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ABSTRACT 

A new flexible extension of the inverse Rayleigh model is proposed and studied. 

Some of its fundamental statistical properties are derived. We assessed the 

performance of the maximum likelihood method via a simulation study. The 

importance of the new model is shown via three applications to real data sets. The 

new model is much better than other important competitive models. 
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1. Introduction and physical motivation 

The well-known inverse Rayleigh (IR) model is considered as a distribution for a life time 

random variable (r.v.). The IR distribution has many applications in the area of reliability studies. 

Voda (1972) proved that the distribution of lifetimes of several types of experimental (Exp) units 

can be approximated by the IR distribution and studied some properties of the maximum 

likelihood estimation (MLE) of the its parameter.  Mukerjee and Saran (1984) studied the failure 

rate of an IR distribution. Aslam and Jun (2009) introduced a group acceptance sampling plans 

for truncated life tests based on the IR. Soliman et al. (2010) studied the Bayesian and non-

Bayesian estimation of the parameter of the IR model Dey (2012) mentioned that the IR model 

has also been used as a failure time distribution although the variance and higher order moments 

does not exist for it. 

 
The probability density function (PDF) and cumulative distribution function (CDF) of the IR 

distribution are given by (for 𝑥 ≥ 0) 

𝑔𝐼𝑅
(𝛼)(𝑥) = 2𝛼2𝑥−3exp[−𝛼2𝑥−2]    and    𝐺𝐼𝑅

(𝛼)(𝑥) = exp[−𝛼2𝑥−2], 

respectively, where 𝛼 > 0 is a scale parameter. It is worth mentioning that the IR model is 
a special case for the Inverse Weibull model. 

 
In the statistical literature, there are many useful extensions of the IR model, for example: 

beta IR by Barreto-Souza et al. (2011), Marshall-Olkin IR by Krishna et al. (2013), 

Transmuted IR by Mahmoud and Mandouh (2013), Weibull IR by Afify et al. (2016), odd 

Lindley IR by Korkmaz et al. (2017), Burr X IR by Yousof et al. (2017a), transmuted Topp-

Leone IR by Yousof et al. (2017b), Topp-Leone Generated IR by Yousof et al. (2018b) and 
odd log-logistic IR Yousof et al. (2018b), among others.   

 
In this paper we propose and study a new extension of the IR distribution using the zero 

truncated Poisson (ZTP) distribution. Suppose that a system has 𝑁 subsystems functioning 
independently at a given time where 𝑁  has ZTP distribution with parameter 𝜆 . It is the 

conditional probability distribution of a Poisson-distributed r.v., given that the value of the 
r.v. is not zero. The probability mass function (PMF) of 𝑁 is given by 

𝑃𝑀𝐹𝑍𝑇𝑃
𝜆 (𝑁 = 𝑛) = [exp(−𝜆) 𝜆𝑛]/{𝑛! [𝜏𝜆]}|𝑛=1,2,… 

 

Note that for ZTP r.v., the expected value 𝐄(𝑁|𝜆)  and variance 𝑉𝑎𝑟(𝑁|𝜆)  are, 

respectively, given by 
𝐄(𝑁|𝜆) = 𝜆/𝜏(𝜆), 

where 𝜏(𝜆) = −exp(−𝜆) + 1 and 

𝑉𝑎𝑟(𝑁|𝜆) = −
𝜆2

[𝜏(𝜆)]
2 +

𝜆 + 𝜆2

𝜏(𝜆)
. 

Suppose that the failure time of each subsystem has the Burr X IR (BX-IR(𝜃, 𝛼) for 
short) defined by the CDF and PDF given by 
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𝐻𝐵𝑋−𝐼𝑅
𝜃,𝛼 (𝑥) = [1 − exp(− {

exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
}

2

)]

𝜃

 

and 

 

ℎ𝐵𝑋−𝐼𝑅
𝜃,𝛼 (𝑥) = 4𝜃𝛼2𝑥−(2+1){1 − exp[−𝛼2𝑥−2]}−3 × [1 − exp(−{

exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
}

2

)]

𝜃−1

 

× exp[−2(𝛼𝑥−1)2]exp(−{
exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
}

2

) 

respectively, where 𝛼 > 0 is a scale parameter and 𝜃 > 0 is the shape parameter. Let 𝑌𝑖 

denote the failure time of the ith subsystem and let 
𝑋 = min{𝑌1, 𝑌2, ⋯ , 𝑌𝑁}. 

