resistance and thus
can reduce the efficacy of cancer therapies (Schmitt et al., 2016). For patients with colorectal
cancers, the acquisition of subclonal KRAS mutation leads to resistance to cetuximab (Misale
et al., 2012). Intuitively, clonal mutations generally occur earlier in time compared to subclonal
mutations. A greater burden of subclonal mutations indicates a greater degree of intra-tumor
heterogeneity which could be associated with worse outcome for patients with various cancer
types.

There is an extensive literature on tumor heterogeneity and subclone inference. See, for
example, Beerenwinkel et al. (2014) for a review. Different methods study tumor heterogeneity
from different perspectives. For example, McGranahan et al. (2015) focus on deciphering the
clonal status of mutations. Roth et al. (2014) propose the PyClone method, which represents
subclones as clusters of SNVs and infers SNV clusters and their cellular prevalence. Deshwar et al.
(2015) further impose phylogenetic constraint on SNV clusters and infer subclone phylogeny.
Lastly, Sengupta et al. (2015), Lee et al. (2016), Zhou et al. (2019) and Zhou et al. (2020)
directly model subclonal genomes which are characterized by overlapping sets of SNVs.

Our work complements existing methods in several aspects. First, a number of terminolo-
gies are presented in the existing methods, defined under different characterizations of tumor
heterogeneity. Some terminologies have been defined conceptually rather than quantitatively.
This could potentially lead to confusions and makes it hard linking one term with another. We
discuss a unified mathematical representation of subclones and define the related terminologies
under the unified representation in a rigorous way. Second, many existing methods, such as
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Sengupta et al. (2015), are based on direct inference about subclonal genomes. Direct inference
is promising, because it fully characterizes the genetic structure of the subclones and implies all
other quantities of interest. However, such inference is very challenging and has identifiability
issue. Moreover, direct inference is computationally expensive and finds it hard to analyze thou-
sands of mutations. Therefore, in this work, we choose to focus on identifying the clonal status
of somatic mutations to achieve computational feasibility. Lastly, we recognize that validation
is crucial to the development of inferential algorithms. We develop a simulation algorithm to
generate hypothetical sequencing data that are akin to real data. We conduct extensive simula-
tion studies to assess the performance and speed of our proposed method. Simulated datasets
with clearly labeled clonal status could greatly facilitate the development of novel inferential
algorithms, both for sanity check and for comparison to alternative methods in the field.

The remainder of the paper is organized as follows. In Section 2, we give a quantitative
representation of subclones and define commonly used terminologies under the unified frame-
work. In Section 3, we present the Mutstats method of designating clonal status of mutations.
In Section 4, we propose a general algorithm to simulate read counts data and evaluate the
performance of Mutstats through simulation studies. In Section 5, we analyse two samples of a
breast cancer patient from The Cancer Genome Atlas (TCGA) dataset. Section 6 concludes the
paper with a discussion.

2 Representation of Subclones
We follow the notations from the direct inference literature (e.g. Lee et al. 2016) to give a
quantitative representation of subclones. Consider one tumor tissue sample that is dissected
from either primary or metastatic sites. Typically, tumor samples contain normal cells to a
certain extent. The fraction of tumor cells in the entire cell population is called tumor purity
and is denoted by μ. For example, in Figure 1(a), the hypothetical tumor sample contains 30%
normal cells (6 grey cells) and 70% tumor cells (14 cells of color blue, pink, and orange), leading
to a tumor purity of μ = 0.7. This mixture could be thought of as the first level of tumor
heterogeneity. By definition, the normal cells do not possess any somatic mutation and have
copy number 2 at any genomic locus as we restrict our attention to autosome.

Let C denote the number of subclones, which also needs to be estimated in practice. For
example, in Figure 1(a), we have C = 3 subclones. We first construct a S×C dimensional integer-
valued matrix L to characterize subclonal copy numbers, where S is the number of genomic loci
that we record SNVs. The (s, c)-entry of L, lsc, represents the total copy number of subclone c at
locus s. An example of the L matrix is shown in Figure 1(b). Since CNAs occur in segments of
genomic regions, we assume the S loci fall into K copy number segments (CNSs), with k(s) index
the CNS of locus s. The loci in the same CNS have the same copy number status. Let l∗kc denote
the total copy number of CNS k. For two loci s1 and s2 in the same CNS k, i.e. k(s1) = k(s2) = k,
we have ls1c = ls2c = l∗kc.

Next, we introduce a S × C dimensional integer-valued matrix Z to record subclonal SNVs.
The (s, c)-entry of Z, zsc, represents the number of variant alleles at locus s of subclone c. We
always have zsc � lsc. Again, an example of the Z matrix is shown in Figure 1(b).

