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ABSTRACT 

The shape parameter of a symmetric probability distribution is often more difficult to 

estimate accurately than the location and scale parameters. In this paper, we suggest an 

intuitive but innovative matching quantile estimation method for this parameter. The 

proposed shape parameter estimate is obtained by setting its value to a level such that the 

central 1-1/n portion of the distribution will just cover all n observations, while the 

location and scale parameters are estimated using existing methods such as maximum 

likelihood (ML). This hybrid estimator is proved to be consistent and is illustrated by two 

distributions, namely Student-t and Exponential Power. Simulation studies show that the 

hybrid method provides reasonably accurate estimates. In the presence of extreme 

observations, this method provides thicker tails than the full ML method and protect 

inference on the location and scale parameters. This feature offered by the hybrid method 

is also demonstrated in the empirical study using two real data sets. 
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1. Introduction 

The paralogistic distribution is a sub-model of the generalized beta family which was 

introduced by McDonald (1984). The probability density function (PDF) and the cumulative 

distribution function (CDF) of the paralogistic distribution are given respectively by: Fitting a 

parametric distribution to data sometimes results in a model that agrees well with the data in 

high density regions, but not so in low density regions. For unimodal distributions such as the 

normal and Student-t, these low density regions are known as the “tails” of the distribution. 

One reason why a model might fit poorly in the tails is that there are fewer data points in the 

regions, and therefore models are often chosen based on their ability to fit data near the mode. 

Another reason might be that the underlying distribution is usually more complicated than the 

parametric model selected. It is well known that fitting the data well in the tails can 

significantly improve the overall model fit. This can be intuitively explained by observing most 

QQ-plots in which discrepancies between observed and fitted lie mostly at the tails of a 

distribution. Figure 5 clearly demonstrates this idea. Therefore, heavy-tailed distributions are 

often used because they have flexible tails whose thicknesses are determined by their shape 

parameters. By adjusting the shape parameter, one fits a distribution which can accommodate 

extreme observations and protect inferences from the distorting effects of these extreme 

observation on the location and scale parameters. 

Parameters of a symmetric parametric model, including the shape parameter, can be 

estimated through the maximum likelihood (ML) method, moment method (MM), Bayesian 

method, etc. However, the MM may not be robust and the Bayesian method can be 

computational intensive. Moreover, in a full ML approach, the shape parameter is of- ten more 

difficult to estimate accurately than the location and scale parameters because the Newton-

Raphson (NR) or Fisher scoring procedures may sometimes fail due to non-differentiable 

loglikelihoods, arisen when the probability density functions (PDFs) have sharp peaks. This 

occurs for distributions such as exponential power (EP) when the shape parameter falls inside 

a certain range. Even if the loglikelihoods are differentiable, the functional part involving the 

shape parameter can be very complicated and hence the differentiation with respect to the 

shape parameter may require tedious working. These difficulties may be avoided using some 

flexible optimization algorithms such as the R Package optim but it may be computational 

intensive if a full search is required. On the other hand, the Expectation Maximization (EM) 

type algorithms may have a slow convergence rate. 

Many researches apply the idea of matching moments to matching quantiles (MQ) in 

inference (see, for example, Karian and Dudewicz, 1999; Small and McLeish, 1994). Matching 

the extreme quantiles could be attractive in mimicking the behavior of a target distribution at 

its ends (tails) which is controlled by its shape parameter. As these tails play an important role 

in describing the extreme observations, it is natural to estimate the shape parameter by 

matching the sample quantile of the most extreme observation to its theoretical quantile. We 

propose a hybrid method combining the MQ method to estimate the shape parameter, with the 
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convenient ML method to estimate the location and scale parameters. Alternatively, Hill (1975) 

proposes measuring the tail thickness by approximating the tail cumulative distribution 

function (CDF) with a power function using extreme order statistics. This semi-parametric 

approach does not assume any global form of a distribution. Our approach is a full parametric 

approach and we estimate the tail index of a distribution not the tail CDF. We illustrate our 

methodology through two families of distributions with varying kurtosis; namely, the Student-

t and EP distributions. 

The rest of the paper is organized as follows. Section 2 introduces our proposed MQ 

method, provides a formal proof for its consistency property and reviews existing methods of 

inference under the two distributions: Student-t and EP distributions. Section 3 assesses the 

performance and robustness property of the proposed hybrid estimator through two simulation 

studies. Then in Section 4, the estimator is used to analyze two data sets and comparisons are 

made with some existing estimators. Finally, we conclude he paper by discussing its potential 

extension to the class of asymmetric distributions in Section 5. 