Then the conditional CDF of 𝑋 given 𝑁 is 

𝐹(𝑥|𝑁) = 1 − Pr(𝑋 > 𝑥|𝑁) = 1 − [1 − 𝐻𝐵𝑋−𝐼𝑅
𝜃,𝛼 (𝑥)]

𝑁
 

Therefore, the unconditional CDF of the Poisson BX-IR (PBX-IR) density function, as 
described in Ristić and Nadarajah (2014), can be expressed as 

𝐹𝑃𝐵𝑋−𝐼𝑅
𝜆,𝜃,𝛼 (𝑥) =

1 − exp(−𝜆𝐻𝐵𝑋−𝐼𝑅
𝜃,𝛼 (𝑥))

𝜏𝜆
 

then we have 

𝐹𝑃𝐵𝑋−𝐼𝑅
𝜆,𝜃,𝛼 (𝑥) =

1 − exp(−𝜆 [1 − exp(− {
exp[−𝛼2𝑥−2]

1 − exp(−𝛼2𝑥−2)
}
2

)]

𝜃

)

𝜏𝜆
 

the corresponding PDF is 

𝑓𝑃𝐵𝑟𝑋𝐼𝑊
(𝜆,𝜃,𝛼) (𝑥) =

4𝜃𝜆2𝛼2

𝜏(𝜆)
𝑥−(2+1){1 − exp[−𝛼2𝑥−2]}−3 

× exp(−2(𝛼𝑥−1)2 − {
exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
}

2

) 

× [1 − exp(−{
exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
}

2

)]

𝜃−1

 

× exp{−𝜆 [1 − exp(−{
exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
}

2

)]

𝜃

} 

The transformation of Ristić and Nadarajah (2014) used by many authors such as Ramos 

et al. (2015), Aryal and Yousof (2017) and Korkmaz et al. (2018), among others. 
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The hazard rate function (HRF) can be easily calculated via  𝑓𝑃𝐵𝑟𝑋𝐼𝑊
(𝜆,𝜃,𝛼) (𝑥)/[1 −

𝐹𝑃𝐵𝑋−𝐼𝑅
(𝜆,𝜃,𝛼) (𝑥)]. The PBX-IR density can be right-skewed, unimodal and symmetric (see Figure 

1) whereas the PBX-IR HRF can be unimodal then bathtub, increasing and bathtub (see 

Figure 2). 

 

 
Figure 1: Plots of the PBX-IR PDF for selected parameter values. 
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Figure 2: Plots of the PBX-IR HRF for selected parameter values. 

 

This article is organized as follows: In Section 2, we derive some mathematical 
properties of the new model. Maximum likelihood method for the model parameters is 

addressed in Section 3. Sections 4 presents the simulation studies. In Section 5, The 
potentiality of the proposed model is illustrated by means of three real data sets. Section 6 

provides some concluding remarks. 

 

2. Mathematical properties 

2.1 Useful expansions 

Upon the power series 

exp(𝜁) = ∑(
𝜁𝑞

𝑞!
) ,

∞

𝑞=0
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the PDF in (6) can be written as 

𝑓𝑃𝐵𝑟𝑋𝐼𝑊
(𝜆,𝜃,𝛼) (𝑥) = ∑

2𝜃𝜆1+ℎ2𝛼2(−1)ℎ

ℎ! [𝜏(𝜆)]

∞

𝑞=0

 

× exp(𝑥−(2+1)
exp[−𝛼2𝑥−2]

{1 − exp[−𝛼2𝑥−2]}3
) 