Finally, we use a C dimensional vector w to represent the population frequencies of the
subclones. The c-th element of w, wc, represents the population frequency of subclone c. We
have

∑C
c=1 wc = μ. Denote by w̃c = wc/μ the proportion of subclone c in all tumor cells; we

have
∑C

c=1 w̃c = 1. Examples of the w and w̃ vectors are provided in Figure 1(b).
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Table 1: Terminologies in the subclone inference literature, explanations and derivations from
the basic quantities μ, L, Z and w.

Terminology Explanation Derivation

Purity Fraction of cancer cells μ

Mutation multiplicity Locus-specific average allele copies in cancer
cells carrying a mutation

∑C
c=1 w̃czsc

Variant allele fraction Locus-specific fraction of allele copies
carrying a mutation

∑C
c=1 wczsc

μ·∑C
c=1 w̃clsc+(1−μ)·2

Cancer cell fraction Locus-specific fraction of cancer cells
carrying a mutation

∑C
c=1 w̃c1(zsc > 0)

Cellular prevalence Locus-specific fraction of cells carrying a
mutation

∑C
c=1 wc1(zsc > 0)

Ploidy Average copy number of the entire tumor
genome

(∑S
s=1

∑C
c=1 w̃clsc

)
/S

The quantities L, Z, w and μ, which are illustrated in Figure 1, provide a unified repre-
sentation to fully describe the genetic structure of the subclones, and all other quantities of
interest can be derived from these four. For example, SNV s is clonal if zsc � 1 for all c, and
SNV s is subclonal if zsc = 0 for some c. In the literature, some other terminologies are used to
characterize tumor heterogeneity. Nevertheless, these terminologies can be represented by μ, L,
Z and w. Table 1 summarizes some commonly used terminologies, and we will refer to some in
later discussions.

3 The Mutstats Method

3.1 Data Preparation

Denote the total number of reads and the number of reads with variant sequences as Ns and
ns for SNV locus s, respectively, the read counts are the only data that are directly observed.
The Mutstats method starts with tumor and matched normal bam (Barnett et al., 2011) files
which are generated by mapping the raw short reads from fastq (Cock et al., 2010) files to
the appropriate reference genome. Using tumor and normal bam files, somatic mutation calling
tools find out all the loci on chromosomes that bear SNVs. Commonly used tools include, for
example, Varscan2 (Koboldt et al., 2012), MuTect (Cibulskis et al., 2013) or Muse (Fan et al.,
2016).

Following existing subclone reconstruction methods, we obtain estimates of tumor purity
(μ) and copy numbers in copy-number segments (lkc) using existing purity caller and copy
number caller, such as Battenberg (Nik-Zainal et al., 2012), ABSOLUTE (Carter et al., 2012) or
FACETS (Shen and Seshan, 2016). In this work, we use the Battenberg caller to obtain estimates
of tumor purity and copy numbers. In the following discussion, we will focus on determining the
clonal status of the SNVs.

Next, we estimate mutation multiplicity for each SNV. Mutation multiplicity is defined as
the average allele copies in cancer cells carrying a mutation. Denote by ms the multiplicity
of SNV s. Using the notation in Section 2, ms = ∑C

c=1 w̃czsc. For example, in Figure 1(a),
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ms = 0.29, 1.29 and 0.14 for s = 1, 2 and 3, respectively. A point estimate of ms based on the
read counts is computed by

m̂s = l̄s

μ
· ns

Ns

, (1)

where l̄s is the average copy number of SNV s, l̄s = μ · ∑C
c=1 w̃clsc + (1 − μ) · 2. Recall that μ

and l̄s are estimated by upstream bioinformatics tools. The point estimate m̂s is unbiased with
the understanding that E(ns/Ns) = ∑C

c=1 wczsc/l̄s , where the right hand side of the equation is
referred to as the variant allele fraction (VAF). To distinguish between the mutation multiplicity
and its point estimate, we refer to ms and m̂s as expected mutation multiplicity and observed
mutation multiplicity, respectively.

We note that, instead of mutation multiplicity, many methods (e.g. Roth et al. 2014) use
cancer cell fraction (CCF) to infer clonal status. CCF is defined as the fraction of cancer cells
carrying a mutation,

∑C
c=1 w̃c1(zsc > 0). For example, in Figure 1(a), the CCF values for muta-

tions 1, 2 and 3 are 0.29, 1 and 0.14, respectively. By definition, CCF should be ∈ [0, 1], i.e., not
exceed 1. However, due to mapping or sequencing errors, estimates of CCF could become greater
than one, which is difficult to interpret biologically since fractions cannot be greater than 1. To
remedy this issue, in some methods, in practice CCFs are often artificially truncated at 1. Ap-
parently, these artificial truncations are ad-hoc and not desirable. In contrast, multiplicity does
not have a theoretical upper bound and can take any non-negative real values. Therefore, we
choose to use mutation multiplicity rather than CCF to infer clonal status.