2 Methodology 

2.1 Matching quantile estimator 

Suppose we have a set of independent observations 𝑦𝑖, 𝑖 =  1, . . . , 𝑛 and they follow a 

certain distribution with location parameter µ, scale parameter σ and shape parameter θ. We 

propose a hybrid method to estimate µ, 𝜎|𝜃 using some convenient methods such as the ML 

and estimate θ|µ, σ using our proposed MQ method. These two estimation procedures are then 

iterated until convergence is attained. In the MQ step, we estimate the shape parameter θ to a 

certain level such that the upper 1/2𝑛 quantile, Q of the standardized distribution for 𝑧𝑖  =

 (𝑦𝑖 − µ
2)/𝜎2  matches the maximum absolute standardized residual 𝑧∗ = 𝑚𝑎𝑥𝑖 |𝑧𝑖|. Note 

that 𝑧∗ corresponds to the most extreme observation. Equivalently, we have 

𝜃 = {𝜃: 𝑄 1
2𝑛
= 𝑆−1 (

1

2𝑛
; 0,1, 𝜃) = 𝑧∗ } 

where S(·) is the survival function. The idea is illustrated in Figure 1. Empirically, each data 

point zi accounts for 1/n portion of the distribution and so the portion from the most extreme 

data to the end of that side of the distribution is 1/2n. This is clearly demonstrated in Figure 1 

by the proxy regularly spaced data denoted by solid circles. Essentially, θ is estimated such 

that the shaded area of the distribution will just cover all {𝑧𝑖} with 𝑄1/2𝑛 = 𝑧∗ = −𝑧(1) 

where z(k) is the k-th data value in ascending order. 

2.2 Consistency 

We show that our proposed MQ estimator is consistent. Assume that 𝑌𝑖, 𝑖 =  1, . . . , 𝑛, are 

independently and identically distributed from some probability distribution, which has a 

survival function 

                              𝑆(𝑦)  =  𝑃(𝑌 >  𝑦). 

We propose to use 𝑌(𝑛) =  𝑚𝑎𝑥(𝑌1, . . . , 𝑌𝑛) as the estimator for the upper quantile Q1/n 

=S−1(1/n), where S(·) is determined by the shape parameter of the distribution under 
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consideration. We show the consistency of the proposed estimator �̂�1/𝑛  =  𝑌 in the following 

Theorem: 

For some monotone function H(·), the ratio 
𝐻(𝑌(𝑛))

𝐻(𝑄1/𝑛)
converges to 1 in probability. 

Proof: Define SH (z) = P(H(Y ) > z) = S(H (z)) and recall we have 

                        P(Y (n) > y) = 1 − {1 − S(y)}n. 

Assume for now there exists a monotone function H(·) such that 

                          nSH ((1 + 𝜖)H(Q1/n)) → 0 

and 

                          nSH ((1 − 𝜖)H(Q1/n)) → ∞ 

for all 𝜖 > 0. Using the result 

(1 − 𝜆𝑛)
𝑛 → {

1  if 𝑛𝜆𝑛 → 0
0  if 𝑛𝜆𝑛 → ∞

 

and the assumption stated at the start of this proof, we have 

P (𝐻(𝑌(𝑛)) > (1 + 𝜖)𝐻 (𝑄1
𝑛
)) = 1 − {1 − 𝑆𝐻 ((1 + 𝜖)𝐻 (𝑄1

𝑛
))}

𝑛

→ 0 

and 

P(𝐻(𝑌(𝑛)) > (1 − 𝜖)𝐻(𝑄1/𝑛)) = 1 − {1 − 𝑆𝐻((1 − 𝜖)𝐻(𝑄1/𝑛))}
𝑛 → 1 

for all  𝜖 > 0. Putting these together, we have 

𝐻(𝑌(𝑛))

𝐻(𝑄1/𝑛)
→ 1 

in probability. To consider the existence of H(·), we write 

                                𝑆(𝑦)  =  𝑒−𝐻(𝑦), 

where the monotone function H(y) is the cumulative hazard function. So 

                             S−1(t) = H−1(− ln t) 

and hence H(Q1/n) = ln n. Now 

     nSH ((1+𝜖) H(Q1/n)) = nSH ((1+𝜖) ln n) = n exp{−H(H -1((1+𝜖) ln n))}. 

This is given by 

                         𝑛 × 𝑛−(1+ 𝜖)  →  0 as n → ∞. 

Similarly,  

             𝑛𝑆𝐻 ((1 − 𝜖) 𝐻(𝑄1

𝑛

))  = 𝑛 × 𝑛−1(1−𝜖) →∞   as n→∞. 

Hence H(·) exists and this completes the proof. 

We can now establish conditions under which the above implies 𝑌𝑛 /𝑄1/𝑛 → 1 in 

probability. For this, define S(z) = S (e ) , and so for some sequence 𝜖𝑛↓0 in probability, 

for which we assume 𝜖𝑛log n → 0 in probability, we have 
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𝐻(𝑌(𝑛))

𝐻(𝑄1/𝑛)
→ 1 

in probability. To consider the existence of H(·), we write 

𝑆(𝑦) = e−𝐻(𝑦)   

where the monotone function H(y) is the cumulative hazard function. So 

𝑆−1 (𝑡)  =  𝐻−1 (−𝑙𝑛𝑡) 

and hence 𝐻(𝑄1/𝑛 )  =  𝑙𝑛𝑛. Now 

𝑛𝑆𝐻 ( (1 +  𝜖)𝐻(𝑄 1/𝑛 ) )  =  𝑛𝑆𝐻 ( (1 +  𝜖)𝑙𝑛𝑛 )  =  𝑛𝑒𝑥𝑝{−𝐻(𝐻−1  ((1 +  𝜖)𝑙𝑛𝑛))}. 

This is given by 

𝑛 × 𝑛−(1+𝜖)  →  0 𝑎𝑠 𝑛 →  ∞. 

