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Abstract

Improvement of statistical learning models to increase efficiency in solving classification or re-
gression problems is a goal pursued by the scientific community. Particularly, the support vector
machine model has become one of the most successful algorithms for this task. Despite the strong
predictive capacity from the support vector approach, its performance relies on the selection of
hyperparameters of the model, such as the kernel function that will be used. The traditional
procedures to decide which kernel function will be used are computationally expensive, in gen-
eral, becoming infeasible for certain datasets. In this paper, we proposed a novel framework to
deal with the kernel function selection called Random Machines. The results improved accuracy
and reduced computational time, evaluated over simulation scenarios, and real-data benchmark-
ing.

Keywords bagging; kernel functions; support vector machines

1 Introduction
Currently, the application and development of statistical learning methods is an important
research topic in the academic and industry community. The supervised machine learning tech-
niques have been applied at numerous classification tasks ranging from cancer diagnostics and
prediction (Sato et al., 2019), speech recognition (Mokgonyane et al., 2019), text classification
(Burdisso et al., 2019; Kim et al., 2005) and financial fraud detection (Dighe et al., 2018).
The variety of methods that have been used in the field is huge, and the Support Vector Ma-
chine (SVM) plays an important role among them. The SVM (Cortes and Vapnik, 1995) is the
youngest well established and successful in traditional learning methods. Smola et al. (2000)
presented some great proprieties of this learning algorithm, including good generalization ca-
pacity, high efficiency in prediction tasks and, the convexity of the objective function which
guarantees a global minimum. Some works present the superiority of the SVM when compared
with other supervised learning benchmarking techniques, highlighting favorable accuracy results
(Cueto-López et al., 2019; Thanh Noi and Kappas, 2018; Shah and Issac, 2018).

Concurrently, the ensemble methods have been arising as a tool to improve the accuracy
in classification models. The combination of singular models can enhance predictive power and
increase its generalization capacity (Van Wezel and Potharst, 2007). There are two main classes
of ensemble algorithms: bagging (Breiman, 1996) that uses independent bootstrap samples to
create multiple models and built a final classifier combining them and boosting algorithms
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(Freund et al., 1999) that built sequential models to assign different weights relying on their
performance.

The literature already proposed bagging methods jointly with the support vector machine
algorithm (Kim et al., 2002) as a methodology of increasing its accuracy (ACC). Wang et al.
(2009) realized an empirical study of Bagged SVM and showed that the technique performs
as well or better than other methods with a relatively higher generality. Moreover, different
applications of bagged SVM are reported, e.g. breast cancer prediction (Huang et al., 2017;
Wang et al., 2018), credit score modelling (Zhou et al., 2010), gene detection (Tong et al., 2013),
spatial prediction of landslides (Pham et al., 2018), bacterial transcription start sites prediction
(Gordon et al., 2005), text speech recognition (Lei et al., 2006) and membership authentication
(Pang et al., 2003).

Despite the diverse number of works that present the bagging based on support vector
machine classifiers, none of them presents an optimal framework to choose which kernel function
will be used in the ensemble classifier. The choice of the kernel function, as their hyperparameters,
has a crucial impact on the accuracy of the technique (Jebara, 2004). Generally, this selection
is supported by a grid search that runs all functions and their parameter combinations to select
which one has the lowest generalization error rate. Random Search (Bergstra and Bengio, 2012)
is another approach to tuning the hyperparameters, where the parameter configurations are
randomly chosen until a budget B is exhausted. Besides these, Tree-Structured Parzen Estimator
(Bergstra et al., 2011), and Simulated Annealing (Kirkpatrick et al., 1983) are optimization
structures used in tuning workflow too. However, all of them can be computationally expensive
and slow, making them infeasible to use.

The kernel methods, e.g.: Kernelized Support Vector Machines, can be considered as non-
parametric machine learning models which are useful to capture the non-linear behavior, beyond
their strong theoretical properties. However, they have some problems to be applied to large-
scale data sets since their time and memory demand, that is at least n2, where n is the number
of observations. Recent works solve the problem of computational limitations through the use of
Nyström method (Williams and Seeger, 2001; Smola and Schölkopf, 2000) or random features.
Both of them have their specific versions for support vector machine (Sun et al., 2018; Li et al.,
2016), and represents a solid advance in those techniques.

This work introduces a novel method that presents a solution for the choice of kernel
function to be used in the bagged supported vector machine, using an alternative to the open
problem of hyperparameters’ selection which has an adequate computational time and robust
accuracy power, hereafter, the Random Machines (RM). The method received this name because
it uses random kernel choice for each model that composes the bagged support vector machine
method, besides proposing weights to these classifiers, increasing the accuracy and lowering
the correlation of the final model. The result was validated over simulation studies and on 27
different benchmarking datasets.

The following paper is organized on the ensuing outline. Section 2 presents a theoretical de-
scription about the support vector machine method, proposed by (Cortes and Vapnik, 1995), the
challenges on the selection of hyperparameters and some traditional kernel functions; Section 3
presents a general description of the bagging algorithm and bagged SVM; Section 4 presents how
the proposed random machines approach works in detail, followed by the simulations studies in
Section 5, and applications in real data in Section 6. Section 7 shows an empirical justification of
why the method works that proves the consistency of the technique. Finally, in Section 8, final
considerations regarding the improvements and limitations that can be explored in this novel
approach.
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2 Support Vector Machines
Support vector machines (Cortes and Vapnik, 1995) have been introduced for solving classifi-
cation problems. The overall idea of the technique is to calculate a hyperplane that separates
observations between two classes, maximizing the distance between the support vectors.