3.2 Model for Mutation Multiplicities

We model the observed mutation multiplicity for SNV s with a Gaussian distribution centered
at the expected mutation multiplicity,

m̂s | ms, τs ∼ N(ms, τ
2
s ).

The SNVs co-occurred in the same set of subclones (i.e. the SNVs having the same zsc’s) should
have the same expected mutation multiplicities. Therefore, we assume (ms, τs) can only take R

possible values, with

Pr
(
(ms, τs) = (ur, σr) | ur, σr, πr

) = πr, for r = 1, 2, . . . , R,

where R is unknown a priori and needs to be estimated. Denote by θ = (π1, . . . , πR, u1, . . . ,

uR, σ1, . . . , σR). Integrating out (ms, τs), the marginal distribution of m̂s is a finite mixture of
Gaussian distributions (Melnykov et al., 2010),

p(m̂s | θ) =
R∑

r=1

πrφ(m̂s | ur, σr), (2)

where πr represents the weight of mixture component r, and φ(· | ur, σr) denotes a Gaussian
density with mean ur and standard deviation σr .

We use the expectation-maximization (EM) algorithm (Dempster et al., 1977) to obtain
the maximum likelihood estimate (MLE) of the parameters θ . Let ξsr be a cluster membership
indicator such that ξsr = 1 (or 0) represents observation s belongs to (or does not belong to)
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cluster r, respectively. Denote by esr the conditional probability that observation s belongs to
cluster r given the parameters,

esr = Pr(ξsr = 1 | m̂s, θ) = πrφ(m̂s | ur, σr)∑R
r ′=1 πr ′φ(m̂s | ur ′, σr ′)

.

For a fixed R, the EM algorithm starts from random initial values of θ , and then iterates between
an E-step and an M-step until convergence. In the E-step, we compute esr for all s = 1, . . . , S

and r = 1, . . . , R given the current values of the parameters θ . In the M-step, we compute the
MLE of θ given esr ’s. It can be shown that the parameters converge to the MLE of the Gaussian
mixture model (Equation 2).

To select an optimal number of mixture components R, we run the EM algorithm with
different R = 1, . . . , 7. We then choose the optimal R based on the Bayesian information criterion
(BIC, Schwarz et al. 1978). The R package mclust (Fraley et al., 2016; Scrucca et al., 2016) is
used for implementation.

3.3 Determining Clonal Status

After parameter estimates of the Gaussian mixture model are obtained, we use the following
procedure to determine the clonal status of an SNV.

Recall that ms = ∑C
c=1 w̃czsc. If ms < 1, at least one zsc = 0 for c = 1, . . . , C, which suggests

SNV s is subclonal. On the other hand, ms � 1 does not necessarily mean SNV s is clonal, but
can be due to, for example, high copy number. Therefore, additional copy number information
is needed to determine the clonal status of SNV s when ms � 1. Let

λs = λs(m̂s, θ) = Pr(m̂rep
s < 1 | m̂s, θ), (3)

where m̂
rep
s is a hypothetical replication of the observed mutation multiplicity for SNV s. A larger

λs means a larger probability of m̂
rep
s < 1 thus indicates a higher chance of ms < 1, and vice

versa. Therefore, λs can be used as a proxy to determine whether ms < 1. The advantage of
using λs is that it takes into account the uncertainty associated with the point estimates.

The probability λs = Pr(m̂rep
s < 1 | m̂s, θ) is calculated as follows,

Pr(m̂rep
s < 1 | m̂s, θ) =

R∑
r=1

Pr(ξsr = 1 | m̂s, θ) Pr(m̂rep
s < 1 | ξsr = 1, m̂s, θ)

=
R∑

r=1

esr �(1 | ur, σr), (4)

where �(· | ur, σr) denotes the cumulative distribution function of a Gaussian distribution with
mean ur and standard deviation σr .

If λs is large, say, λs > H1 for a certain threshold H1, we think ms < 1 thus determine
SNV s is subclonal. Otherwise, if λs � H1, we think ms � 1 and use additional copy number
information to determine the clonal status of SNV s. Suppose SNV s resides inside CNS k. Using
the notation introduced in Section 2, let l∗kc1 and l∗kc2 denote the major and minor allele-specific
copy numbers (ASCNs) of CNS k in subclone c. Here, the major and minor alleles represent the
most common and less common alleles in the population, and the ASCN of an allele refers to
the number of copies of that allele. Note that the reference/alternative allele is different from
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the major/minor allele: the former is defined with respect to an individual patient, while the
latter is based on the population. The following relationship is assumed: zsc � max(l∗kc1, l

∗
kc2),

meaning that the copy number of the alternative allele should be less than or equal to the
maximum ASCN. The Battenberg caller provides aggregated information about ASCNs, and
we utilize such information to determine the clonal status of SNV s. The following two scenarios
are possible.
1. If Battenberg determines that CNS k has one copy number state, it outputs a pair of ASCNs

(qk1, qk2). Essentially, Battenberg thinks that l∗kc1 = qk1 and l∗kc2 = qk2 for all c. Denote by
q̃k = max(qk1, qk2). If ms > q̃k, we identify s as clonal, since a subclonal SNV cannot produce a
mutation multiplicity greater than

∑
wc max(l∗kc1, l

∗
kc2) = q̃k. To determine whether ms > q̃k,

we calculate

Pr(m̂rep
s > q̃k | m̂s, θ) =

R∑
r=1

esr [1 − �(q̃k | ur, σr)], (5)

and if this is greater than some threshold H2, we think ms > q̃k and classify s as clonal.
Otherwise, we let s be unclassified at this time.