× exp[−(
exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
)

2

] 

× [1 − exp (−{
exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
}

2

)]

𝜃(ℎ+1)−1

 

 

If |𝜁| < 1 and 𝜏 > 0 is a real non-integer, the following power series holds 

(1 − 𝜁)𝜏 =∑
(−1)𝑖Γ(1 + 𝜏)

Γ(1 + 𝜏 − 𝑖)
𝜁𝑖

∞

𝑖=0

 

Applying (8) to (7) we have 

𝑓𝑃𝐵𝑟−𝐼𝑅
(𝜆,𝜃,𝛼) (𝑥) =

2𝜃2𝛼2𝑥−(2+1) exp[−2𝛼2𝑥−2]

[𝜏(𝜆)]
 

× ∑
𝜆1+ℎ(−1)ℎ+𝑖Γ(𝜃(ℎ + 1))

i! Γ(𝜃(ℎ + 1) − 𝑖)

∞

ℎ,𝑖=0

 

×
𝑒𝑥𝑝[−(𝑖 + 1) (

exp[−𝛼2𝑥−2]
1 − exp[−𝛼2𝑥−2]

)
2

]

[1 − exp[−𝛼2𝑥−2]]3
 

Via applying the power series to the term 

exp [−(𝑖 + 1) (
exp[−𝛼2𝑥−2]

1 − exp[−𝛼2𝑥−2]
)

2

], 

equation (9) becomes 

𝑓𝑃𝐵𝑋−𝐼𝑅
(𝜆,𝜃,𝛼) (𝑥) = ∑

4𝛼2𝜃𝜆1+ℎ(−1)ℎ+𝑖+𝜔(𝑖 + 1)𝜔𝑥−3

𝑖! 𝜔! [𝜏(𝜆)]

∞

ℎ,𝑖,𝜔=0

 

×
Γ(θ(h + 1))

Γ(θ(h + 1) − i)

exp[−𝛼2𝑥−2] {exp[−𝛼2𝑥−2]}2𝜔+1

{1 − exp[−𝛼2𝑥−2]}2𝜔+3
 

 

Then consider the series expansion 



 

62          The Poisson Burr X Inverse Rayleigh Distribution And Its Applications 

 

(1 − 𝜁)−𝑐𝐼|𝜁|<1,𝑐>0 =∑
Γ(𝑐 + 𝜅)

𝜅! Γ(𝑐)
𝜁𝜅

∞

𝑖=0

 

Applying the expansion in (11) to (10) for the term {1 − exp[−𝛼2𝑥−2]}2𝜔+3, equation 
(10) becomes 

 𝑓𝑃𝐵𝑋−𝐼𝑅
(𝜆,𝜃,𝛼) (𝑥) = ℎ,𝑖,𝜔,𝜅=0

∞ 2𝜃𝜆1+ℎ(−1)ℎ+𝑖+𝜔(𝑖+1)𝜔

𝑖!𝜔!𝜅![𝜏(𝜆)][2(1+𝜔)+𝜅]
 

 ×
Γ(𝜃(ℎ+1))Γ(3+2𝜔+𝜅)

Γ(𝜃(ℎ+1)−𝑖)Γ(2𝜔+3)
[2(1 + 𝜔) + 𝜅] 

 × 2𝛼2𝑥−(2+1)exp{−[2(1 + 𝜔) + 𝜅](𝛼𝑥−1)2}. 

This can be written as 

𝑓𝑃𝐵𝑋−𝐼𝑅
(𝜆,𝜃,𝛼) (𝑥) = ∑

𝜔,𝜅=0

∞

𝜐𝜔,𝜅ℎ[2(1+𝜔)+𝜅](𝑥; 𝛼), 

where 

𝜐𝜔,𝜅 =
2𝜃𝜆1+ℎ(−1)𝜔Γ(3 + 2𝜔 + 𝜅)