Supposing a training sample given by {xi, yi} with i = 1, . . . , n observations, where xi the
independent variable and yi the dependent one, given by yi = {−1, 1}, where yi = 1 represents
that the observation belongs to a positive class, while yi = −1 is the negative one. If the training
sample is linear separable, the hyperplane that separate these two classes is represented by

w · xi+b = 0

where w is the vector of weighted parameters, x is the vector of input variables and b the offset
parameter.

In order to find such optimal hyperplane the estimation of w and b is taken in order to
maximize the distance between the support vectors (Boser et al., 1992; Cortes and Vapnik,
1995), following the restrictions of yi(w ·xi + b) � 1, if yi belongs to the positive class, therefore,
yi = 1, and yi(w · xi + b) � −1, otherwise yi = −1. These equations are expressed by

yi(w · xi + b) − 1 � 0 (1)

where dot product represents the projection of each instance in the hyperplane.
The distance is given by 2

||w|| , to maximize it is necessary to solve a convex problem given
by

min
1

2
||w||2 (2)

following the constraints given by the Equation (1). The cost function which will be minimized
is defined by the Lagrangian multipliers, in Equation (3).

L(w, b, α) = 1

2
||w||2 −

n∑
i=1

αi[yi(w · xi + b) − 1] (3)

where α is vector of the αi Lagrangian Multipliers.
There are cases where the training data cannot be separated without error, as pointed out

by Cortes and Vapnik (1995). In such a case, it is needed to construct a soft margin separator
by inputting slack variables (εi). Therefore, a transformation in the Equation (2) was needed
(Cortes and Vapnik, 1995), and then, it becomes

min
1

2
||w||2 + C

n∑
i=1

εi (4)

where C > 0 is a regularization parameter. The constraints become yi(w · xi + b) − (1 − εi) � 0
and εi � 0 for i = 1, . . . , n. And the cost function, which will be minimized, becomes

L(w, b, α, r) = 1

2
||w||2 + C

n∑
i=1

εi −
n∑

i=1

αi[yi(w · xi + b) − 1 + εi] −
n∑

i=1

riεi (5)



412 Ara, A. et al.

The solution considering the Lagrangian dual optimization for the soft margin problem
(Fletcher, 1987) is given by

maximize
α

⎛
⎝ n∑

i

αi − 1

2

n∑
i

n∑
j

αiαjyiyixi · xi

⎞
⎠

subject to
n∑
i

αiyi = 0,

C − αi − ri = 0,

0 � αi � C,

ri � 0

(6)

This approach of SVM works well to linearly classification groups and problems. In the
presence of non-linearity, it may be used the kernel trick, based on Mercer’s Theorem. This
trick can be as the procedure of instead considering the input space, it’s considered higher
feature spaces, where the observations could be linearly separable through the following function
K(xi, xj) = φ(xi) · φ(xj) that replaces the inner product in Equation (6).

The functions K(x, y) = φ(x) · φ(y) are usually defined as the semidefinite kernel functions
(Courant and Hilbert, 1953). Several types of kernel functions are employed in different classifi-
cation tasks. The choice of distinct kernel functions provides different nonlinear mappings and,
the performance of the resulting SVM often depends on the appropriate choice of the kernel
(Jebara, 2004). Some works that compare the efficiency for each kernel function used in classi-
fication models (Hussain et al., 2011; Min and Lee, 2005), demonstrating that select the kernel
function is an important aspect of obtaining the best model. There are some kernel functions
in the general framework for SVM, which were used in this paper, that is considered the most
common. They are presented in Table 1, where γ ∈ R

+ and d ∈ N. Despite several other kernel
functions that also could be considered, as the hyperbolic tangent kernel and sigmoid kernel, in
this paper only these four were used to keep it as a baseline for the proposed model.

The hyperparameter d, can be defined as the degree of the polynomial kernel, and generally,
has a standard value of 2 and defined the complexity of the feature space transformation. On
the other hand, the γ values can scale the distance measures in Gaussian and Laplacian kernels,
or the dot products in linear and polynomial functions.

Nevertheless, find out which is the best kernel by grid search, or other exhaustive methods,
can be an expensive and appalling computational problem (Chapelle and Vapnik, 2000). To deal
with this issue many works have tried to develop a methodology that can improve the selection
of the best kernel function (Jebara, 2004; Ayat et al., 2005; Wu et al., 2009; Friedrichs and
Igel, 2005; Cherkassky and Ma, 2004). In this work we propose a novel approach that makes it

Table 1: Kernel functions.
Kernel K(x,y) Parameters

Linear Kernel γ (x · y) γ

Polynomial Kernel (γ (x · y) + ω)d γ , d

Gaussian Kernel e−γ ||x−y||2 γ

Laplacian Kernel e−γ ||x−y|| γ
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unnecessary to perform a grid search, or another tuning algorithm, to choose a single specific
kernel function when using the trick kernel on bagging procedure.

3 Bagging Procedure
Bagging is an acronym of Bootstrapping Aggregation and was firstly proposed by Breiman
(1996). Bagging is an ensemble method that can be used for different prediction tasks. In general,
the Bootstrapping Aggregating generates datasets by random sampling with replacement from
the training set with the same size n, also known as bootstrap samples. Then, each model hj (xi)

is trained independently for each bootstrapping sample bj , ∀j ∈ {1, . . . , B}, where B is the
number of bootstrap samples. The final bagging model, for binary classification tasks, is given
by the following equation,

H(x) = sign

(
B∑

i=1

hi(x)

)
(7)

where hi(x) is the model generated to each bootstrap sample from i = 1, , . . . , B.
Another critical feature of Bagging classifier is the Out of Bag samples (Breiman, 1996).