Similarly, 

𝑛𝑆𝐻 ( (1 − 𝜖)𝐻(𝑄1
𝑛
 ) )  =  𝑛 × 𝑛−(1−𝜖) →  ∞ 𝑎𝑠 𝑛 →  ∞. 

Hence H(·) exists and this completes the proof. 

We can now establish conditions under which the above implies Y(n) /Q 1/n→ 1 in 

probability. For this, define  �̃�(𝑧) =  𝑆−1 (𝑒−𝑧 ) ,  and so for some sequence 𝜖𝑛  ↓  0 in 

probability, for which we assume 𝜖𝑛logn → 0 in probability, we have 

𝑌(𝑛)

𝑄1/𝑛
=
 �̃�((1 + 𝜖𝑛)𝑙𝑜𝑔𝑛)

 �̃�(𝑙𝑜𝑔𝑛)
 

That 𝑌(𝑛) = �̃�((1 + 𝜖𝑛 )𝑙𝑜𝑔𝑛) for some sequence 𝜖𝑛 is derived as follows: Now for some 

sequence 𝜖𝑛 going to 0 we have 

𝐻(𝑌(𝑛))

𝐻(𝑄1/𝑛)
= 1 + 𝜖𝑛 

and 𝐻(𝑄1/𝑛 )  =  𝑙𝑜𝑔𝑛. So 

𝑌(𝑛) = 𝐻−1 ((1 + 𝜖𝑛 )𝑙𝑜𝑔𝑛)  = 𝑆((1 + 𝜖𝑛 )𝑙𝑜𝑔𝑛). 

Therefore, under the weak condition that 

�̃�′ (𝑧)/ �̃�(𝑧) 

is bounded as z →∞, we have that 𝑌(𝑛) /𝑄1/𝑛 →  1 in probability. This in turn implies, under 

continuity arguments, that the �̂� →𝜈0, the true parameter value, in probability. This is based 

on the continuity assumption, which is that if 𝜈𝑛 is a sequence such that 

𝑆𝜈𝑛
−1 (

1
𝑛)

𝑆𝜈0
−1 (

1
𝑛)
→ 1 

then 𝜈𝑛 → 𝜈0 . For example, if 𝑆𝜈 (𝑦)  =  𝑒𝑥𝑝(−𝜈𝑦) then 

𝑆𝜈𝑛
−1 (

1
𝑛)

𝑆𝜈0
−1 (

1
𝑛)
→
𝜈0
𝜈𝑛
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Now �̃�(z) is such that �̃�(0) = 0 and �̃�(∞) = ∞ and S is monotone. So, for example, assume 

�̃�(𝑧) =∑𝑎𝑗𝑧
𝑗

𝑀

𝑗=1

 

for some positive integer M, with the (aj ) such that �̃� is non-negative and increasing. 

Then, it is easy to show that 

𝑧�̃� ′ (𝑧)/ �̃�(𝑧)  →  𝑀𝑎𝑀 𝑎𝑠 𝑧 →  ∞. 

2.3 Two distributional examples 

2.3.1 Student-t Distribution 

The Student-t distribution is perhaps the most popular heavy-tailed distribution used in 

many statistical analyses. It contains normal distribution as the limiting distribution at one end 

and the Cauchy distribution at the other. Its PDF and CDF are given by 

𝑓𝑡(𝑦; 𝜇, 𝜎
2, 𝜈) =

Γ(
𝜈 + 1
2 )

Γ(
𝜈
2)√𝜋𝜈𝜎

[1 +
1

𝜈
(
𝑦 − 𝜇

𝜎
)2]−

𝜈+1
2  

and 

𝐹𝑡(𝑦; 𝜇, 𝜎
2, 𝜈) = 1 −

1

2
𝐼 𝜈
𝑦2+𝜈

(
𝜈

2
,
1

2
) 

 

respectively, where µ, σ and ν are the location, scale and shape parameters, Γ(·) is the gamma 

function, and Ix(a, b) is the incomplete beta function. The variance of the distribution is νσ2/(ν 

− 2), ν > 2 while the kurtosis is 3 + ν/(ν − 4), ν > 4. 

 

Literature on parameter estimation for the Student-t distribution has been long and rich in 

history. In the context of ML estimation, the parameters (µ, σ, ν) can be estimated jointly using 

the full ML approach (Model 1 or M1) with the NR or FS iterative algorithms. However, the 

convergence to the solutions depends on the model complexity and hence it cannot be 

guaranteed. In case of numerical issues in using the NR or FS algorithms, we recommend a 

general purpose optimization algorithm optim in the R package to search for the ML estimates 

of µ and σ. The package optim is based on Nelder-Mead (Nelder and Mead, 1965; default 

method), quasi-Newton and conjugate-gradient algorithms. NelderMead algorithm works 

reasonably well for non-differentiable functions but is relatively slow. Alternatively, Liu and 

Rubin (1995) propose the Expectation Conditional Maximization (ECM) algorithm, multi-

cycle version of the ECM (MCECM) algorithm, and Expectation Conditional Maximization 

Either (ECME) algorithm. Details of these estimators are given in Appendix A. We propose 

the hybrid method (M2) to estimate µ and σ conditional on ν using the ML method and ν 

conditional on µ and σ using our proposed MQ method. The ML estimation of (µ, σ|ν) is easier 

and more stable than the ML estimation of (µ, σ, ν) simultaneously. Figure 2 plotsν ˆ against 

z∗ for various sample sizes. 
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2.3.2  Exponential Power Distribution 

