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ABSTRACT 

In this paper, kumaraswamy reciprocal family of distributions is introduced 

as a new continues model with some of approximation to other probabilistic 

models as  reciprocal, beta, uniform, power function, exponential,  negative 

exponential, weibull, rayleigh and pareto distribution. Some fundamental 

distributional properties,  force of mortality, mills ratio, bowley skewness, moors 

kurtosis, reversed hazard function, integrated hazard function,  mean residual life, 

probability weighted moments, bonferroni and lorenz curves, laplace-stieltjes 

transform of this new distribution with the maximum likelihood  method of the 

parameter estimation are studied.  Finally, four real data sets originally presented 

are used to illustrate the proposed estimators. 

 

Keywords: Kumaraswamy distribution, Reciprocal distribution, Force of 

mortality, Mills Ratio, Bowley skewness, Moors kurtosis, Reversed hazard 

function, Integrated hazard function,  Mean residual life, Probability weighted 

moments, Bonferroni and Lorenz curves, Laplace-Stieltjes transform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*  S.Ali@asmary.edu.ly & Salmableed@yahoo.com 



 

 

 

 
102          Four Parameters  Kumaraswamy Reciprocal Family Of  Distributions 

 

 

1. Introduction 

The reciprocal distribution is a continuous probability distribution,  gets its name because the 

density function is proportional to 
-1x . It is a right-skewed distribution bounded between min 

(a) and max (b), and it is looks like a triangle (min, mode, max), if the min and the max are 

almost equal. Also, it is an example of an inverse distribution where the reciprocal of a random 

variable with a reciprocal distribution itself  has a reciprocal distribution.  

The probability density function (pdf) of the reciprocal distribution is 

0ab    ,bxa     ,
-1

x A)x(f =  
with cumulative distribution function ( ) 0ab    ,bxa       ax,Q  A)x(F =  

( ) 1
alnblnA   where,
−

−= , ( ) ( )alnxlnax,Q −= . 

The reciprocal distribution is of considerable importance in numerical analysis as a 

computer’s arithmetic operations transform mantissas with initial arbitrary distributions to the 

reciprocal distribution as a limiting distribution. Also, it is widely used as an uninformed prior 
distribution in Bayesian inference for scale parameters, Hamming (1970) . 

In the last few years, many new generated families are formed by adding additional one 

or more shape parameters to develop new models and increase its flexibility, such as Quasi 

Lindley distribution (Rama and Mishra, 2013),  Kumaraswamy Weibull-generated family of 

distributions (Hassan, and Elgarhy, 2016), Kumaraswamy sushila distribution (Shawki and  

Elgarhy, 2017), L-Quadratic distribution (Salma, 2018), TAS distribution (Salma and Arwa, 

2018), and others. The Kumaraswamy distribution is one of them, it has the following density 

function with  two additional shape parameters    and     

  ,
1

)x(F1 
1

(x)F (x)f )x(g
−

−
−

=


 0  ,    

with distribution function     )x(F1 )x(G


−=  

It is well known in general that, a generalized model is having more flexibility than the 

base model and it is favored by data analysts in analyzing data. Therefore, the main objective 

of this paper to propose a new continuous kumaraswamy reciprocal family and explain its 

flexible behavior, and how it is  fitted for  various continuous data sets in different applied 

fields. Section (2) identifies the four parameters kumaraswamy reciprocal family with  some 

of  its approximation to other probabilistic models and studding its reliability measurements 

behavior. Section (3)  contains the properties of the kumaraswamy reciprocal family and the 

Maximum Likelihood (ML) method of the parameter estimation. Section (4) presents the 

practical applications to illustrate the proposed model.  