For each bootstrap sample, around 37% of observations are not included. Therefore, those ob-
servations can be used as a test sample since they were not used to train the bootstrap models
and received the name of Out of Bag set.

3.1 Bagging SVM
In the bagging classifier, the function hi(x) from Equation (7) can be any model. One possibility
is to use the SVM as the base classifier (Kim et al., 2002) to improve it is accuracy. The
applications of the bagged SVM for predictive tasks are wide, and empirical studies (Wang et al.,
2009) demonstrated that the bagged version of the support vector machine algorithm increased
the accuracy and it is generalization capacity. Moreover, some of them already presented some
modifications using the SVM in bagging context as (Lin and Li, 2008), and others implemented
some libraries as EnsembleSVM, that make it short to use simple ensemble methods with SVM
(Claesen et al., 2014).

Despite the numerous works using bagged SVM, none of them present a general framework
to deal with the choice of the best kernel function that will be used in the base-learners, choos-
ing it by trial evaluation or by a grid search. As this procedure is computationally expensive
(Chapelle and Vapnik, 2000), this paper proposed a novel bagging approach that can overcome
the difficulty to choose the best kernel function, besides showing an improvement in the accu-
racy of classification models by combining several different SVM models by varying the kernel
functions: the random machines (RM), exposed in next section.

4 Random Machines
Considering a training set {(xi, yi)}ni=1 with xi ∈ R

p and yi ∈ {−1, 1}, ∀i = 1, . . . , n. The kernel
bagging method initializes by training single models hr(x), where r = 1, . . . , R, where R is the
total number of different kernel functions that could be used in support vector machine models.
For example, using the functions of Table 1, we could set R = 4, and a define h1 as SVM with
Linear kernel, h2 as SVM with Polinomial kernel, h3 as SVM with Gaussian kernel and h4 as
SVM with Laplacian kernel. The value of R, just depends on the number of kernel functions
that will be selected in the model, also can be a hyperparameter to be settled in the method.
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Each model is validated for a validation set {(xk, yk)}Lk=1, and the accuracy (ACCr) is calcu-
lated for each model, ∀r = 1, . . . , R, in which R means the numbers of kernel functions that will
be used. Therefore, the probabilities, λr , are given by the Equation (8) for each kernel function

λr =
log

(
ACCr

1−ACCr

)
∑R

i=1 log
(

ACCi

1−ACCi

) (8)

with ∀r = 1, . . . , R. Despite this probability can be sensible to the initialization of the kernels,
the main function of the parameter λr is to avoid that kernel with very poor performance appears
more during ensemble process.

Afterwards, B bootstrap samples are sampled from the training set. A support vector ma-
chine model gb is trained for each bootstrap sample, b = i, . . . , B and the kernel function that
will be used for gk will be determined by a random choice with probability λr, ∀r = 1, . . . , R.
The probabilities λr are higher if determined kernel function used in hr(x) predicted correctly
observations from test set. Consequently, the kernel functions with higher accuracy will appear
often when the random kernel selection for each bootstrap model is made. If any kernel function
applied in hr(x) does not do better than a random choice, then ACCr is closer to 0.5 and the
probability of select that kernel function is next to zero. The cases where ACCr < 0.5, the
predictions of the models hr(x) are swapped to guarantee that the Equation (8) will produce
valid probabilities. Subsequently, a weight wi is assigned to each bootstrap model calculated for
gi ∀i = 1, . . . , B. The weight is given by the Equation (9).

wi = 1

(1 − �i)2
, i = 1, . . . , B, (9)

where �i is the accuracy of model’s prediction gi calculated on Out of Bag Sample (OOBGi)
obtained from i bootstrap sample ∀i = 1, . . . , B as test sample. This step is important because
it yields a robust validation for each kernel predictor since is validated over several bootstrap
samples.

The final classification is held in Equation (10).

G(xi) = sgn

⎛
⎝ B∑

j

wjgj (xi)

⎞
⎠ , i = 1, . . . , N (10)

All the modeling process is summed up in the pseudo-code exposed in Algorithm 1. The entire
random machines are schematically presented in Figure 1.

Algorithm 1 RM.
Input: Training Data, Test Data, B, Kernel Functions
for each Kernel Functionr do

Calculate the model hr

Calculate the accuracy αr

Calculate the probabilities λr

Generate B bootstrap samples
for b in B do

Model gb(xi) by sampling a kernel function with probability λr

Assign a weight �b using OOBGb samples.
Calculate G(x)
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Figure 1: Workflow followed by the random machines.

5 Artificial Data Application
In this section simulation studies were conducted in order to evaluate the efficiency of the
random machines applied to binary classification tasks. The other methods compared were:
Linear, Polynomial, Gaussian and Laplacian SVM, beyond their bagged versions, respectively.
A good variety between the simulated datasets is observed through three different scenarios of
data generation. The dimensionality (p) ranges from {2, 10, 50}, the number of observations (n)
ranges from {100, 1000, 10000}, and the proportion’s ratio between the two classes assume three
values {0.01, 0.1, 0.5}. The variation of p, n, and ratio verify if the method is consistent even in
different situations.

The generation from the Dataset 1 and Dataset 2 considers continuous explanatory vari-
ables (Breiman et al., 1998), were the observations belonging to each class follow a multivariate
distribution with their respective mean vector and covariate matrix. The Dataset 1 follows the
configuration that instances from Class A are sampled from a normal multivariate which has
mean vector μA = �0p and covariate matrix �A = 4Ip and the Class B instances are sampled
from a normal multivariate that has mean vector μB = �4p and covariate matrix �A = Ip. The
Dataset 2, has the same distribution with the exception that the mean vector for Class B is
given by μB = �2p. The difference between those two datasets relies on the difficulty to create
the hyperplane that separates the two classes since the Dataset 1 has observations from each
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group that are further away when compared with Dataset 2, making the first situation a simpler
classification case.