The EP distribution, also known as the generalized Gaussian distribution and generalized 

error distribution, is a good model for signal and noise in many applications of science and 

engineering, because it allows both positive kurtosis (leptokurtosis) and negative kurtosis 

(platykurtosis). The distribution has a PDF and CDF given by 

 

𝑓𝐸𝑃(𝑦; 𝜇, 𝜎
2, 𝛽) =

1

𝜎𝛽Γ(
𝛽
2)2

𝛽/2
exp (−

1

2
|
𝑦 − 𝜇

𝜎
|2/𝛽) 

and 

𝐹𝐸𝑃(𝑦; 𝜇, 𝜎
2, 𝛽) =

1

2
+
sgn (𝑦 − 𝜇)

2Γ(
𝛽
2)

𝛾(
𝛽

2
,
1

2
|
𝑦 − 𝜇

𝜎
|2/𝛽) 

respectively, where µ, σ and β are the location, scale and shape parameters, respectively, and 

γ(·, ·) is the lower incomplete gamma function. The PDF has a sharp peak at µ when β > 1 and 

hence is not differentiable at µ. For the range of β, some set β ∈ (0, 2] but others consider 

β > 0 (Mineo and Ruggieri 2005; Choy and Walker, 2003). As the EP distribution is symmetric, 

all odd central moments are zero while the even central moments are given by 

𝐸[(𝑌 − 𝜇)𝑟] = (2𝛽𝜎2)𝑟/2
Γ(
(𝑟 + 1)𝛽

2 )

Γ(
𝛽
2)

, 𝑟 = 2,4, … 

The distribution is leptokurtic for β > 1 and platykurtic for β < 1. The Laplace (β = 2) and 

normal (β = 1) distributions are two special cases of the EP distribution. Moreover, the EP 

distribution with β > 2 has higher kurtosis than the conventional EP distribution with β < 2.  

The ML and moment estimators for the shape parameter β of the EP distribution have been 

studied in the literature. Since neither of them have closed form solutions, they are usually 

estimated numerically. Although the ML estimator is asymptotically more efficient than the 

moment estimator, the loglikelihood function for the ML estimator may not be differentiable. 

Thus, the NR algorithm does not always converge, especially when β > 1 and/or the number 

of observations is small (Agro, 1995). Nadarajah (2005) presents the FS algorithm to solve 

ML equations numerically. By taking expectation on the second order derivatives, this 

algorithm can solve some ML equations in which the NR algorithm fails. Another way to 

overcome the convergence problem is to consider a full MM method (M3) as described in 

Appendix B. The full ML method (M4) is also possible using some search algorithms in the R 

package optim. Again, we propose the hybrid method (M5) to estimate µ and σ conditional on 

β using the ML estimator and β conditional on µ andσ using the proposed MQ estimator. 

Figure 3 exhibits the relationship between �̂� and z∗ for various sample sizes. 

3 Simulation studies 

Two simulation experiments are performed to evaluate the performance and robustness 
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properties of our proposed hybrid method and each experiment is repeated with the Student-t 

and EP distributions. The true values for the location and scale parameters are set to be µ = 5 

and σ=2 and their starting values are taken to be the moment estimates. For the shape parameter, 

we consider five levels for each of the Student-t and EP distributions. No starting values are 

needed for the shape parameters using the MQ method whereas the value of five and the 

moment estimate in (6) are adopted as starting values for the shape parameters in Student-t 

and EP distributions respectively using the full ML method. 

3.1  Performance study 

The first experiment studies the performance of the proposed hybrid method under two 

factors: the sample size and shape parameter. We simulate N = 500 independent data sets of 

size n = 20, 50, 100, 200, 500, 1000 observations, each at five levels of true shape parameter 

value using two scenarios. For each sample size and true shape parameter value, the parameter 

estimates and their standard error (SE) are the mean and standard deviation of estimates from 

the 500 simulated data sets. In scenario 1, we begin with a simplified situation using standard 

distributions with known µ = 0 and σ = 1, to test if our proposed MQ method works well to 

estimate only the shape parameter θ. Then in scenario 2, non-standard distributions are adopted 

with unknown µ and σ to be estimated together with θ using our proposed hybrid method. 

Parameters are estimated iteratively using MQ  method for (θ|µ, σ) and ML method for (µ, 

σ|θ). The whole procedure is implemented using the R package. These models using the hybrid 

method correspond to M2 and M5 for Student-t and EP distributions respectively. 

3.1.1 Student-t distribution 

In both scenarios, the true degrees of freedom (df) is set to ν = 2, 5, 10, 15 and 20, 

respectively. The NR algorithm is adopted to estimate (µ, σ|ν) and the first and second order 

derivatives for µ and σ as required can be obtained from the authors. Simulation results for the 

two scenarios are given in Tables 1 and 2, respectively. Note that the sample size of n = 20 is 

too small in scenario 2 to obtain convergent estimates. 

As expected, the accuracy and precision of all parameter estimates increase with increasing 

n in general. The results also show that ν is more likely to be slightly overestimated but there 

are also a few underestimations. This shows two counter-acting effects for the ν estimate. 