 

2. The Four Parameters Kumaraswamy Reciprocal Family 

The new distribution will abbreviate by ),b,KRF(a,   with probability function takes the 

form 

 ( ) ( )  ( )1   0ab    ,bxa    ,
1

ax,Q A1 
1

ax,QA 
-1

x )x(f →
−

−
−

=


   

with  cumulative distribution function ( )  ( )2     ,ax,Q A11)x(F →−−=
 ( ) 1

alnblnA   where,
−

−= , 
( ) ( ).alnxlnax,Q −=  

https://en.wikipedia.org/wiki/Continuous_probability_distribution
https://www.vosesoftware.com/riskwiki/Triangledistribution.php
https://en.wikipedia.org/wiki/Inverse_distribution
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://www.revolvy.com/main/index.php?s=Numerical+analysis&item_type=topic
https://www.revolvy.com/main/index.php?s=Computer&item_type=topic
https://www.revolvy.com/main/index.php?s=Significand&item_type=topic
https://www.vosesoftware.com/riskwiki/Uninformedpriors.php
https://www.vosesoftware.com/riskwiki/Uninformedpriors.php
https://www.vosesoftware.com/riskwiki/Bayesianinference.php
https://en.wikipedia.org/wiki/Richard_Hamming
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Figure 1: PDF and CDF of KRF(a,b,α,β) 

 

Figure.1 illustrate plot the PDF and the CDF of  the ),b,KRF(a,  under different values of 

the shape parameters (𝛼, 𝛽) and the scale parameters (𝑎, 𝑏). It is noted that the PDF of the 

new distribution takes many shapes, and the plot of  the CDF indicates increasing cumulative 

distribution function.    

 

2.1 Approximation to other probabilistic models 

Some of  approximation to other probabilistic models are presented in Table.1 as some 

special cases of  ),b,KRF(a,  .  
Table 1 : Some Probabilistic Models of the Kumaraswamy Reciprocal Family  

Parameters Random Variable Distributed as Density Functions 

1== 
 

X  Reciprocal 0ab    ,bxa     ,
-1

x A)x(f =  


 ( )

ax,Q Ay =
 Beta

( ),1
 ( )

( ) 0     ,1y0
,1

1f(y)      ,y1
1

=
−

− 




 

1=
 ( )

ax,Q Ay =
 

Uniform  1y0         ,1f(y) =
 


 ( )

ax,Q A1y −=
 

Power Function 0     ,1y0         ,
1-

y  f(y) = 



 




1
=

 
( ) 

ax,Q A1lny −−=
 

Exponential 
0     ,0y     ,

y-1 

e  1f(y) = 


  


 ( ) 

ax,Q A1lny −−=
 

-ve Exponential 0     ,0y     ,
y -

e  f(y) = 



 

K,
 ( )  1

ax,Q A1ky

−

−=


 

Pareto 0k,     ,ky      ,
1y

k  
f(y) 

+
= 





 




1
=

 
( ) 

ax,Q A1ln

1

y −−=
 

Weibull 
0.     ,0y      ,

1

y
-

 

e

11

y  f(y) 

−

= 











 

2
2

1
,

2

1



 ==

 

( ) 
ax,Q A1ln

1

y −−=
 

Rayleigh 
0     ,0y      ,

2
y

2

1- 

ey     
2

1f(y) = 

  

 

2.2 Maximum likelihood estimation 

The reliability function (RF) of  the four  parameters ),b,KRF(a,  is  

( ) 
ax,Q A1)x(F1)x(R −=−=  

 

The force of mortality (FM) of  the four  parameters ),b,KRF(a,  is 

( ) ( ) 1ax,Q A ax,Q x

 

)x(R

)x(f
)x(h

−
−−

==




 

The reversed hazard function (RHF) of  the four  parameters  ),b,KRF(a,  is 
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( ) 
( ) ( ) 







−

−
−

−

−
−

−−

==

1ax,Q A1  
1

ax,xQ

1
1ax,Q A  

)x(F

)x(f
)x(hR






 

The integrated hazard function (IHF) of  the four  parameters  ),b,KRF(a,  is 

( ) 
 ax,Q A1ln)x(Rln)x(H −−=−=  

The mills ratio (MR) of  the four  parameters  ),b,KRF(a,  is 

( ) 
( )ax,Q 

1ax,Q A  x

)x(h

1
)x(mi




−

−−

==

. 