Dataset 3 considers a classification problem where a circle uniformly distributed is gener-
ated inside the middle of a p-dimensional cube. This dataset is fundamentally more complex to
realize a classification since it has a non-linear behavior.

In general, all considered datasets generate a non-linear classification task. However, data
sets 1 and 2 are simpler to classify because they are based on a separation of two normal
multivariate distributions with different vectors of means and different covariance matrices.
Dataset 2 has a greater distance between the mean vectors compared to Dataset 1. In contrast,
Dataset 3 deals with a ‘circle in a square problem’ which is a traditional example affected by of
curse of dimensionality. In this case, the mean vectors stand in the origin, and the data points
are uniformly distributed on the p-dimensional cube with corners +1, so the training samples
that fall outside the unit circle are more difficult to classify than samples near the center of
the feature space. In this situation, it is expected that all the predictor models have a better
predictive performance when p is small.

The performance of each model was estimated using values of True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN) obtained from a confusion matrix,
and therefore calculating the following metrics:

Accuracy (ACC): it measures the ratio of correctly classified observations to total obser-
vations from the sample. It is calculated by

ACC = T P + T N

T P + T N + FP + FN
(11)

Matthew’s Correlation Coefficient (MCC): introduced by Matthews (1975), is usually
used to evaluate the predictions made from the model (Baldi et al., 2000) and it is defined by,

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(12)

It can be considered an accurate coefficient, since it penalizes the FP and FN predictions, besides
being considered a better evaluator if the classes are of very different sizes (Boughorbel et al.,
2017). Its range varies from [−1, 1], in which 1 represents a perfect prediction, 0 no better than
a random choice, and −1 a complete reverse classification.

In order to compare directly with the accuracy, as the original scales between the metrics are
different, we proposed a modification to MCC. The transformation is given by uMCC = MCC+1

2
and results in a new evaluation metric: Uniform MCC (uMCC). The uMCC lies in the interval
[0, 1], where 1 represents a perfect prediction, 0 no better than a random prediction.

The validation technique used was the repeated holdout with 30 repetitions with a split ratio
of training-test of 70%–30%. The results are summarized in Tables 2 and 3 where all possible
combination of kernel functions and data sets setups is presented. The empty cells are related
to the smaller sample size n = 100, which provides in average only one observation to the target
class. The setup of hyperparameters was γ = 1, B = 100 and d = 2. Analyzing the results from
Table 2 and 3, it is possible to see that in most cases, the RM surpasses or equals the other
methods in all setups. For instance, in Dataset 3, where the nonlinear behavior is an essential
characteristic from the data, we can observe the RM overcomes the other classifiers as the
dimensionality of the data increases. This result may give indications of the good efficiency of the
proposed algorithm to deal with non-linearity when compared with the traditional approaches.
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Table 2: Summary of the simulation’s results for the Datasets 1 and 2.
Setup SVMlin SVMpoly SVMgaus SVMlap BSVMlin BSVMpoly BSVMgau BSVMlap RM

p Ratio ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC
Dataset 1 (n = 100)

2
.01 – – – – – – – – – – – – – – – – – –
.10 1.00 0.68 6.00 0.68 0.69 0.66 0.69 0.67 0.60 0.68 0.60 0.68 0.68 0.62 0.69 0.65 0.70 0.69
.50 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

10
.01 – – – – – – – – – – – – – – – – – –
.10 1.00 0.97 1.00 0.95 0.91 0.50 0.91 0.50 1.00 0.97 0.99 0.95 0.91 0.50 0.91 0.50 0.99 0.95
.50 1.00 1.00 1.00 1.00 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 1.00 1.00 1.00

50
.01 – – – – – – – – – – – – – – – – – –
.10 1.00 0.97 1.00 0.97 0.91 0.50 0.91 0.50 1.00 0.97 1.00 0.97 0.91 0.50 0.91 0.50 1.00 0.97
.50 1.00 1.00 1.00 1.00 0.49 0.56 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.54 1.00 1.00 1.00 1.00

Dataset 1 (n = 1000)

2
.01 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00
.10 0.99 0.96 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.96 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.97
.50 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

10
.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.10 1.00 1.00 1.00 1.00 0.90 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.50 1.00 1.00 1.00 1.00
.50 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00

50
.01 1.00 1.00 1.00 1.00 0.99 0.98 1.00 0.99 1.00 0.98 1.00 1.00 1.00 0.99 0.99 0.98 1.00 1.00
.10 1.00 1.00 1.00 1.00 0.90 0.50 0.90 0.50 1.00 1.00 1.00 1.00 0.90 0.50 0.90 0.50 1.00 1.00
.50 1.00 1.00 1.00 1.00 0.48 0.51 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.51 1.00 1.00 1.00 1.00

Dataset 1 (n = 10000)

2
.01 1.00 1.00 1.00 1.00 0.98 0.51 0.99 0.50 1.00 0.99 1.00 0.99 0.99 0.50 0.99 0.50 1.00 1.00
.10 0.99 0.96 1.00 0.97 0.99 0.97 0.99 1.00 1.00 0.96 0.96 0.97 0.99 0.97 0.98 0.99 1.00 1.00
.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10
.01 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 1.00 0.99 1.00 1.00 0.99 0.50 0.99 0.50 1.00 1.00
.10 1.00 1.00 1.00 1.00 0.91 0.60 1.00 1.00 1.00 1.00 1.00 0.90 0.90 1.00 1.00 1.00 1.00 1.00
.50 1.00 1.00 1.00 1.00 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.80 0.90 0.87 1.00 1.00