2. If Battenberg determines that CNS k has two copy number states, it outputs two pairs of
ASCNs, (q1

k1, q
1
k2) and (q2

k1, q
2
k2), as well as their population frequencies in the tumor cells, ρ1

and ρ2. Implicit in the two sets of ASCNs is a partition of the C subclones, {1, . . . , C} = C1∪C2.
For all c ∈ C1, l∗kc1 = q1

k1, l∗kc2 = q1
k2 and

∑
c∈C1

w̃c = ρ1. On the other hand, for all c ∈ C2,
l∗kc1 = q2

k1, l∗kc2 = q2
k2 and

∑
c∈C2

w̃c = ρ2. Denote by q̃1
k = max(q1

k1, q
1
k2) and q̃2

k = max(q2
k1, q

2
k2).

If ms > ρ1q̃
1
k + ρ2q̃

2
k , s should be clonal. Again, this is because a subclonal SNV cannot

produce a mutation multiplicity greater than
∑

wc max(l∗kc1, l
∗
kc2) = ρ1q̃

1
k + ρ2q̃

2
k . Calculate

Pr(m̂rep
s > ρ1q̃

1
k + ρ2q̃

2
k | m̂s, θ) =

R∑
r=1

esr [1 − �(ρ1q̃
1
k + ρ2q̃

2
k | ur, σr)], (6)

and if this is greater than H2, we think ms > ρ1q̃
1
k + ρ2q̃

2
k and classify s as clonal. Otherwise,

we temporarily assign unclassified status to s. For simplicity, we use the same threshold H2

for both scenarios, but it is possible to consider different thresholds.
The values of H1 and H2 can be specified through simulation. Specifically, in the simulation

studies to be presented in Section 4, we first simulate 10 tumor samples, for which the true
clonal status of the mutations are known. Next, we run Mutstats on the simulated data with a
grid of values of (H1, H2). Lastly, we find the optimal threshold values that lead to the highest
classification accuracy on the 10 simulated samples. The value of H1 can also be chosen based
on a desirable maximum false discovery rate (MFDR) threshold, denoted by f0. Let λ(k) denote
the k-th largest value of {λ1, λ2, . . . , λS}, and let

s∗ = max
{
s :

∑
k<s(1 − λ(k))

|k : k < s| < f0

}
, (7)

where |A| denotes the cardinality of the set A. We may set H1 = λs∗ . This error rate is denoted
as MFDR because 1 − λs = Pr(m̂

rep
s � 1|m̂rep

s , θ) does not necessarily imply that the SNV is
clonal, due to the existance of unknown status. Therefore, it is an overestimation of the true
false discovery rate. In the real data analysis (Section 5), the threshold H1 is selected using this
approach (while H2 is still chosen based on simulation).
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Figure 2: Diagram for determining clonal status.

The procedure described above leaves some SNVs unclassified. We further use linear dis-
criminant analysis (LDA) to find their clonal status, treating the already-classified SNVs as
training data. For SNV s, let xs = (Ns, ns, m̂s, λs), and let ys ∈ {0, 1} denote its clonal status
(0 for subclonal and 1 for clonal). Recall that Ns and ns are the total number of reads and
number of reads with variant sequences mapped to the location of SNV s, respectively, m̂s is
the observed mutation multiplicity, and λs is defined in Equation (3). We use xs as covariates
to predict ys . The LDA method assumes that the conditional distributions for [xs |ys = 0] and
[xs |ys = 1] are normal with parameters (μ0, �) and (μ1, �), respectively. The predicted clonal
status for an unclassified SNV s is