 

3. Properties of the Kumaraswamy Reciprocal Family 

3.1 Quantile Function 

The quantile function )u(Q  of the four  parameters ),b,KRF(a,  has closed form and is 

obtained by inverting Eq.(2), therefore 

( ) ( )3    

1
1

u11 
 1-

Aexp a)u(Q →−−=




















 


 
  

3.2 Median and Random Numbers 

From Eq.(3), if u equal to 0.5 then the median of ),b,KRF(a,  is 




















 −
−=



1
1

5.01 
1-

Aexp am

. 

Also, from Eq.(3), if U(0,1)~ u  and the  parameters  ),b,(a,  are known, then the random 

numbers of  ),b,KRF(a,  can be generated. 

 

3.3 Bowley Skewness and Moors Kurtosis 

The Bowley Skewness (BS), and  Moors Kurtosis (MK) of the four  parameters ),b,KRF(a, 

are obtained as follows 

)25.0(Q)75.0(Q

)125.0(Q)375.0(Q)625.0(Q)875.0(Q
MK      ,

)25.0(Q)75.0(Q

)25.0(Q)5.0(Q2)75.0(Q
BS

−

−+−
=

−

+−
=

 

Where )u(Q  is the  quantile function  of the four  parameters   ),b,KRF(a,  . 

 

3.4 Mean Residual Life 

Theorem 1: The  mean residual life of a r.v X  with pdf (1), is given by 

( ) ( )




 


 a ln- t ln AT    ,

1
 1,T1I 

1 ! A

1

R(t)  

a
)t( =

+
+−



= +
=

 
Proof:  The  Mean residual life of a r.v X is defined as 

( ) =
b

t
dx )x(R

)t(R
1t

 , then 
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( )  −=
b

t
dx ax,Q A1  

)t(R
1

b

t
dx (x)R

)t(R
1



 

  ( ) ( )





a ln- t ln AT       ,ax,Q Ay    that     such,

1

T
ydA

1
y 

e y1 
11

y 
R(t) A 

a
== −

−
=

. 

 

 For   0m,n   integer, it follows that 

 
( )

( ) 
1

4     
! 

m ,na1I1

a
wd

w
e 

1m
w1 

1n
w 



=
→

+−
=

−
−

−

 



 

where  
( )    

1

a
wd 

1b
w1 

1a
wb ,aa1I 

−
−

−
=−

 denotes the complementary incomplete beta function 

which can be evaluated in MathCad 15. Using Eq.(4), the mean residual life can be expressed 

as 

( ) ( ) .a ln- t ln AT    ,
1

 1,T1I 
1 ! A

1

R(t)  

a
)t(






 


 =

+
+−



= +
=  

 

 

3.5 Moments about Origin 

Theorem 2: If X is a r.v distributed as  ),b,KRF(a,  ,   then   rth moments of X is given by  

( )1 ,
1

 
1 ! 

1
A

1
r

r
ar

ar +
+




= +

+

+= 




 








 

Proof:  rth moments   is defined as 
=
b

a
dx f(x)

r
xr

, then  

( ) ( ) 
−

−
−

=
b

a
dx 

1
ax,Q A1 

1
ax,QA

x

r
x 

 
b

a
dx f(x)

r
x




 . 

By using the partial derivative 

( )
( ) 

( )    ( )













 ax,Q Ay   .
1

0
ydA

1
y r

e y1 
11

y 
A 

r
a rr

a
b

a
dx ax,Q A1 

1r
x

r

b

a

ax,Q A1
r

x
 

b

a
dx f(x)

r
x = −

−
+= −

−
−

−
−=

















 
For   0m,n   integer, it follows that 

 

 
( )

( )


=
→

+
=

−
−

−

1
5     

! 

m ,n1

0
wd

w
e 

1m
w1 

1n
w

 



 

where  
( )  

( )
 

ba

b  a1

0
wd 

1b
w1 

1a
wb ,a

+
=

−
−

−
=






 denotes the beta function.  