50
.01 0.99 0.50 0.99 0.99 0.99 0.50 0.99 0.50 1.00 1.00 1.00 1.00 0.99 0.50 0.99 0.50 1.00 1.00
.10 1.00 1.00 1.00 1.00 0.90 0.60 0.90 0.60 1.00 1.00 1.00 1.00 0.52 0.60 0.57 0.55 1.00 1.00
.50 1.00 1.00 1.00 1.00 0.61 0.58 1.00 1.00 1.00 1.00 1.00 1.00 0.62 0.61 1.00 1.00 1.00 1.00

Dataset 2 (n = 100)

2 .01 – – – – – – – – – – – – – – – – – –
.10 0.96 0.86 0.96 0.86 0.95 0.80 0.96 0.86 0.96 0.88 0.96 0.87 0.94 0.76 0.95 0.82 0.96 0.87
.50 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89

10
.01 – – – – – – – – – – – – – – – – – –
.10 0.99 0.93 0.95 0.78 0.91 0.50 0.91 0.50 0.98 0.90 0.96 0.79 0.91 0.50 0.91 0.50 0.96 0.83
.50 0.93 0.94 0.94 0.94 0.85 0.87 0.98 0.98 0.94 0.94 0.94 0.95 0.81 0.85 0.98 0.98 0.96 0.96

50
.01 – – – – – – – – – – – – – – – – – –
.10 1.00 0.97 0.96 0.81 0.91 0.50 0.91 0.50 1.00 0.97 0.94 0.69 0.91 0.50 0.91 0.50 0.99 0.92
.50 1.00 1.00 0.88 0.90 0.47 0.54 0.83 0.88 1.00 1.00 0.81 0.84 0.53 0.53 0.76 0.77 1.00 1.00

Dataset 2 (n = 1000)

2
.01 0.99 0.98 1.00 0.98 1.00 0.62 1.00 0.56 0.99 0.87 0.99 0.51 0.98 0.52 0.99 0.51 1.00 0.82
.10 0.94 0.79 0.94 0.82 0.94 0.81 0.94 0.81 0.94 0.79 0.94 0.82 0.94 0.81 0.94 0.82 0.94 0.82
.50 0.83 0.83 0.86 0.86 0.86 0.87 0.86 0.86 0.83 0.83 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

10
.01 0.99 0.98 1.00 0.98 1.00 0.50 1.00 0.52 1.00 0.99 1.00 0.99 1.00 0.50 0.99 0.61 1.00 1.00
.10 1.00 0.99 0.99 0.96 0.90 0.50 1.00 0.99 1.00 0.99 0.99 0.97 0.90 0.50 0.98 0.93 1.00 0.99
.50 0.98 0.98 0.99 0.99 0.92 0.93 1.00 1.00 0.98 0.98 0.99 0.99 0.91 0.92 1.00 1.00 1.00 1.00

50
.01 1.00 0.98 1.00 0.99 1.00 0.52 1.00 0.54 1.00 0.98 1.00 0.99 0.99 0.52 0.98 0.54 1.00 1.00
.10 1.00 1.00 1.00 1.00 0.90 0.50 0.90 0.50 1.00 1.00 1.00 0.99 0.90 0.50 0.90 0.50 1.00 1.00
.50 1.00 1.00 1.00 1.00 0.48 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.52 1.00 1.00 1.00 1.00

Dataset 2 (n = 10000)

2
.01 1.00 1.00 1.00 1.00 0.99 0.50 0.99 0.50 1.00 0.99 1.00 1.00 0.99 0.50 0.99 0.50 1.00 1.00
.10 0.92 0.91 0.99 0.95 0.93 0.95 0.99 0.92 0.92 0.92 0.91 0.95 0.91 0.87 0.91 0.87 0.92 0.93
.50 0.97 0.97 0.93 0.92 0.94 0.95 0.95 0.93 0.92 0.91 0.93 0.92 0.91 0.94 0.95 0.96 0.99 0.98

10
.01 1.00 0.98 1.00 0.99 1.00 0.92 1.00 0.91 1.00 0.99 1.00 1.00 0.99 0.50 0.99 0.50 1.00 1.00
.10 0.95 0.89 0.99 0.90 0.90 0.67 0.92 0.61 0.92 0.90 0.95 0.64 0.90 0.81 0.92 0.78 0.99 0.95
.50 0.95 0.94 0.95 0.93 0.95 0.91 0.95 0.90 0.95 0.92 0.95 0.91 0.99 0.98 0.95 0.95 1.00 1.00

50
.01 0.99 0.50 1.00 1.00 0.99 0.50 0.99 0.50 0.99 0.50 1.00 1.00 0.99 0.50 0.99 0.50 1.00 1.00
.10 0.75 0.94 0.95 0.93 0.95 0.91 0.95 0.90 0.95 0.92 0.95 0.91 0.99 0.98 0.95 0.95 0.99 0.99
.50 0.95 0.96 0.97 0.95 0.97 0.92 0.95 0.90 0.95 0.92 0.95 0.91 0.66 0.68 0.65 0.65 1.00 1.00
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Table 3: Summary of the simulation’s results for the Dataset 3.
Setup SVMlin SVMpoly SVMgaus SVMlap BSVMlin BSVMpoly BSVMgau BSVMlap RM

p Ratio ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC ACC uMCC
Dataset 3 (n = 100)