i∗ = arg max
i

φ(xs | μi , �) · κi, for i = 0, 1,

where κi = # of SNVs with clonal status i

Total # of SNVs
is the relative frequency of clonal status i, and

φ(x | μi , �) denotes a multivariate Gaussian density with mean μi and covariance matrix �.
The R package lda is used to implement the LDA algorithm. With the additional LDA step,
the proposed Mutstats algorithm is able to determine the clonal status for all SNVs. The flow
of the entire Mutstats algorithm is given in Figure 2.
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4 Simulation Studies
4.1 Brief Review of Data Simulation Approaches
Despite the increasing effort in generating and providing access simulation approaches that may
generate and mimic real-world NGS data could be extremely helpful for research and method
development. Numerous simulators have been developed for simulating DNA sequencing data for
various applications. For instance, Huang et al. (2012) developed the ART simulator that gener-
ate synthetic NGS reads, Shcherbina (2014) constructed the FASTQSim simulator that provides
dual functionality of NGS dataset characterization and metagenomic data generation, Qin et al.
(2015) proposed the SCNVSim tool for simulating somatic CNVs and structure variations SVs,
and Xia et al. (2017) developed the Pysim-sv that simulates HTS data to evaluate performance
of structural variation detection algorithm. And recently, Yu et al. (2020) developed the SimuS-
CoP tool to emulate complex DNA sequencing data. While these methods simulate the lower
level data such as reads data, we proposed a general simulation algorithm to directly generate
read counts data, which could be directly used by researchers for developing novel methods that
take read counts data as input.

Our proposed simulation scheme is anchored by the theory of tumor cell evaluation based
on clonal and subclonal somatic mutations (Figure 1). We 1) generate the proportion of the
tumor cells and normal cells, 2) generate the allele specific copy numbers that could be clonal or
subclonal, and 3) simulate the number of somatic mutations at each loci given in step 2. These
are well-known cancer cell genomics that have been explained in Nik-Zainal et al. (2012) and
the more recent ICGC landmark publication (The et al., 2020).

In this work, we assess Mutstats via simulation studies. The detailed data simulation scheme
consists of the following steps.
1. Generate tumor purity μ, number of subclones C, number of loci S and number of CNSs K

from uniform and discrete uniform distributions,

μ ∼ Unif(μmin, μmax), C ∼ DU(Cmin, Cmax),

S ∼ DU(Smin, Smax), K ∼ DU(Kmin, Kmax).

Generate population frequencies of the subclones w̃ from a Dirichlet distribution,

w̃ ∼ Dir(aw, aw, . . . , aw).

Here, μmin, μmax, . . . , Kmin, Kmax are user specified lower and upper bounds for the simulation
parameters, and aw is a user specified hyperparameter.

2. For each CNS k ∈ {1, 2, . . . , K}, let αk be an indicator of its clonal status. If C = 1, αk = 1;
otherwise, generate αk from a Bernoulli distribution,

αk ∼ Ber(pα),

where pα is a user specified hyperparameter. According to the value of αk, there are two
possibilities. (a) If αk = 1, CNS k is clonal. Draw common ASCNs (qk1, qk2) for all subclones
from discrete uniform distributions,

qk1 ∼ DU(0, qmax), qk2 ∼ DU(1, qmax),

where qmax is a user specified maximum copy number. Set (lsc1, lsc2) = (qk1, qk2) for all loci in
CNS k and all subclones, i.e. for all s ∈ {s : k(s) = k} and c ∈ {1, 2, . . . , C}. (b) Otherwise,
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if αk = 0, CNS k is subclonal. Draw two sets of ASCNs (q1
k1, q

1
k2) and (q2

k1, q
2
k2) from discrete

uniform distributions,

q1
k1, q

2
k1 ∼ DU(0, qmax), q1

k2, q
2
k2 ∼ DU(1, qmax).

For each subclone c ∈ {1, 2, . . . , C}, set (lsc1, lsc2) = (q1
k1, q

1
k2) or (q2

k1, q
2
k2) with equal proba-

bility for all loci in CNS k.
3. For each SNV s ∈ {1, 2, . . . , S}, let βs be an indicator of its clonal status. If C = 1, βs = 1;

otherwise, generate βs from a Bernoulli distribution,

βs ∼ Ber(pβ).

According to the value of βs , there are two possibilities. (a) If βs = 1, SNV s is clonal, thus
zsc > 0 for all c. For each subclone c, generate zsc with

p(zsc = ζ ) = νζ (1 � ζ � l̃sc),

where l̃sc = max(lsc1, lsc2), and νζ ’s are user specified hyperparameters. (b) Otherwise, if
βs = 0, SNV s is subclonal, thus zsc = 0 for some c. Denote by C0 the index set such
that zsc = 0 for c ∈ C0, and let C0 be the cardinality of C0. To construct C0, first generate
C0 ∼ DU(1, C − 1), and then uniformly choose C0 indices from the set C = {1, 2, . . . , C} as
C0. For all c ∈ C0, set zsc = 0. For c ∈ C\C0, generate zsc with

p(zsc = ζ ) = νζ (1 � ζ � l̃sc).

4. Let φ denote the expected total number of reads for each locus assuming the locus has no
CNA. Generate φ from a Gamma distribution,

φ ∼ Ga(aφ, bφ).

Then, for each SNV s, generate the total number of reads from a Poisson distribution,

Ns ∼ Poi(φ l̄s/2),

where l̄s = μ · ∑C
c=1 w̃clsc + (1 − μ) · 2 is the average copy number of SNV s. Next, for each

SNV s, calculate its VAF by

vs = 1

l̄s

(
C∑

c=1

wczsc

)
.