Using Eq.(5), the  rth moments can be expressed as 

 

( ) ( ) .   6   ... 2, 1,r   ,1 ,
1

 
1 ! 

1
A

1
r

r
ar

ar →=+
+




= +

+

+= 




 








 
From Eq.(6) , the 1st four moments and the variance of the ),b,KRF(a,   are 

( ) ( ) 1 ,
1

 
1 ! 

1
A

1
2

2
a2

a2   ,
1 ! 

1
A

1 ,
1

a
a1 +

+



= +

+

+=


= +

+
+

+== 




 








 











 



 

 

 

 
106          Four Parameters  Kumaraswamy Reciprocal Family Of  Distributions 

 

( ) ( )1 ,
1

 
1 ! 

1
A

1
4

4
a4

a4   ,1 ,
1

 
1 ! 

1
A

1
3

3
a3

a3 +
+




= +

+

+=+
+




= +

+

+= 




 












 








 

( ) ( ) 2

1 ! 
1

A

1 ,
1

a
a1 ,

1
 

1 ! 
1

A

1
2

2
a2

a
2





























= +

+
+

+−+
+




= +

+

+=
 
















 








 

Put 1==   then ( )abA −=   and 

( )
( ) ( ) abA2ab

2

abA2
−−+

−
=

  which are the mean and the 

variance of the base reciprocal distribution , respectively.  

 

3.6 Incomplete Moments 

Theorem 3: If X is a r.v distributed as ),b,KRF(a,   , then   rth  incomplete moments of X is 

given by  

( ) ( ) ( )1 ,
1

yI 
1 ! 

1
A

1
r

r
a 

b,a;xrI +
+




= +

+

+= 



 







, 

Where 

( ) ( )  ( )
 ax,Q Ay   and     ,ax,Q A1

r
x

r
ab,a;x =−−= . 

Proof:  rth incomplete moments is defined as
( ) =

x

a
dx f(x)

r
xrI 

, then 

( ) ( ) ( ) 
−

−
−

==
x

a
dx 

1
ax,Q A1 

1
ax,QA

x

r
x 

 
x

a
dx f(x)

r
xrI




 
By using the partial derivative 

( )
( ) 

( )    ( )













 ax,Q Ay   ,
0

ydA

1
y r

e y1 
11

y 
A 

r
a rx

a
dx ax,Q A1 

1r
x

r

x

a

ax,Q A1
r

xx

a
dx f(x)

r
x =


−

−
+= −

−
−

−
−=

















 
For   0m,n   integer, it follows that 

 
( )

( ) 
1

7     
! 

m ,nbIb

0
wd

w
e 

1m
w1 

1n
w 



=
→

+
=

−
−

−

 



 

Where 
( )    

0
wd 

1b
w1 

1a
wb ,abI 

−
−

−
=


 denotes the complementary incomplete beta function, 

which can be evaluated in MathCad 15. Using Eq.(7), the incomplete moments can be 

expressed as   
( ) ( ) ( )1 ,

1
yI 

1 ! 
1

A

1
r

r
a 

b,a;xrI +
+




= +

+

+= 



 







. 

 

3.7 Probability Weighted Moments 

Theorem 4: The probability weighted moments  ( s,r ) of a r.v X distributed as ),b,KRF(a,   

is  

( ) ( )



















+++




= +

+
−

−
+

= 1j ,1i   
j

1s
  

0j,i j!  !i 
1i

A

1i
r  

j
1

 
 

r
ar

b
1s

1 s,r 




 

Proof: The probability weighted moments of a r.v X is defined a 
 =

b

a
dx

s
F(x)  f(x)

r
xs,r
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Therefore,  

  ( ) ( )  ( )  −−
−

−
−

= 


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a
dx 

s

ax,Q A11
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ax,Q A1 
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b

a
dx

s
F(x)  f(x)

r
x
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

 
By using the partial derivative 
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














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Put  ( )
ax,Q Ay =  and using Eq.(5)  