𝜔! 𝜅! [𝜏(𝜆)]Γ(2𝜔 + 3)[2(1 + 𝜔) + 𝜅]
∑

ℎ,𝑖=0

∞
(−1)ℎ+𝑖Γ(𝜃(ℎ + 1))(𝑖 + 1)𝜔

𝑖! Γ(𝜃(ℎ + 1) − 𝑖)
, 

and  ℎ[2(1+𝜔)+𝜅](𝑥; 𝛼) is the IR density with scale parameter 𝛼[2(1 + 𝜔) + 𝜅]
1

2. Similarly, 

the CDF of the PBX-IR model can also be expressed as 

𝐹𝑃𝐵𝑋−𝐼𝑅
(𝜆,𝜃,𝛼) (𝑥) = ∑

𝜔,𝜅=0

∞

𝜐𝜔,𝜅𝐻[2(1+𝜔)+𝜅](𝑥; 𝛼), 

where 𝐻[2(1+𝜔)+𝜅](𝑥; 𝛼) is the the IR density with scale parameter 𝛼[2(1 + 𝜔) + 𝜅]
1

2. 

 

2.2 Quantile and random number generation 

The quantile function (QF) of 𝑋, where 𝑋 ∼PBX-IR (𝜆, 𝜃, 𝛼), is obtained by inverting (5) 
as 

𝑄(𝑢) = 𝛼

{
 
 

 
 

−ln

[
 
 
 
 

(

 
 
1 + {−ln [1 − (

−ln{1 − 𝑢[𝜏(𝜆)]}

𝜆
)

1
𝜃

]}

1
2

)

 
 

]
 
 
 
 

}
 
 

 
 
−
1
2

, 

so, simulating the PBX-IR r.v. is straightforward (see Section 4). If 𝑈 is a uniform variate on 

the unit interval (0,1), then the r.v. 𝑋 = 𝑄(𝑈) follows (6). 

 

2.3 Moments 

The 𝑟𝑡ℎ ordinary moment of 𝑋, say 𝜇𝑟
′ , follows from (12) as 
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𝜇𝑟
′ |(𝑟<2) = 𝐄(𝑋𝑟) = ∑

𝜔,𝜅=0

∞

𝜐𝜔,𝜅𝛼
𝑟[2(1 + 𝜔) + 𝜅]

𝑟
2Γ (1 −

𝑟

2
), 

where 

Γ(1 + 𝛕)|(𝛕∈ℝ+) =𝑤=0
𝛕−1 (𝛕 − 𝑤) = ∫

∞

0

𝑥𝛕exp(−𝑡)𝑑𝑥 = 𝛕!, 

upon setting 𝑟 = 1 in (15) gives the mean of 𝑋 as 

𝐄(𝑋) = ∑

𝜔,𝜅=0

∞

𝜐𝜔,𝜅𝛼[2(1 + 𝜔) + 𝜅]
1
2Γ (1 −

1

2
). 

2.4 Incomplete moments 

The 𝑟𝑡ℎ incomplete moment of 𝑋 is defined by 

𝑚𝑟(𝑡) = ∫ 𝑥𝑟
𝑡

−∞

 𝑓(𝑥)𝑑𝑥. 

Based on (12) we can write 

𝑚𝑟(𝑡)|(𝑟<2) = ∑

𝜔,𝜅=0

∞

𝜐𝜔,𝜅𝛼
𝑟[2(1 + 𝜔) + 𝜅]

𝑟
2𝛾 (1 −

𝑟

2
, (
𝛼

𝑡
)
2

), 

where 

𝛾(𝛕, 𝑞)|(𝛕≠0,−1,−2,...) = ∫
𝑞

0

𝑡𝛕−1exp(−𝑡)𝑑𝑡 

=
𝑞𝛕

𝛕
{1𝐅1[𝛕; 𝛕𝑎 + 1;−𝑞]} 

=∑

∞

𝜅=0

(−1)𝜅

𝜅! (𝛕 + 𝜅)
𝑞𝛕+𝜅 

is the incomplete gamma function.Via setting 𝑟 = 1 in (16) gives the 1 𝑠𝑡  incomplete 
moment of 𝑋 as 

𝑚(𝑡) = ∑
𝜔,𝜅=0

∞

𝜐𝜔,𝜅𝛼[2(1 + 𝜔) + 𝜅]
1
2𝛤 (1 −

1

2
, (
𝛼

𝑡
)
2

). 