Finally, generate the number of reads with variant sequences from a binomial distribution,

ns ∼ Bin(Ns, vs).

Following the steps above, the simulation algorithm generates tumor purity μ, subclonal
copy number matrix L, variant allele count matrix Z and subclonal population frequency vector
w̃, as well as total number of reads Ns and number of reads with variant sequences ns for
each SNV s. A web-based tool for simulating and visualizing read counts data can be found
at https://compgenome.shinyapps.io/tumorsim. Figure 3 shows the plots of N against n/N for
six simulated tumors with different purities and numbers of subclones, as well as three samples
from real data. It is clear that the simulated data highly resembles that of the real data.

https://compgenome.shinyapps.io/app_5
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Figure 3: Plots of N against n/N for (a) six simulated tumors with different purities (mu) and
different number of subclones (C), and (b) three real tumor samples.

4.2 Performance on Simulated data

Using the simulator proposed in Section 4.1, we simulate 1000 samples of various choices of purity,
number of subclones, number of SNVs and copy number profiles. Furthermore, we excluded the
simulated samples with no subclonal SNVs, leaving 868 samples. To select the threshold values
H1 and H2 (see Section 3.3), we randomly generate 10 additional tumor samples. We define a
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Table 2: Accuracy, sensitivity and specificity of Mutstats on the simulated samples.

Accuracy Sensitivity Specificity

Mean 0.7793 0.8671 0.6796
Median 0.8000 0.8736 0.7004

SD 0.0550 0.0876 0.1139

two-dimensional grid of {0.1, 0.12, 0.14, . . . , 0.96, 0.98, 1.0} × {0.1, 0.12, 0.14, . . . , 0.96, 0.98, 1.0},
calculate the classification accuracy for each combination of H1 and H2, and then find the
optimal threshold values that lead to the highest classification accuracy on the 10 samples. The
resulting thresholds are H1 = 0.86 and H2 = 0.16. Based on the selected thresholds, we run the
proposed Mutstats algorithm on the 868 samples. The results are reported in Table 2. We use
three metrics to evaluate the performance of the proposed method: classification accuracy (or
accuracy), sensitivity, and specificity, defined as

Accuracy = 1

S

S∑
s=1

1(ys = ytrue
s ),

Sensitivity =
∑S

s=1 1(ys = ytrue
s , ytrue

s = 1)∑S
s=1 1(ytrue

s = 1)
,

Specificity =
∑S

s=1 1(ys = ytrue
s , ytrue

s = 0)∑S
s=1 1(ytrue

s = 0)
.

Here, S is the total number of SNVs in a simulated sample, ytrue
s refers to the true clonal status

of SNV s, and ys is the clonal status of SNV s determined by Mutstats. From Table 2, Mutstats
performs well on the simulated data with a high accuracy (around 80%), a high sensitivity (more
than 85%), and a good specificity (around 70%).

4.3 Sensitivity Analysis of H1 and H2

Since the status of the outcome are determined based on the threshold values H1 and H2, they
are important components of our proposed algorithm and we are performing some simulation
studies with various values of H1 and H2 to investigate their effects. To investigate the effect of
H1, we hold H2 constant at 0.16, and vary H1 from 0.1 to 0.9. The result is shown in Figure 4a.
We observed that while holding H2 constant, an increase in H1 results in an increase in both
accuracy and sensitivity (fraction of correct subclonal calls among the true subclonal SNVs) but
a decrease in specificity (fraction of correct clonal calls among the true clonal SNVs). The reason
for increasing sensitivity and accuracy in Figure 4a is due to the fact that higher H1 values give
fewer but more confident subclonal calls, while holding H2 constant. When H1 increases to an
extreme large value (say 0.99), sensitivity eventually starts to drop due to too few subclonal calls
although they are accurate. Specificity is slightly decreased due to more SNVs are not classified
as subclonal and sent to the next step for clonal calls. On the other hand, in 4b we fix H1 = 0.86
and increase the value of H2’s. The pattern shows that both sensitivity and accuracy decreases
when H2 is over 0.5. This is because when H1 is fixed, the number of subclonal SNVs called by
our algorithm is fixed and increasing H2 will result in fewer and more accurate clonal calls. When
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Figure 4: Plots of Accuracy, Sensitivity, and Specificity of simulated data for different values of
(a) H1, and (b) H2.

H2 is large enough, the reduction in the number of clonal calls eventually causes specificity to
drop and also leads to decreasing accuracy.

So to summarize, to achieve a balanced performance, we suggest a reasonably large fraction
for H1 (around 0.9) and a reasonably small fraction for H2 (around 0.2). In our analysis, we used
H1 = 0.86 and H1 = 0.16.
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4.4 Comparison with Existing Methods

For comparison, we run two existing tools, PyClone (Roth et al., 2014) and the method proposed
by McGranahan et al. (2015) (which we denote by NMCS, from the first author’s initials), on a
randomly selected set of 100 samples out of the 868 simulated samples.