( )  ( ) ( )1j ,1i

j

1s
 

0j,i i!  
1i

A

1i
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j
1

 
 

r
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a
dx 

1s

ax,Q A11 
1r

xr +++

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= +

+
−
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−





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






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3.8 Bonferroni and Lorenz Curves 

Suppose that 𝑌 is a count response variable that follows the EWGD in Equation (2.2) and 

𝑌 is associated with a set of predictors. We wish to fit the response variable 𝑌 by using the 

predictors. Suppose we have a 𝑘 –  1 row vector of predictors 0 1 2 ,( 1)( 1, , , , )i i i i i kx x x x x −= =
. 

Theorem 5: If X is a r.v distributed as  ),b,KRF(a,   ,  then the Bonferroni and Lorenz curves  

(BLC) of  X  is  
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Proof: The Bonferroni and Lorenz curves 
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  is defined  by the following formula: 
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By using the partial derivative 
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Figure 2: Reliability Measurements and Bonferroni and Lorenz Curves  of KRF(a,b,α,β) 

 

Figure.2 illustrate plot the RF, FM, RHF, IHF, MR and the BLC  of  the ),b,KRF(a,   under 

different values of the shape parameters (𝛼, 𝛽) and the scale parameters (𝑎, 𝑏). The graphs 

show that, the integrated hazard function and the force of mortality are increasing functions, 

while the reliability function and mills ratio are decreasing as the time increasing.  On the 

other hand, the reversed hazard function and the Bonferroni and Lorenz curves are  beginning 

decreasing functions until reached the point (𝑥 = 1) where became constant functions. 

 

3.9 Moment Generating Function 

Theorem 6: The moment generating function of a r.v X distributed as  ),b,KRF(a,   is  
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Proof:  The moment generating function of a r.v X is defined as 
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r.v X distributed as ),b,KRF(a,   is 
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3.10 Laplace-Stieltjes Transform 

Theorem 7: The Laplace-Stieltjes transform of a r.v X distributed as ),b,KRF(a,   is given 

by  
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Proof: Laplace-Stieltjes transform is defined by 
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3.11 Estimation of Parameters 

Let  nX  ,... ,2X ,1X
 be a random sample of size n, distributed as  ),b,KRF(a,  with likelihood 

function  
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Then the log likelihood function (l) is given by 
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The solution of the above normal equations cannot be obtained in closed form, so MathCad 

15 package can be used to get the MLE of the unknown parameters. Therefore, the elements 

of the Fisher information matrix (FI) for the MLE can be obtained as the expectations of the 

negative of the second partial derivatives, and the asymptotic variance-covariance matrix 
( )V

 

for the MLE is defined as the inverse of the Fisher’s information matrix i.e., 
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4. Application 

 Suppose that 𝑌 is a count response variable that follows the EWGD in Equation (2.2) 

and 𝑌 is associated with a set of predictors. We wish to fit the response variable 𝑌 by using 

the predictors. Suppose we have a 𝑘 –  1  row vector of predictors 

0 1 2 ,( 1)( 1, , , , )i i i i i kx x x x x −= = .  

In this section, four applications to real data sets are provided to illustrate the flexibility 

and the usefulness of the new distribution. The first data represents the rainfall of the city of 

Zlitan-Libya for the period from 1980 to 2009 from the records of the five meteorological    

center, the data set is: (0.122, 0.122, 0.139, 0.146, 0.168, 0.17, 0.178, 0.18, 0.183, 0.184, 0.192, 

0.199, 0.208, 0.21, 0.212, 0.241). The second  data of the air conditioning system of an 

airplane originally presented by Linhart and Zucchini (1986), the data set is: (0.0417, 0.0655, 

0.0655, 0.0655, 0.0714, 0.0833, 0.0833, 0.0833, 0.0952, 0.0952,  0.125 , 0.1190, 0.1369, 