2
.01 – – – – – – – – – – – – – – – – – –
.10 0.62 0.61 0.86 0.86 0.66 0.70 0.64 0.72 0.59 0.63 0.78 0.80 0.64 0.69 0.63 0.70 0.78 0.81
.50 0.56 0.58 0.97 0.97 0.92 0.93 0.92 0.93 0.58 0.60 0.96 0.96 0.92 0.92 0.92 0.93 0.95 0.95

10
.01 – – – – – – – – – – – – – – – – – –
.10 0.76 0.78 0.58 0.62 0.46 0.57 0.47 0.57 0.71 0.74 0.53 0.57 0.57 0.58 0.58 0.59 0.69 0.71
.50 0.49 0.50 0.68 0.69 0.46 0.54 0.64 0.70 0.52 0.53 0.68 0.68 0.52 0.53 0.61 0.68 0.68 0.70

50
.01 – – – – – – – – – – – – – – – – – –
.10 0.52 0.55 0.46 0.50 0.41 0.53 0.53 0.65 0.53 0.58 0.46 0.50 0.47 0.51 0.58 0.63 0.57 0.62
.50 0.58 0.59 0.58 0.61 0.45 0.52 0.54 0.59 0.63 0.63 0.55 0.58 0.52 0.51 0.57 0.57 0.69 0.70

Dataset 3 (n = 1000)

2
.01 0.99 0.50 0.99 0.50 0.99 0.50 0.99 0.50 1.00 0.50 1.00 1.00 1.00 0.75 1.00 0.50 1.00 1.00
.10 0.48 0.51 0.99 0.99 0.94 0.94 0.95 0.95 0.52 0.53 0.99 0.99 0.95 0.95 0.95 0.95 0.98 0.98
.50 0.49 0.51 0.99 0.99 0.98 0.98 0.98 0.98 0.52 0.53 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.99

10
.01 0.99 0.50 1.00 0.99 1.00 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.51 1.00 0.51 1.00 1.00
.10 0.54 0.55 0.78 0.78 0.48 0.52 0.79 0.80 0.54 0.54 0.77 0.77 0.50 0.53 0.78 0.79 0.81 0.82
.50 0.50 0.51 0.95 0.95 0.76 0.78 0.92 0.92 0.51 0.51 0.95 0.95 0.75 0.77 0.92 0.92 0.96 0.96

50
.01 0.99 0.55 0.99 0.50 1.00 0.51 1.00 0.50 1.00 0.50 1.00 0.50 0.99 0.50 0.99 0.50 1.00 0.50
.10 0.46 0.47 0.55 0.57 0.46 0.50 0.49 0.53 0.47 0.47 0.54 0.58 0.50 0.50 0.52 0.53 0.59 0.61
.50 0.49 0.49 0.72 0.72 0.49 0.50 0.67 0.70 0.48 0.49 0.70 0.72 0.50 0.50 0.61 0.63 0.83 0.84

Dataset 3 (n = 10000)

2
.01 0.99 0.50 0.99 0.98 1.00 0.51 1.00 0.50 1.00 0.99 0.99 0.93 0.99 0.93 0.99 0.95 1.00 0.97
.10 0.54 0.52 0.62 0.61 0.92 0.94 0.92 0.91 0.55 0.51 0.81 0.92 0.94 0.93 0.92 0.91 0.95 0.94
.50 0.55 0.53 0.64 0.63 0.95 0.94 0.96 0.92 0.56 0.52 0.87 0.89 0.91 0.89 0.92 0.89 0.99 0.98

10
.01 0.99 0.50 0.99 0.89 0.99 0.50 0.99 0.50 0.99 0.50 1.00 0.89 0.99 0.50 0.99 0.50 1.00 0.90
.10 0.52 0.51 0.62 0.61 0.92 0.90 0.84 0.80 0.54 0.51 0.87 0.89 0.83 0.80 0.82 0.89 0.91 0.90
.50 0.54 0.52 0.62 0.61 0.92 0.94 0.92 0.91 0.55 0.52 0.81 0.92 0.92 0.90 0.95 0.91 0.95 0.94

50
.01 0.90 0.50 1.00 0.50 0.99 0.50 0.50 0.50 0.50 0.50 0.99 0.50 0.99 0.50 0.99 0.50 0.99 0.51
.10 0.53 0.50 0.62 0.61 0.82 0.84 0.82 0.81 0.55 0.51 0.81 0.82 0.84 0.83 0.80 0.79 0.89 0.87
.50 0.81 0.51 0.63 0.62 0.85 0.83 0.84 0.83 0.52 0.50 0.81 0.82 0.81 0.83 0.81 0.82 0.92 0.90

Table 4: Description of the 27 binary data sets.
ID Data Set #Instance #Features Class Proportion ID Data Set #Instance #Feature Class Proportion
1 haberman 306 3 81/225 15 audit risk 775 26 305/470
2 heart statlog 270 14 120/150 16 adult autism 609 20 180/429
3 hungarian 261 10 98/163 17 banknote 1372 4 610/762
4 hepatitis 80 19 33/47 18 transfusion 748 4 178/570
5 liver disorders 345 6 145/200 19 caesarian 80 4 34/46
6 parkinsons 195 22 48/147 20 thoraric 470 16 70/400
7 sonar 208 60 97/111 21 circles 100 2 50/50
8 column 2C 310 6 110/210 22 spirals 500 2 250/250
9 ionosphere 351 33 126/225 23 australian 690 14 307/383
10 spam 4601 57 1813/2788 24 tic tac toe 958 3 332/626
11 dataR2 116 9 52/64 25 german 1000 24 300/700
12 kidney disease 155 24 41/114 26 sick 2643 31 212/2431
13 clean 476 168 207/269 27 vehicle 846 18 218/628
14 whosale 440 7 142/298