PyClone does not directly infer the clonal status of mutations. Instead, it clusters SNVs
based on their cancer cell fractions (CCFs), and some post-processing steps are necessary to
identify the clonal status of SNVs. Recall that the CCF of a SNV is a value between 0 and 1
and represents the fraction of cancer cells carrying it. The SNVs belonging to the same cluster
are thought of having the same CCF value. By definition, SNVs with CCF values close to 1 are
classified as clonal, while SNVs with CCF values much lower than 1 are classified as subclonal.
As PyClone outputs each SNV with its cluster membership as well as the posterior mean of
its CCF value, we use the following three different post-processing procedures to determine the
clonal/subclonal status for each cluster of SNVs based on the posterior CCF value, using a
probability threshold of 0.9.
1. PyClone Median: For an SNV cluster with multiple SNVs, we obtain the median of the

posterior means of their CCF values. Based on whether or not this median value is greater
than 0.9, we assign clonal or subclonal status to all SNVs of the cluster, respectively. For a
cluster with only one SNV, we obtain the posterior median of its CCF value and compare
this value to 0.9 to determine its clonal status.

2. PyClone 75th-tile: For an SNV cluster with multiple SNVs, we obtain the 75th percentile of
the posterior means of their CCF values. For a cluster with only one SNV, we obtain the
75th percentile of the posterior draws of its CCF value. We compare these values with 0.9
to determine the clonal status of the SNVs.

3. PyClone 95th-tile: For an SNV cluster with multiple SNVs, we obtain the 95th percentile of
the posterior means of their CCF values. For a cluster with only one SNV, we obtain the
95th percentile of the posterior draws of its CCF value. We compare these values with 0.9
to determine the clonal status of the SNVs.
NMCS, on the other hand, determines the clonal status of a mutation based on the confi-

dence interval of its CCF value. If the 95% CCF confidence interval of a mutation overlaps 1,
the mutation is classified as clonal; otherwise, the mutation is classified as subclonal.

Figure 5 summarizes the accuracy, sensitivity and specificity of all methods on the 100 sim-
ulated tumor samples. We find that PyClone performs well in terms of accuracy and sensitivity,
while NMCS is better in terms of specificity. Mutstats, on the other hand, achieves good perfor-
mance on all three metrics. Specifically, the accuracy and sensitivity of Mutstats are comparable
to those of PyClone, and the specificity of Mutstats is clearly higher than that of PyClone.
Compared to NMCS, although Mutstats has a somewhat lower specificity, it has significantly
higher accuracy and sensitivity. Overall, Mutstats is able to combine the strength of PyClone
and NMCS.

Furthermore, Mutstat is an ultra-fast method. Table 3 shows the average running time of
the three methods. The running time of Mutstats is similar to that of NMCS (in seconds) and
on average can be 9000 times faster than PyClone (which runs in hours). Moreover, Figure 6
shows the ratio of classification accuracy to running time for each method and each simulated
sample. The higher the ratio, the better the method in terms of balancing between classification
accuracy and computation time. On average, Mutstats has the highest accuracy-to-time ratio,
and on 92 out of 100 samples, Mutstats outperforms PyClone and NMCS.
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Figure 5: Boxplot of the accuracy, sensitivity and specificity values of the three methods.

5 TCGA BRCA Data Analysis
To demonstrate the practical usage of our method, we apply Mutstats to the analysis of two
breast invasive carcinoma (BRCA) samples from The Cancer Genome Atlas (TCGA) project.
The two samples are from the same TCGA donor (A15E), with one sample dissected from the
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Table 3: The running time of the PyClone, NMCS and the Mutstats method in seconds.

PyClone NMCS Mutstats

Mean 21,270.33 2.25 2.29
Median 12,007.50 2.09 2.01

SD 19,301.68 0.95 1.19

Figure 6: Scatterplot of the accuracy/time vs. the sorted index of the samples according to the
values of accuracy/time for the Mutstats method.

primary tumor site and the other dissected from the metastatic tumor site. From the TCGA
website, we download bam files for the primary tumor, metastatic tumor and matched normal; all
are whole-genome sequencing data with an average depth of coverage 25×–30×. Using somatic
mutation caller MuTect (Cibulskis et al., 2013) integrated inside GATK 3.6 (McKenna et al.,
2010), loci of the SNVs for the two tumor samples are detected. We also record the total number
of reads and number of variant reads mapped to these loci. Next, we employ purity and copy
number caller Battenberg (Nik-Zainal et al., 2012) to retrieve CNA information and ASCNs for
each SNV. We remove the loci with copy numbers greater than 17. At the end of this procedure,
we have 12,720 SNVs for the primary tumor sample and 15,248 SNVs for the metastatic tumor
sample. Among these SNVs, 5,534 are shared between the two samples.
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Table 4: Count and proportion of the clonal and subclonal mutations determined by the three
methods for the primary and metastatic samples of the A15E donor.