The moment generating function of 𝑋, say 𝑀(𝑡) = 𝐄(exp(𝑡 𝑋)), is obtained from (12) 

as𝑀(𝑡)|(𝑟<2) = ∑
𝜔,𝜅,𝑟=0

∞

𝜐𝜔,𝜅(𝑡
𝑟/𝑟!)𝛼𝑟[2(1 + 𝜔) + 𝜅]

𝑟

2Γ (1 −
𝑟

2
). 

 
2.5 Moments of residual life (MRL) function 

The 𝑛𝑡ℎ MRL [𝑐𝑛(𝑡)], denoted by 

𝑐𝑛(𝑡) = 𝐄[(𝑋 − 𝑡)𝑛|[𝑋>𝑡,𝑛=1,2,… ]], 

which uniquely determine the 𝐹(𝑥). The 𝑛𝑡ℎ MRL of 𝑋 is given by 

𝑐𝑛(𝑡) =
1

1 − 𝐹(𝑡)
∫ (
∞

𝑡

𝑥 − 𝑡)𝑛𝑑𝐹(𝑥) , 
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so, we can write 

𝑐𝑛(𝑡) =
1

1 − 𝐹(𝑡)
∑

∞

𝑟=0

 ∑

𝜔,𝜅=0

∞
(−1)𝑛−𝑖𝑛!𝑡𝑛−𝑖

𝑖! Γ(𝑛 − 𝑖 + 1)
𝜐𝜔,𝜅 

× 𝛼𝑛[2(1 + 𝜔) + 𝜅]
𝑛
2Γ (1 −

𝑛

2
, (
𝛼

𝑡
)
2

) 

where 

Γ(𝜁, 𝑧)|(𝑧>0) = ∫
𝑧

0

𝑡𝜁−1exp(−𝑡)𝑑𝑡 

∼ [1 +
𝜁 − 1

𝑧
+
(𝜁 − 1)(𝜁 − 2)

𝑧2
+. . . ]

𝑧𝜁−1

exp(𝑧)
, 

Γ(𝛕, 𝑞) + 𝛾(𝛕, 𝑞) = Γ(𝛕) 
and1𝐅1[⋅,⋅,⋅]  is a confluent hypergeometric function.by setting 𝑛 = 1, we get the mean 

residual life function [𝑐𝑛=1(𝑥)] or the life expectation at age 𝑥 

𝑐1(𝑥) = 𝐄[(𝑋 − 𝑥)|(𝑋>𝑡,𝑛=1)], 

which represents the expected additional life length for the system which is alive at age 𝑥.   

 

2.6 Moments reversed residual life (MRRL) functions  

The 𝑛𝑡ℎ MRRL [𝐶𝑛(𝑡)] denoted by 
𝐶𝑛(𝑡) = 𝐄[(𝑡 − 𝑋)𝑛] ∣

[𝑋≤𝑡,𝑡>0and𝑛=1,2,… ]
, 

 which also uniquely determines the 𝐹(𝑥). Then, the 𝐶𝑛(𝑡) can be formulated as 

𝐶𝑛(𝑡) =
1

𝐹(𝑡)
∫ (
𝑡

0

𝑡 − 𝑥)𝑛𝑑𝐹(𝑥), 

so that, the 𝑛𝑡ℎ MRRL of 𝑋 

𝐶𝑛(𝑡) =
1

𝐹(𝑡)
∑ ∑

𝜔,𝜅=0

∞
𝑛

𝑖=0

(−1)𝑖𝑛!