Firstly, overestimation of ν is common in Student-t distribution with light tails since ν may 

tend to infinity, as shown by their higher SEs in Tables 1 and 2. On the other hand, our 

proposed hybrid method tends to underestimate ν to provide heavier tails for the distribution 

and the level of underestimation may be greater for a larger sample with more extreme 

observations. Hence we can observe underestimation of ν when n is large and ν is low but as 

ν increases, it will be dominated by overestimation. While ν is slightly overestimated in general, 

σ is slightly underestimated, particularly when n is small. This phenomenon is also common 

because both σ and ν simultaneously control the variance and kurtosis of the Student-t 

distribution and their estimated values tend to affect each other. Although σ is consistently 

underestimated, the bias is very small for moderate to large n. Lastly, µ is estimated with a 

high level of accuracy regardless of n and ν. To conclude, our proposed hybrid method 
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provides a reasonably good estimate for ν. 

3.1.2 EP distribution 

The true shape parameter for the EP distribution is set to be β = 0.5, 1.0, 1.5, 2.0, 2.5 

covering distributions with lower to higher kurtosis than normal distribution. Results for the 

two scenarios are reported in Tables 3 and 4 respectively. In Scenario 1, the β is likely to be 

slightly overestimated but the percentage error is less than 10%. In Scenario 2, β is again 

slightly overestimated, particularly when the sample size n is small and when µ and σ need 

to be estimated simultaneously. Accordingly, σ is consistently underestimated but its accuracy 

and precision increase with n. As with the Student-t distribution, µ is estimated accurately 

regardless of n and β. Generally speaking, our proposed hybrid method provides a satisfactory 

performance for estimating β of the EP distribution as the error percentages are at most 15% 

even at the sample size of n = 100 with one exception but their robustness advantage is 

demonstrated in the next simulation experiment. 

3.2 Robustness study 

The second experiment focuses on the performance of the proposed hybrid method and its 

comparison with the full ML method, M1 and M4 respectively for Student-t and EP 

distributions, in the presence of extreme observations. We generate contaminated data with 

two extreme observations by multiplying 2 and 2.5 respectively to the absolute values of the 

two most extreme standardized observations, that is 𝑧(𝑛−1)
∗  =  2|𝑧(𝑛−1)| and 𝑧(𝑛)

∗ = 2.5|𝑧(𝑛)|. 

We only consider n = 20 and 100 which are the sample sizes most similar to the two data sets 

in Section 4. To compare the goodness-of-fit between the hybrid and ML methods, we report 

the Anderson-Darling (AD) statistic (Anderson and Darling, 1952) defined as: 

𝐴𝑛
2 = −𝑛 −

1

𝑛
∑(2𝑖 −  1)[𝑙𝑛𝐹(𝑥(𝑖) )  +  𝑙𝑛(1 −  𝐹(𝑥(𝑛−𝑖+1)))].

𝑛

𝑖=1

 

We note that there is no test for significance when the distribution is Student-t and EP and 

AD statistic is used to compare the agreement between theoretical CDF F (x(i)) with  its 

empirical CDF 𝐹𝑛(𝑥(𝑖))  = 𝑖/𝑛 called model fit between the hybrid and full ML methods.   

A smaller value of AD indicates a stronger agreement between F (x(i)) and Fn(x(i)). Tables 

5 and 6 report the parameter estimates and AD statistics for the contaminated data of size n = 

20 and 100 for the Student-t and EP distributions respectively. We remark that the true values 

denote various cases and should not be used to assess estimate accuracy as they have changed 

after contamination. Comparing AD measures between hybrid and full ML methods, results 

show close agreement between the two distributions. Obviously, the bias and SE of µ̂ and �̂� 

decrease with sample size n but µ̂ is not greatly inflated by the two right-sided extreme 

observations. To accommodate these observations, both methods diminish �̂� or increase 

𝛽 ̂giving thicker tails and estimate a lower �̂� . These phenomena agree with the results of 

performance study. Comparatively, Table 5 shows that the hybrid method using Student-t 

distribution deflates ν and hence σ more and shifts µ̂ less towards the extreme observation 

than the full ML method. Similarly, Table 6 also shows that the hybrid method using EP 

distribution inflates β and deflates σ more than the full ML method. As a result, the hybrid 
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method matches quantiles of the most extreme outlier to be the empirical 0.975 and 0.995 

levels for n = 20 and 100 respectively which are lower that those of 0.990 and 0.999 

respectively for Student-t and 0.992 and 0.9998 for EP distributions using the ML method. For 

model fit, we observe lower AD measures using the hybrid method. In conclusion, the hybrid 

method displays better model fit than the full ML method in the presence of extreme outliers 

as it gives heavier tailed distribution to downweigh the distorting effect of extreme 

observations and hence offers extra protection for statistical inference. 

4  Data analysis 

We analyze two real data sets which have different characteristics. They have minor 

skewness but different kurtosis. The Darwin data have a small sample size and two outliers in 

the lower side, and the Rivers data have mild excess kurtosis. We include the Shapiro-Wilk 

normality test and the p-values are 0.10 and 0.12 respectively showing that skewness is not 

significant for both data. For each data set, we begin with fitting a location-scale model with 

normal data distribution using the full ML approach for parameter estimation (Model 0 or M0). 