0.2500, 7980.2 , 0.3095, 0.3690, 0.4226, 0.4226, 0.5179, 0.5655, 0.5357 ,  0.7143 , 0.7143 ) 

is the failure times (week) of the air conditioning system of an airplane. 
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The third data of the Survival time of  infected with virulent tubercle bacilli was reported 

by Haq 2016, the data set is: (1.02, 1.05, 1.07, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.20,1.21, 

1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.60, 1.63, 1.63, 1.68, 1.71, 1.72, 

1.76, 1.83, 1.95, 1.96,1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.30, 2.31, 2.40, 2.45, 2.51, 2.53, 2.54, 

2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02,4.32, 4.58, 5.55). The  fourth data set was provided 

by Ed Fuller of the NICT Ceramics Division in December 1993. It contains polished window 

strength data (proprotions), the maximum value is 45.38, the data set is:  (0.41, 0.46, 0.48, 

0.51, 0.51, 0.53, 0.54, 0.56, 0.56 , 0.57 0.59, 0.59, 0.59, 0.6, 0.61, 0.66, 0.69, 0.73, 0.74, 0.74, 

0.75, 0.77, 0.79,  0.79,  0.81, 0.82, 0.82, 0.87, 0.97, 1.00). 

Some measures of goodness of fit are used, including Kolomgrof-Smirnof test (K_S), 

Akaike information criterion (AIC), consistent Akaike information criterion (CAIC), 

Bayesian information criterion (BIC), Anderson Darling (AD) and Cramrvon Mises (CVM) 

statistics for assessing that the data sets follow the 
),b,KRF(a, 
and they are: 
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where n is the sample size, k is the number of parameters of each statistical model, F(x) is 

the CDF of each statistical model and L is the maximized value of the log-likelihood function 

under the considered model. The values of the K_S, AIC, CAIC, BIC, AD and CVM are 

represented in Table.2 for the  new proposed model compared with the other sub models: 

Reciprocal (RD), Power Function (PFD), exponential (ExpD), Weibul (WD), Rayleigh 

(RayD) and Pareto (PD) distribution. Moreover, ML estimates with confidence intervals for
( )  , b, a,

 based on the data sets are calculated. Mean Square Error (MSE) with variance of 

these estimates are represented in Table.3.  Also, moments about origin, incomplete moments, 

probability weighted moments, Laplace-Stieltjes transform and mean residual life at the 

mission time t of the 4-kumaraswamy reciprocal family are calculated and represented in 

Table.4. In addition, mean, median, 1st quartile, 3rd quartile, bowley skewness (BS), moors 

kurtosis (MK) and  mean residual life (MRL) of  the four kumaraswamy reciprocal family are 

calculated and represented in Table.5.  

 
Table 2 : The ML Estimates, AD, CVM, CAIC, BIC, AIC, K_S for the four Data Sets 

DATA I: 𝑎 =  0.01(0.015), 𝑏 = 0.08(0.326), 𝛼 = 0.41(1.343), 𝛣 = 0.90(0.384) 

K_S AIC BIC CAIC CVM AD Model 

0.389 5.110E+9- 5.110E+9- 5.110E+9- 0.938 7.088- KRD 

0.616 4.1810E+4- 4.1810E+4- 4.1810E+4- 2.256 4.498- RD 

0.421 10.789-  -11.585  -10.503  1.029 -6.898  PFD 

0.912 2.000 1.204 2.286 4.242 2.698 ExpD 

0.933 4.000 2.408 4.923 4.499 4.570 WD 

0.968 2.000 1.204 2.286 4.995 11.006 RayD 

0.645 4.000 2.408 4.923 2.128 4.827- PD 

DATA II: 𝑎 =  0.01(0.183), 𝑏 = 0.224(1.07), 𝛼 = 1.35(1.922), 𝛣 = 0.7(0.774) 