𝑖! (𝑛 − 𝑖)!
𝜐𝜔,𝜅

× 𝛼𝑛[2(1 + 𝜔) + 𝜅]
𝑛
2𝛾 (1 −

𝑛

2
, (
𝛼

𝑡
)
2

) ,

 

by setting 𝑛 = 1 in 𝐶𝑛(𝑡), we get the mean inactivity time (MIT) or mean waiting time 

(MWT) which also called the mean reversed residual life function 
𝐶1(𝑡) = 𝐄[(𝑡 − 𝑋)𝑛]|[𝑋≤𝑡,𝑡>0and𝑛=1], 

which represents the waiting time elapsed since the failure of the system on condition that 
this failure had occurred in (0, 𝑥). 

3. Estimation 

Consider a random sample from your PBX-IR, then the log likelihood function can be 

expressed as 

𝑙𝑜𝑔𝐿 = 𝑛log2 + 𝑛log𝜃 + 𝑛log𝜆 + 𝑛log2 + 2𝑛log𝛼 − 𝑛log[𝜏(𝜆)] 
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−(2 + 1)∑log

𝑛

𝑖=1

𝑥𝑖 − 3log(1 − 𝑞𝑖) 

+2∑log

𝑛

𝑖=1

𝑞𝑖 − 𝜆∑[1 − exp(−𝑚𝑖)]
𝜃

𝑛

𝑖=1

−∑𝑚𝑖

𝑛

𝑖=1

+ (𝜃 − 1)∑log

𝑛

𝑖=1

[1 − exp(−𝑚𝑖)] 

where 

𝑞𝑖 = exp[−𝛼2𝑥𝑖
−2]and𝑚𝑖 = (

𝑞𝑖
1 − 𝑞𝑖

)
2

. 

The maximum likelihood (ML) method and its procedures are available in the 

literature with details. 

 

4. Simulation studies 

Upon (14), we simulate the PBX-IR model by taking 𝑛=20, 50, 150, 500 and 1000. For 
each sample size, we evaluate the ML estimations (MLEs) of the parameters using the 

optim function of the R software (see the R code in the Appendix). Then, we repeat this 
process 1000 times and compute the averages of the estimates (AEs) and mean squared 

errors (MSEs). Table 1 gives all simulation results. The values in Table 1 indicate that the 

MSEs of �̂�, �̂� and �̂� decay toward zero when 𝑛 increases for all settings of 𝜆, 𝜃 and 𝛼, as 

expected under first-under asymptotic theory. The AEs of the parameters tend to be closer 

to the true parameter values (I: 𝜆 = 0.5, 𝜃 = 1.5 and 𝛼 = 2.5 and II: 𝜆 = 1.5, 𝜃 = 0.5 and 
𝛼 = 1.5) when 𝑛 increases. This fact supports that the asymptotic normal distribution 

provides an adequate approximation to the finite sample distribution of the MLEs. Table 1 
gives the AEs and MSEs based on 1000 simulations of the PBX-IR distribution for some 

values of 𝑎 and 𝑏 when by taking 𝑛 = 20,50,150,500 and 1000. 

Table 1: The AEs, biases and MSEs based on 1000 simulations. 

n  Θ AE MSE  Θ AE MSE 

20 I 𝜆 0.55310 0.66153 II 𝜆 0.56726 0.44319 

  𝜃 1.74321 0.31496  𝜃 0.68213 0.39565 

  𝛼 2.67919 0.52371  𝛼 1.68324 0.51892 

50  𝜆 0.54450 0.49542  𝜆 1.55312 0.33789 

  𝜃 1.60778 0.30532  𝜃 0.60434 0.19345 

  𝛼 2.55982 0.35973  𝛼 1.60910 0.39672 
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150  𝜆 0.52349 0.39439  𝜆 1.51789 0.11567 

  𝜃 1.53891 0.22560  𝜃 0.55670 0.09982 

  𝛼 2.51567 0.12589  𝛼 1.53457 0.27569 

500  𝜆 0.50582 0.09117  𝜆 1.50328 0.01569 

  𝜃 1.50874 0.00869  𝜃 0.51320 0.04763 

  𝛼 2.50177 0.01678  𝛼 1.50569 0.03810 

1000  𝜆 0.50071 0.00315  𝜆 1.50029 0.00026 

  𝜃 1.50089 0.00015  𝜃 0.50025 0.00612 

  𝛼 2.50001 0.00005  𝛼 1.50004 0.00024 

 