As it is well-known that the normal distribution is sensitive to outliers and in reality, the data 

generating distribution is always unknown, we further adopt the flexible Student-t and EP 

distributions which offer different distribution shapes in the central portion and accommodate 

heavy tails in the two ends to capture different levels of kurtosis. Model parameters are 

estimated using different methods. For the Student-t distribution, we apply either the full ML 

method (M1) to estimate all parameters simultaneously or the proposed hybrid method (M2) 

using ML method to estimate µ and σ given �̂� and MQ method to estimate ν given (µ̂, �̂�). 

For the EP distribution, we use the MM (M3) of Gonz ález-Far´ıas et al. (2009), the full ML 

method (M4) using R package optim, and the proposed hybrid method (M5). Simulation 

studies confirm good performance of our proposed method in estimating the shape parameter 

when the data follow either a Student-t or EP distribution. 

Table 7 reports the parameter estimates and the AD for each data set. Kernel density 

estimate and empirical CDF for each data set are displayed in Figure 4, together with their 

fitted values and the quantile-quantile (Q-Q) plots of the fitted models are given in Figure 5. 

The performance of each model in fitting the data can be revealed from these two graphs. Note 

that the peak of the smoothed kernel density estimate in Figure 4 depends on the bandwidth 

chosen and hence it cannot serve as a reference for comparison across models. Note also that 

our proposed hybrid method (M2 and M5) gives perfect quantile matches for the most extreme 

observations in Figure 5. 

4.1 Darwin Data 

Fisher (1960) analyzed the difference in height of 15 pairs of self- and cross-fertilized 

plants and the data are well-known as Darwin’s data. It is obvious that this data set contains 

two extreme observations. Therefore, the residual sum of squares, SSE is substantially inflated 

to 19945, compared with a value of only 5568 when these two observations are discarded. 

These two observations distort statistical inference and the normal data distribution fails to 
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provide sensible estimates for the location parameter µ and scale parameter 𝜎. On the contrary, 

the Student-t and EP distributions provide robust inferences and more sensible µ estimates in 

general.  

For the Student-t distribution, 𝜈 ̂are 2.5 and 1.5 for M1 and M2 respectively. As pointed 

out in the simulation study, our proposed MQ estimate tends to slightly underestimate 𝜈, 

suggesting a slightly heavier-tailed Student-t distribution. This is the result of accommodating 

the most extreme observation by thickening the tails of the distribution. For the EP 

distribution, 𝛽 ̂are 1.85, 2.67, and 3.28 for M3, M4, and M5, respectively. The MM method 

(M3) is problematic asµ ˆ is estimated by the sample mean which is sensitive to extreme 

observations. Hence its AD statistic is the second worst. The Q-Q plots in Figure 5 show that 

the normal distribution attempts to fit the two extreme observations and thus it fits poorly to 

the central portion of the data. This is confirmed by the higher CDF in this portion of data in 

Figure 4(c). Comparatively, the Student-t and EP distributions fit the central portion of the data 

much better than the normal distribution. Our proposed hybrid method in M2 and M5 fits well 

in both the central portion and the most extreme observation by matching quantiles. According 

to AD statistic, the hybrid method outperforms the ML method for both distributions and M5 

using the hybrid method and EP distribution slightly outperforms M2 using Student-t 

distribution. Hence M5 provides the best model fit among all models. This agrees with Choy 

and Walker (2003), who used the Bayesian inference and the finding from the second 

simulation experiment that EP distribution captures extreme observations better than Student-

t distribution. 

Using the Student-t distribution, we compare the computational efficiency of the full ML 

method (M1), the hybrid method (M2), MCECM algorithm and ECME algorithm. The number 

of iterations required for all parameters to converge within a tolerance of 10−4 are 144, 9, 83, 

and 44 and the computing times (in seconds) are 1.09, 0.62, 0.54, and 0.40 respectively. 

Obviously, the hybrid method has a faster convergence rate than its competitors. Note that the 

MCECM and ECME algorithms under the full ML method give the same parameter estimates 

while the hybrid method gives a smaller 𝜈 ̂and hence different µ̂ and �̂� . 

4.2   Wind Data 

The Wind data set contains 153 average wind speeds (in miles per hour) recorded between 

7:00am and 10:00am from May to September in 1973 at LaGuardia Airport, New York, USA. 

The data are available in Chambers et al. (1983) and are saved in the data set called airquality 

of The R Datasets Package. The sample mean, standard deviation, skewness, and kurtosis are 

9.96, 3.52, 0.35, and 3.11 respectively. The data are slightly skewed but have low level excess 

kurtosis. Obviously, the data contain no potential outlier as shown in Figure 4. Again, M2 

using hybrid method and Student-t distribution provides the best model fit according to the 

AD statistic. The estimates of µ are very similar across models. From Figures 4 and 5, we see 

that all five models have similar peaks to describe the central portion of the data distribution 

and similar CDFs and QQ plots to reveal their close agreement for the overall distribution. 