K_S AIC BIC CAIC CVM AD Model 

0.115 0.512 2.603 1.088 0.523 15.641- KRD 

2.156 12.49 11.444 12.935 35.306 -14.655  RD 

0.482 11.597 11.074 11.74 2.419 -12.346  PFD 

0.461 48.436 47.913 48.578 1.786 -13.242  ExpD 

0.669 62.462 61.416 62.906 3.905 -9.237  WD 

0.763 113.664 113.141 113.806 6.141 -2.874  RayD 

0.77 113.015 111.97 113.46 6.018 -3.631  PD 

DATA III: 𝑎 =  0.011(0.025), 𝑏 = 0.08(0.164), 𝛼 = 0.91(1.323), 𝛣 = 0.091(0.526) 

K_S AIC BIC CAIC CVM AD Model 

0.1489 6.3682 5.3917 7.1375 1.2508 29.1149- KRD 

0.4631 50.3237 49.8355 50.546 2.963 -26.0807  RD 

0.5678 31.7512 31.5071 31.8239 6.9113 16.8794-  PFD 

0.2751 11.5787 11.3346 11.6515 1.5806 -28.4839  ExpD 

0.544 62.7205 62.2322 62.9427 6.4188 -19.3828  WD 
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0.8638 322.9528 322.7087 323.0255 16.5944 28.2062 RayD 

0.877 191.5129 191.0247 191.7351 15.5837 15.0782 PD 

DATA IV: 𝑎 =  0.1(0.183), 𝑏 = 0.224(1.07), 𝛼 = 1.35(1.922), 𝛣 = 0.7(0.774) 

K_S AIC BIC CAIC CVM AD Model 

0.213 -0.512  -2.603  1.088 0.523 -15.641  KRD 

2.156 3.971 2.926 4.416 35.306 -15.001  RD 

0.482 1.984 1.461 2.126 2.419 -12.346  PFD 

0.461 2.000 1.477 2.143 1.786 -13.242  ExpD 

0.669 4.000 2.954 4.444 3.905 -9.237  WD 

0.763 2.000 1.477 2.143 6.141 -2.874  RayD 

0.770 4.000 2.954 4.444 6.018 -3.631  PD 

 

The results in Table.2 indicates that, the values of the K-S  is very small for the 
  ),b,KRF(a, 

distribution, and  according to the other criteria AIC, CAIC, BIC, AD and CVM, 

it is noted that the 
),b,KRF(a, 
 yields a better fit to all the four data sets than the other 

distributions. So, the 
),b,KRF(a, 
 could be chosen as the best model for the four data sets. 

 

Table 3: MLE, MSE and C.I of the unknown parameters of the 
  ),b,KRF(a, 

 

DATA I: Rainfall of the city of Zlitan 

Para. 
Init. 

values 
MLE MSE Variance LBCI UBCI 

a 0.015 0.01818 1.014E-5 1.255E-5 0.01816 0.01821 

b 0.1 0.100004 2.14E-12 2.535E-5 0.09995 0.10005 

α 4.75 4.65942 8.205E-3 0.54564 3.58996 5.72888 

β 1.002 1.00444 5.976E-6 0.01283 0.97931 1.02958 

DATA II: Air conditioning system of an airplane 

Para. 
Init. 

values 
MLE MSE Variance LBCI UBCI 

a 0.0101 0.0102 110E-8 2.7517E- 0.01015 0.01025 

b 0.2 0.02001 0.0324 0.02191 0.02290 0.06296 

α 0.625 0.6334 7.05E-5 0.01161 0.61064 0.65616 

β 0.4 0.4159 2.52E-4 5.845E-3 0.40444 0.42736 

DATA III: Survival time of  infected with virulent tubercle bacilli 

Para. 
Init. 

values 
MLE MSE Variance LBCI UBCI 

a 0.211 0.21448 1.209E-5 4.925E-3 0.20483 0.22413 

b 0.335 0.33521 4.387E-8 8.609E-3 0.31833 0.35208 

α 0.4 0.39456 2.958E-5 2.875E-3 0.38893 0.4002 

β 0.5 0.48743 1.578E-4 4.529E-3 0.47856 0.49631 

DATA IV:  Polished window strength data 

Para. 
Init. 