5. Real data modeling 

This section presents two applications of the new distribution using real data sets. We 

shall compare the fit of the new distribution with the Weibull Inverse Weibull (W-IW), 

exponentiated IW (E-IW), Kumaraswamy IW(Kum-IW), beta IW (B-IW) transmuted IW (T-
IW), gamma extended IW (GE-IW), Marshall-Olkin IW (MO-IW), MOKum-IW, generalized 

MO-IW(GMO-IW), KumMO-IW and IW distributions. The PDFs of the competitive model 
are available in statistical literature. The unknown parameters of the above PDFs are all 

positive real numbers except for the T-IW distribution for which |𝑎| ≤ 1. The 1𝑠𝑡  data set 

consists of 100 observations of breaking stress of carbon fibres (in Gba) given by Nichols 

and Padgett (2006). The 2𝑛𝑑  data set consists of 63 observations of the strengths of 1.5 cm 

glass fibres [see Smith and Naylor (1987)], originally obtained by workers at the UK 

National Physical Laboratory. Unfortunately, the units of measurement are not given in the 

paper. The 3𝑟𝑑  data set (gauge lengths of 20 mm) [see Kundu and Raqab (2009)] consists 

of 74 observations. In order to compare the distributions, we consider the following 

criteria: the −2 ℓ̂ (Maximized Log-Likelihood), AIC (Akaike Information Criterion), CAIC 

(Consistent Akaike Information Criterion), BIC (Bayesian information criterion) and HQIC 

(Hannan-Quinn information Criterion). These statistics are given by 

𝐴𝐼𝐶 = −2ℓ̂ + 2𝜅, 

𝐵𝐼𝐶 = −2ℓ̂ + 𝜅log(𝑛), 

𝐻𝑄𝐼𝐶 = −2ℓ̂ + 2𝜅log[log(𝑛)] 

 and 
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𝐶𝐴𝐼𝐶 = −2 ℓ̂ + 2𝜅𝑛/(𝑛 − 𝜅 − 1), 

Table 2: The statistics AIC;BIC;HQIC and CAIC values for breaking stress data. 

Model Measures 

 AIC BIC HQIC CAIC 

PBX-IR 113.2 121 116.3 113.4 

PBX-IW 122.6 133.1 126.8 123.1 

W-IW 294.5 304.9 298.7 294.9 

E-IW 295.7 303.5 298.9 296.0 

Kum-

IW 

297.1 307.5 301.3 297.5 

B-IW 311.1 321.6 315.4 311.6 

GE-IW 312.0 332.4 316.2 312.4 

IW 348.3 353.5 350.4 348.4 

T-IW 350.5 358.3 353.6 350.7 

MO-IW 351.3 359.1 354.5 351.6 

 
Table 3: MLEs and their standard errors (in parentheses) 

for breaking stress of carbon fibre data. 

Model Measures 

PBX-IR(𝜆, 𝜃, 𝛼) 5.657 

(0.9282) 

0.159 

(0.0132) 

3.927 

(0.0034) 

 

PBX-IW(𝜆, 𝜃, 𝛼, 𝛽) 4.900 

(1.247) 

3.452 

(1.024) 

1.0310 

(0.193) 

0.742 

(0.117) 

W-IW(𝛼, 𝛽, 𝑎, 𝑏) 2.2231 

(11.409) 

0.355 

(0.411) 

6.9721 

(113.811) 

4.9179 

(3.756) 

Kum-IW(𝛼, 𝛽, 𝑎, 𝑏) 2.0556 

(0.071) 

0.4654 

(0.00701) 

6.2815 

(0.063) 

224.18 

(0.164) 

B-IW(𝛼, 𝛽, 𝑎, 𝑏) 1.6097 

(2.498) 