6 Real Data Application
Our methodology was applied on 27 benchmarking datasets from the University of California
Irvine (UCI) Repository (Dua and Graff, 2017) to evaluate its performance. The datasets present
a wide variety in the number of observations, dimensionality, and type of data. All of them
represent a binary classification task (i.e.: two classes only), and no one of them presented
missing values. Table 4 summarizes all datasets considered. The continuous features were scaled
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Figure 2: Proportion of the number of times which a method had greater or equal accuracy than
the others. The proportion summarizes the applications over all 27 data sets and 30 holdout
repetitions. Is clear the superiority of the random machines when it is compared with the other
models.

to zero mean and unit variance, except the discrete features, which were preprocessed by a one-
hot-encoding transformation. The validation technique is also used as the repeated holdout with
30 repetitions with a split ratio of training-test of 70%–30%.

The random machines was compared with the standard SVM and bagged SVM using each
single kernel function presented in Table 1. Without losing generality, the chosen parameters
were: the cost parameter C = 1, the number of bootstrap samples B = 100, the degree of
polynomial kernel d = 2, and the hyperparameter γ from the Laplacian and Gaussian kernel
γ = 1. The result is summarized in the Figure 2 considering the accuracy and in the Figure 3
considering the uMCC.

As shown in Figure 2, the RM demonstrates higher accuracy than the other bagged support
vectors using unique kernel functions. Comparing the RM with the traditional bagged SVM,
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Figure 3: Proportion of the number of times which a method had greater or equal uMCC than
the others. The proportion summarizes the applications over all 27 datasets and 30 holdout
values. Is clear the superiority of the random machines when it is compared with the other
models.

it is beaten almost 80% of times considering the Kernel Linear Bagging, 81% for the Kernel
Polynomial Bagging, 94% for the Gaussian Bagging, and 87% for the Laplacian Kernel Bagging.
This outcome shows off that the random weighted choice of the kernels functions improved,
generally, the accuracy of the predictions from the model. The difference is even more significant
when the random machines are compared with the singular SVM, where the RM is more accurate
82% of times considering the Kernel Linear, 81% for the Kernel Polynomial, 94% for the Gaussian
Bagging, and 84% for the Laplacian Kernel.

The same behavior is observed when it is considered the Uniform Matthew’s Correlation
Coefficient, in which the RM presents a robust superiority when compared to other methods. An-
alyzing the RM with the traditional bagged SVM is beaten almost 74% of times considering the
Kernel Linear Bagging, 71% for the Kernel Polynomial Bagging, 92% for the Gaussian Bagging,
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Figure 4: Summary of the ACC applied over 27 real datasets with the variation of kernel func-
tion’s parameter γ .

and 84% for the Laplacian Kernel Bagging. It also happens when the RM is compared with the
singular SVM, where the RM is more accurate 82% of times considering the Kernel Linear, 81%
for the Kernel Polynomial, 94% for the Gaussian Bagging, and 84% for the Laplacian Kernel.

The scheme also avoids the problem of the selection of the best kernel function, since is
not necessary to perform a grid-search among all the different kernel functions and define which
is one has lower test error, which is the general framework adopted. Therefore, in the RM
algorithm, the efficiency is increased, and computational cost is reduced.

As the hyperparameter tuning is a remarkable question in the procedure of the support
vector machine vector, the value of γ , hyperparameter from kernel functions, was changed to
study the variation and the behavior of random machines when this change exists. The variation
experiment relies on the interval of values γ = {2−3, 2−2, 2−1, 20, 21, 22, 23}. The result is showed
in Figure 4 and 5 in which it is possible to see that the RM surpassed the other bagging kernels
all the times. As mentioned before the choice of these hyperparameters, as the kernel function,
has a direct impact on the model performance, and the results reinforce that RM gives a good
and consistent result independent for all γ values. In fact, it is possible to perform support
vector machine tuning procedure using grid-search methods. The choice of the interval for the
hyperparameter values is a crucial point to designate the computational cost of the traditional
support vector machine modeling. In contrast, the RM model is essentially free of the tuning
process and always more efficient than evaluate its independent bagging models.
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Figure 5: Summary of the uMCC applied over 27 real datasets with the variation of kernel
function’s parameter γ .

7 Performance and Agreement Evaluation
In this section, we justify the reason why the random machines are an ensemble method that can
improve the predictive power for classification tasks. The main idea of the random selection of
the kernel function is to select different functions that belong to a Reproducing Kernel Hilbert
Space (RHKS). The objective of this random sample is to aim a lower correlation between
classifiers that compose the RM, and a high strength of them since these characteristics improve
the bagging algorithm, as is shown in Breiman (2001).

The idea of the strength of a model relies on how well a model correctly predicts a new
observation, i.e.: its predictive capacity. On the other hand, the correlation between models
consists of how much they are similar. A method to estimate the correlation between classification
models is to calculate the area from decision boundaries that overlaps among them (Turney,
1995). Ho (1998), defines the similarity (also called as agreement) of two models as the number
of observations that are equally labeled with the same class, and proposes that it can be estimated
through a random sample with n observations, by the Equation (13).

ŝi,j = 1

n

n∑
k=1

f (xk) (13)
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Table 5: Summary of accuracy and agreement means to each method.