Hence, they all provide similar and reasonably good model fit according to the AD statistic 
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although the kernel density estimate shows a possible mixture model for the Wind data. Our 

proposed hybrid method estimates ν to be 11 for the Student-t distribution and β to be 1.35 for 

the EP distribution, again suggesting more heavy-tailed distributions than their ML 

counterparts of 83 and 1.03 respectively. Lastly, we check the adequacy of M2 using the Chi-

square test with six symmetric bins in which the four middle bins have unit length on 

standardised scale. The p-value is 0.189 showing consistency with the null hypothesis of 

Student-t distribution. 

5  Conclusion 

The shape parameter of a symmetric probability distribution is often more difficult to 

estimate than the location and scale parameters. This paper proposes a simple way to estimate 

the shape parameter using a MQ method applied to the most extreme observation and the 

location and scale parameters using the ML method under a hybrid approach. This approach 

avoids the potential difficulties in estimating all model parameters simultaneously in a full ML 

approach and is particularly applicable for the EP distribution when the full ML method is 

infeasible and the MM fails to provide robust inference in the presence of outliers. The 

simulation and empirical studies confirm that the hybrid method is simple and feasible with 

satisfactory performance. Specifically, simulation studies show that the hybrid method 

provides parameter estimates reasonably close to the true values in a general situation whereas 

in the presence of very extreme observations, it estimates thicker tails than the full ML method 

to protect inference. This feature results in better model fit than the ML method with heavy 

tailed distribution.  

This phenomenon is also demonstrated in the empirical studies of two real data with 

different characteristics. In the studies using Student-t distribution, the full ML method (M1) 

and our proposed hybrid method (M2) produce similar µ estimates but M2 has Smaller �̂� than 

M1. With thicker tails, �̂� is also smaller in M2. Despite of this, both M1 and M2 give very 

similar estimates to the standard deviation of the distribution, which is 

√
𝑣

𝑣−2
𝜎 if it exists. When the EP distribution is adopted, the MM (M3), full ML method (M4) 

and hybrid method (M5) have different estimates for µ but M5 again estimates distribution 

with sharper peak and heavier tails to accommodate extreme observations. However, under M3, 

µ is estimated using the sample mean and hence, Figures 4(a)- (b) show that the centers of the 

fitted distributions using M3, as was M0, are shifted relatively closer to the extreme 

observations. Therefore, MM should not be recommended in parameter estimation if other 

methods are available. On the other hand, Table 8 shows that the fitted PDFs at the most 

extreme observation for Wind data are highest using M2, showing heavier tailed distributions 

but for Darwin data, it is M0 when the normal PDF is lifted up as a result of the left-shifted 

center by the two lower-sided extreme observations. This is again illustrated in Figure 4(a). 

The CDFs using M2 and M5 as reported in Table 8 and the QQ plot in Figure 5 show that the 

quantiles of most extreme observations are matched precisely and the AD statistic selects an 

estimation method that provides the best overall model fit.  
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Lastly, we conclude this paper with three remarks. Firstly, our proposed hybrid method 

suggests a slightly heavier-tailed distribution when the data is skewed and/or contains potential 

outliers. Perhaps the method can be extended to matching the quantile of the second or other 

less extreme points and the level of extremeness for the observation to be matched may be 

tuned to provide better model fit. This requires further investigation. Secondly, the method can 

be generalized to the class of asymmetric distributions and distributions with more than one 

shape parameters by matching several extreme observations but such generalization may not 

be straightforward and future research in this direction is required. Thirdly, apart from the class 

of distributions with real support, one can consider the distributions with positive real support. 

Some recently proposed distributions of this type include the three parameter paralogistic 

distribution (Idemudia and Ekhosuehi, 2019) and the exponentiated generalized extended 

Gompertz distribution (De Andrade et al., 2019). However, this extension can be very 

challenging as there are no distinct scale and shape parameters. 
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Appendix: 

A. Suppose that 𝑌𝑖 , 𝑖 =  1, . . . , 𝑛 , are identically and independently distributed as a 

Student-t distribution with ν degrees of freedom (df), that is, 𝑌𝑖  ∼  𝑡𝜈(µ, 𝜎 ), Liu and Rubin 

(1995) express Yi as following a normal scale mixtures distribution with mixing variables λi. 

That is, 

𝑌𝑖 ∼ 𝑁(𝜇,
𝜎2

𝜆𝑖
) and 𝜆𝑖 ∼ 𝐺(

𝜈

2
,
𝜈

2
) 

where G(a, b) is the gamma distribution with mean . At iteration k + 1 in the MCECM 

cycle, the first CM-step updates the parameters (µ, σ) to 

𝜇(𝑘+1) =
∑ 𝜆𝑖

(𝑘)
𝑦𝑖

𝑛

𝑖=1

∑ 𝜆
𝑖
(𝑘)

𝑛

𝑖=1

 and 𝜎(𝑘+1) = 𝑛−1/2(∑ 𝜆𝑖
(𝑘)
𝑦𝑖
2

𝑛

𝑖=1
−

1

∑ 𝜆
𝑖
(𝑘)

𝑛

𝑖=1

(∑ 𝜆𝑖
(𝑘)
𝑦𝑖

𝑛

𝑖=1
)2)1/2 

Then, the first E-step gives 

𝜆𝑖
(𝑘+0.5)

=
𝜈(𝑘) + 1

𝜈(𝑘) + (
𝑦𝑖 − 𝜇(𝑘+1)