values 
MLE MSE Variance LBCI UBCI 

a 0.113 0.21155 9.711E-3 1.383E-3 0.20884 0.21426 

b 0.219 0.46465 0.06034 1.539E-3 0.46163 0.46767 

α 1.75 1.83947 8.005E-3 0.11677 1.6106 2.06834 

β 0.739 0.75661 3.099E-4 0.01299 0.73114 0.78207 

 

Table 5: Measurements of central tendency and dispersion of  
  ),b,KRF(a, 

 

DATA I: Rainfall of the city 

of Zlitan-Libya 

DATA II: Air conditioning 

system of an airplane 

DATA III: Survival time of  

infected with virulent tubercle 

bacilli 

DATA IV: Polished 

window strength data 

measue Value measure Value measue Value measue Value 

Mean 0.0761 Mean 0.09729 Mean 0.27111 Mean 0.37366 

)25.0(Q
 

0.06442 )25.0(Q
 

0.02758 )25.0(Q
 

0.2272 )25.0(Q
 

0.32224 

)5.0(Q  0.07893 )5.0(Q  0.08658 )5.0(Q  0.26775 )5.0(Q  0.38393 

)75.0(Q  0.09023 )75.0(Q  0.16948 )75.0(Q  0.31476 )75.0(Q  0.43273 

Variance 2.83E-4 Variance 4.82E-3 Variance 1.605E-3 Variance 4.44E-3 

Skewnes -0.5971 Skewness 0.06296 Skewness -2.06955 Skewness -0.4428 

Bowley 

Skewness 
-0.1243 Bowley Skewness 0.16838 Bowley Skewness 0.07386 Bowley Skewness -0.1167 

kurtosis 2.52304 kurtosis 1.3105 kurtosis 95.51749 kurtosis 1.83106 

Moors Kurtosis 1.10851 Moors Kurtosis 0.70378 Moors Kurtosis 0.74458 Moors Kurtosis 1.02842 

 

Based on the simulation study, can be concluded that the maximum likelihood estimators 

are appropriate for estimating the ),b,KRF(a,  . All the real data provides a better fit to the 
),b,KRF(a,  and estimate the true parameters (a,b,α,β) well with relatively small MSE and 

reduce towards zero, with short confidence intervals. Moreover, the mean residual life 
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decreases when the mission time (𝑡) increases as shown from the results in Table.3. In general, 

the proposed model and the asymptotic approximation work well under the situation and 

provides a better fit for the real data. So, the ),b,KRF(a,   very useful in many fields and has 

many benefits especially in practical life. Therefore,  it can be applied to several realistic data 

and chosen as a suitable model for lifetime data. 

 

 

5. Conclusions 

This paper  presented a new distribution named  the four  parameters  kumaraswamy 

reciprocal family abbreviate by ),b,KRF(a,  . The maximum likelihood method is applied for 

estimating the model parameters. Nine special models namely, reciprocal, beta, uniform, 

power function, exponential, negative exponential, weibull, rayleigh and pareto distribution 

are provided.  Further, the derived properties of the   ),b,KRF(a,  are valid to the selected 

model, such as, quantile function, median, random numbers, bowley skewness, moors kurtosis, 

reliability function, force of mortality, reversed hazard function,  integrated hazard function, 

mills ratio, mean residual life, moments about origin, incomplete moments, probability 

weighted moments, bonferroni and lorenz curves, moment generating function, characteristic 

function, laplace-stieltjes transform with estimation of parameters.  It also explained the 

behavior of the reliability function, force of mortality, mills ratio, reversed hazard function, 

integrated hazard function, bonferroni and lorenz curves. Four real life applications have also 

presented for explaining the better fit and the benefit of the observed model  in many practical 

life.  The better fit and the benefit of the new model is illustrated by four real data sets and the 

results of the applications nicely exhibit the fact that the ),b,KRF(a,  provides a better fit than 

others sub models in many. And it performs better and a suitable in many situations and can 

be applied to several realistic data. 
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