Circles Data Set
Method

BSVM.Lin BSVM.Pol BSVM.Gau BSVM.Lap RM

p ACC AGR ACC AGR ACC AGR ACC AGR ACC AGR

2 0.54 0.59 0.98 0.98 0.97 0.97 0.97 0.97 0.99 0.96
10 0.49 0.64 0.95 0.92 0.74 0.72 0.91 0.91 0.96 0.84
30 0.49 0.49 0.78 0.78 0.51 0.59 0.87 0.87 0.94 0.67
50 0.55 0.67 0.71 0.71 0.49 0.61 0.57 0.62 0.79 0.62

where

f (xk) =
{

1, if gi(xk) = gj (xk)

0, otherwise

This measure can be used as a correlation metric between models.
To evaluate the correlation and strength of the RM in comparison with the traditional

bagged version of SVM, the method was applied over the Circles database that was generated
under the same configuration of Dataset 3 presented in Section 5. The similarity of each method
was estimated using the average of the similarity ŝi,j , ∀i �= j and i, j = 1, . . . , B, over fixed k
points generated by a Monte Carlo’s simulation. The accuracy was used in order to measure the
strength of the model.

The dataset was modified in three configurations, changing the dimension p in a range
corresponding to p = {2, 10, 30, 50}. The average similarity was calculated using k observations,
where k = 1000×p. Both accuracy and agreement were calculated using a 30 Repeated Holdout
validation set with split ratio of 70–30% training-test. The parameters of the methods were:
B = 100, γ = 1, C = 1.

One of the main results can be represented in the Figure 6 where the circles database
with p = 2 was used as example. In the Figure 6 (a) is shown a plot from the observations,
where each color represents a class. Panel (b) represents the final decision boundary of the
RM, showing that the model captures the behavior from the observations. Panel (c) shows
examples of the decision region generated by a bootstrap model gi for each kernel. It is clear
that different kernel functions used in each SVM model produce diverse decision boundaries, and
that difference implies a reduction of the correlation, resulting in the decreasing of generalization
error.

All the results are summarized in Table 5 where it is presented the mean accuracy and
agreement for each data set for all configurations of the circles.

In general, it is remarkable that the higher predictive power of the RM when compared to the
other methods in all cases. Moreover, beyond the great accuracy, it is possible to see that the RM
shows simultaneously a lower agreement when compared with the other methods that have an
excellent performance. Although sometimes the BSVM.Lin and BSVM.Gau produces a desirable
low agreement, they are considered weaker, since they have a lower accuracy when compared
with the others. As Ho (1998) discussed, the accuracy of the models affects the agreement and
vice-versa, and optimizes both values simultaneously can be a challenging task. Generally, models
with high accuracy also result in large agreement values, as we can see in the results exhibited in
Table 5. On another hand, small values of accuracy produce lower agreement measures among
models. However, it is clear to notice that the random machines it is capable create a better
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Figure 6: The circles database where p = 2. Panel (a) show all the observations with the class
associated with each color. Panel (b) present the decision region given by the RM. Panel (c)
reveals the diversity of decision regions produced by each kernel function of bootstrap models
that composes the RM.

classification model (low generalization error) with both characteristics: low correlation and
great strength (predictive power).

These proprieties become better with higher dimensions as they can be observed in Table 5.
This difference is showed in Figure 7 that display the boxplots of the accuracy and agreement
for each method, reinforcing even more that the RM has both better proprieties, high strength,
and low agreement, than the other ones. Despite Figure 7 seems to demonstrate a large vari-
ance from RM, it is important to emphasize that those boxplots correspond to all the results
in all simulation setups and summarized in Table 5. The other support vector methods were
uniformly less able to predict the scenarios correctly. From Figure 4 and Figure 5 we can see
that the RM was evaluated exhaustively over 27 benchmarks and shown narrow standard devi-
ation.
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Figure 7: Boxplots of the accuracy and agreement for each method.

8 Final Considerations
The main contribution of this paper is to propose a novel learning method to do ensemble using
Support Vector Machine models that can enhance the accuracy from the conventional BSVM
predictions and solve the problem of choosing the best kernel function that should be used in the
traditional approach. Through the random machines, the combination of different SVM using
the different kernel functions states an approach that avoids the expensive computational cost
of doing a grid search between the kernel functions, besides improve the accuracy.

In order to quantify the computational reduction, suppose a number of B models calculated
in a traditional bagging procedure and R as the number of kernels functions that will be evaluated
and used in support vector models. In a traditional bagging algorithm using SVM as base
models the number of total models that will be calculated to obtain the bests results is given
by B × K, while using the random machines approach this number reduces to B + K. Using an
example of B = 100 and K = 400, we have that the traditional bagging algorithm would take
approximately four times the computational cost than the proposed random machines since the
ratio of calculated models is 400/104 (i.e.: four times faster).

Furthermore, results show a good behavior with different kernel hyperparameters in RM,
which provides a bagged-weighted support vector model with free kernel function choice. In this
way, as SVM is one of the most important and essential methods in machine learning with high-
performance capacity and power of generalization, the RM method can be viewed as an extension
of traditional SVM, giving an alternative solution to the hyperparameters choice problem. This
methodology can be explored in many other contexts, as well as be applied to any practical
machine learning problem. Future theoretical studies may be done regarding computational
cost, comparison with other traditional machine learning methods, and the use of other and
more kernel functions as well as other weights in the bagging phase.

Supplementary Material
The proposed model called Random Machines (RM) was also implemented in R language
and it can be used through the rmachines package, available and documented at GitHub
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https://github.com/MateusMaiaDS/rmachines. To a overall description of how to reproduce the
results from this article just access the README at https://mateusmaiads.github.io/rmachines/.
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