𝜎(𝑘+1)
)2

 

and ν(k+1) is obtained from the second CM-step by solving 

−𝜓(
𝜈(𝑘+1)

2
) + ln (

𝜈(𝑘+1)

2
) +

1

𝑛
∑(ln (𝜆𝑖

(𝑘+0.5)
) − 𝜆𝑖

(𝑘+0.5)
)

𝑛

𝑖=1

+ 1

+
1

𝑛
∑[𝜓(

𝜈(𝑘) + 1

2
) − ln (

𝜈(𝑘) + 1

2
)]

𝑛

𝑖=1

= 0 

which maximizes the expected log-likelihood. Here, ψ(x) is the digamma function. Then, 

the second E-step gives 𝜆𝑖
(𝑘+1)

 from (4) with 𝜈(𝑘+1)  replacing 𝜈(𝑘). The ECM algorithm 

contains only the second E-step and hence the CM-step in (5) is evaluated using λi . The ECME 

algorithm has the same procedures as MCECM, except that ν(k+1) is evaluated from 

maximizing the log of Student-t densities in (1) directly. Although these ECM-type algorithms 

are easy to implement, they require numerical searches for the df estimate and hence the 

convergence rate is rather slow. 

B. To estimate the shape parameter β of EP distribution, Varanasi and Aazhang (1989) 

proposed an entropy matching estimator which satisfies 

(Γ(
𝛽
2))

𝑟/2−1Γ(
(𝑟 + 1)𝛽

2 )

(Γ(
3𝛽
2 ))

𝑟/2
=

1
𝑛
∑ |𝑦𝑖 − 𝑦|

𝑟𝑛
𝑖=1

(
1
𝑛∑ (𝑦𝑖 − 𝑦)2

𝑛

𝑖=1
)𝑟/2

 

for any moments of order r≥ 4 Later, Rodr´ıguez-Dagnino and Leon-Garcia (1998) presented 

a closed form estimator for β based on an approximation using Gurlands inequality but this 

approximation is only well-behaved for 0.3 < p < 3 where p = 2/β . Later on, Gonz ález-Far´ıas 

et al. (2009) proposed an alternative MM estimate for β which satisfies 
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Γ2(𝛽)

Γ(
𝛽
2)Γ(

3𝛽
2 )

=
(
1
𝑛
∑ |𝑦𝑖 − 𝑦|
𝑛
𝑖=1 )2

1
𝑛
∑ |𝑦𝑖 − 𝑦|2
𝑛
𝑖=1

 

 

for 0.18 < p < 2 where p = β and they derived the following closed form solution for p: 

�̂� =

{
 
 
 
 

 
 
 
 

𝑙𝑛(27/16)

𝑙𝑛(3/(4𝑚2 )
                             𝑖𝑓 𝑚 ∈  (0,0.131246),

1

2𝑎1
(−𝑎2  +  𝑎4 (𝑚))                    𝑖𝑓 𝑚 ∈  [0.131246,0.448994)          

1

2𝑏3𝑚
(𝑏1  −  𝑏2 𝑚 − 𝑏4 (𝑚))             𝑖𝑓 𝑚 ∈  [0.448994,0.671256),

1

2𝑐3
(𝑐2  −  𝑐4 (𝑚))                        𝑖𝑓 𝑚 ∈  [0.671256,0.75)

 

where m denotes the right hand side of (6),  (6), 𝑎1 = −0.535707, 𝑎2 = 1.168940, 𝑎3 =

−0.151619, 𝑏1 = 0.969443, 𝑏2 = 0.872753, 𝑏3 = 0.073508, 𝑐1 = 0.365516, 𝑐2 =

0.672353, 𝑐3 = 0.033834, 𝑎4(𝑚) = (𝑎2
2 − 4𝑎1𝑎3 + 4𝑎1𝑚)

1

2, 𝑏4(𝑚) = ((𝑏1 − 𝑏2𝑚)
2 −

4𝑏3𝑚
2)

1

2, 𝑐4(𝑚) = (𝑐2
2 + 4𝑐3ln (

3−4𝑚

4𝑐1
))1/2 

To estimate other parameters, one estimator adopts a hybrid approach and consists of 

the MM estimate of µ using the sample mean �̅�, the ML estimate of σ given by: 

𝜎
^
= (

1

𝑛𝛽
∑|𝑦𝑖 − 𝑦|

2/𝛽

𝑛

𝑖=1

)𝛽/2 

and the ML estimate β by solving the following equation: 

−
𝑛

2
𝜓(
𝛽

2
) −

𝑛ln 2

2
−
𝑛

𝛽
+
1

𝛽2
∑{ln |

𝑦𝑖 − 𝑦

𝜎
^

| × |
𝑦𝑖 − 𝑦

𝜎
^

|2/𝛽}

𝑛

𝑖=1

= 0 

Instead, we consider a full MM approach (M3) which estimates µ using the sample mean 

�̅�, 𝜎2 using 

𝜎
^ 2 =

Γ(
𝛽
2)

2𝛽Γ(
3𝛽
2 )

1

𝑛
∑|𝑦𝑖 − 𝑦|

2

𝑛

𝑖=1

 

and β using (7) as proposed in Gonz´alez-Far´ıas et al. (2009). 
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