Method Clonal Subclonal Total Time

Primary Sample
Mutstats 53.57% 46.43% 12,720 < 1 min
NMCS 31.77% 68.23% 12,720 < 1 min

PyClone 61.45% 38.55% 2,000* 43 min*

Metastatic Sample
Mutstats 0.27% 99.73% 15,248 < 1 min
NMCS 27.78% 72.22% 15,248 < 1 min

PyClone 0.00% 100.00% 2,000* 48 min*
*: The full sample requires longer than a week, thus, we randomly sampled 2,000 SNVs to compare with the other
methods.

We run Mustats, PyClone, and NMCS on both samples to determine the clonal status of the
SNVs. The threshold value H1 is chosen based on a FDR threshold of f0 = 0.05 (see Equation 7).
For H2, we keep the same value of H2 = 0.16 as in the simulation studies. In addition, due to the
large number of SNVs in the data, we randomly selected 2,000 SNVs from both the primary and
the metastatic samples to reduce the computation burden of the PyClone algorithm. The results
are shown in Table 4 below. All three methods yield similar distributions of SNV classifications
for the Metastatic sample. For the primary sample, Mutstats is also similar to the PyClone
method. Furthermore, for the proposed Mutstats method, among the 5,534 shared mutations,
1,834 are identified as having the same clonal status in both samples with 1,826 subclonal and
8 clonal mutations. On the other hand, 3,700 shared mutations are classified differently in the
primary and metastatic samples. In particular, 3,696 SNVs are classified as clonal in primary but
subclonal in metastatic, while 4 are classified as subclonal in primary but clonal in metastatic.
Lastly, among the unique mutations, Mutstats identifies that 4,991 are subclonal and 4,962 are
clonal in the primary sample, and 12,446 are subclonal and 35 are clonal in the metastatic
sample. In summary, compared to the primary tumor, the metastatic tumor has a much larger
portion of subclonal mutations and a greater degree of intra-tumor heterogeneity. This finding
suggests that the tumor progression is worrisome.

6 Discussion
We have made three major contributions in this paper. First, we have clarified several terminolo-
gies used by the community and have provided their definitions from a unified model (Table 1).
Second, we have developed a simulator from that unified model to generate realistic tumor data
with multiple subclones and different purities. Finally, we have presented an ultra-fast method
to distinguish between clonal and subclonal mutation given read count data and output from a
copy number caller. With the help of the tumor data simulator, we have evaluated our method
on 1000 synthetic tumors. We have also run our algorithm on two real samples from the same
TCGA patient.
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In our method, the two threshold values H1 and H2 expressed the confidence on classifying
the current SNV as subclonal and clonal, respectively. Through sensitivity analysis, we found
that a reasonably large H1 around 0.9 and reasonably small H2 around 0.2 provide a good
tradeoff of sensitivity and specificity.

The speed of Mutstats is the main attractive feature for practical applications. For example,
compared with the popular PyClone method, Mutstats achieves over 9,000 fold reduction in
computing time in the comparative study in §4.4. The main reason is that Mutstats avoids
lengthy MCMC computation that is required by the PyClone method.

The proposed Mutstats methods can be modified and extended in several ways. First, we
have utilized ASCN information from the Battenberg caller to determine the clonal status of
a mutation. Although empirically we find that ASCN information improves our classification
accuracy, many other copy number callers do not provide such information. In the absence of
ASCN information, we may replace q̃k and ρ1q̃

1
k + ρ2q̃

2
k in Equations (5) and (6) by the average

copy number l̄s . Intuitively, if l̄s is large, then ms should also be large for SNV s to be clonal,
which can be determined by whether Pr(m̂rep

s > l̄s | m̂s, θ) is greater than some threshold.
Another interesting future direction is to develop alternative machine learning algorithms for
clonal status classification. The proposed tumor simulator can generate a large number of tumor
samples that resemble real-world datasets. The simulated tumor samples have labeled clonal
status (ground truth) thus can be used as training data to train a machine learning algorithm
for classification of the mutations in a real tumor sample.

Understanding the clonal status of mutations is very important for understanding the over-
all evolution process of a tumor. Such knowledge is essential for understanding of timing of
mutations. By finding clonal status for actionable driver mutations, we hope to improve future
drug design and strategies for advanced treatment in cancer.

Supplementary Material
We include an Appendix on the Bayes model used by the PyClone method. In addition, the
simulation data can be obtained from the website https://compgenome.shinyapps.io/tumorsim.
Finally, the code of the Mutstats method and the real data used in this analysis can be found
in the author’s Github page https://github.com/edwardbi/Mutstats.
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