0.4046 

(0.108) 

22.0143 

(21.432) 

29.7617 

(17.479) 

GE-IW(𝛼, 𝛽, 𝑎, 𝑏) 1.3692 

(2.017) 

0.4776 

(0.133) 

27.6452 

(14.136) 

17.4581 

(14.818) 

E-IW(𝛼, 𝛽, 𝑎) 1.3692 

(2.017) 

0.4776 

(0.133) 

27.6452 

(14.136) 

17.4581 

(14.818) 
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T-IW(𝛼, 𝛽, 𝑎) 1.9315 

(0.097) 

1.7435 

(0.076) 

0.0819 

(0.198) 

 

MO-IW(𝛼, 𝛽, 𝑎) 2.3066 

(0.498) 

1.5796 

(0.16) 

0.5988 

(0.3091) 

 

IW(𝛼, 𝛽) 1.8705 

(0.112) 

1.7766 

(0.113) 
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Figure 3: P-P plot, Estimated PDF, estimated CDF, estimated HRF 

and Kaplan-Meier Survival Plot S(x) for data set I. 
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Figure 4: P-P plot, Estimated PDF, estimated CDF, estimated HRF 

and Kaplan-Meier Survival Plot S(x) for data set II. 
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Figure 5: P-P plot, Estimated PDF, estimated CDF, estimated HRF 

and Kaplan-Meier Survival Plot S(x) for data set III. 

 
 
 

Table 4: The statistics AIC;BIC;HQIC and CAIC 

values for glass fibre data. 
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Table 5: MLEs and their standard errors for glass fibre data. 
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Table 6: The statistics AIC; BIC; HQIC and CAIC 

values for gauge lengths data 

 
 

Table 7: MLEs and their standard errors (in parentheses) for gauge lengths data. 
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where ℓ̂  denotes the log-likelihood function evaluated at the MLEs, 𝜅  is the number of 

model parameters and 𝑛  is the sample size. The model with minimum values for these 
statistics could be chosen as the best model to fit the data. All results are obtained using the 

R PROGRAM. Tables 2, 4 and 6 compare the PBX-IR model with other important competitive 
distributions. The PBX-IR model gives the lowest values for the AIC, BIC, HQIC and CAIC 

statistics (in bold values) among all fitted models to these data. So, it may be considered as 
the best model among them. Figure 3, 4 and 5, respectively, display the plots of estimated 

density for the proposed model and estimated CDF of the new model for the three data sets. 
These plots reveal that the proposed distribution yields a better fit than other nested and 

non-nested models for both data sets. 

 

6. Conclusions 

A new flexible extension of the IR model is proposed and studied. Some of its 
fundamental statistical properties are derived such as quantile, moments, incomplete 

moments and moment generating function. We assessed the performance of the maximum 

likelihood estimators via a simulation study. The importance of the new model is shown via 
two applications to real data sets. The new model is much better than other important 

competitive models (the Weibull Inverse Weibull, exponentiated Inverse Weibull, 
Kumaraswamy Inverse Weibull, beta Inverse Weibull, transmuted Inverse Weibull, gamma 
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extended Inverse Weibull, Marshall-Olkin Inverse Weibull, Marshall-Olkin Kumaraswamy 

Inverse Weibull, generalized Marshall-Olkin Inverse Weibull, Kumaraswamy Marshall-
Olkin Inverse Weibull and Inverse Weibull distributions) based on three real data sets. 
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Appendix 

cdf_PBXIR - function(par,x){ 

lameda = par[1] 
theta = par[2] 

a = par[3] 

g =b*(a2)*x(-(2+1))*(exp(-((a/x)(2)))) 
G =exp(-((a/x)(2))) 

g.PBrX =(lameda*((2*theta*g*G/(1-G)3)*exp(-(G/(1-G))2)*(1-exp(-(G/(1-
G))2))(theta-1))*exp(-lameda*((1-exp(-(G/(1-G))2))theta)))/(1-exp(-lameda)) 

G.PBrX =(1-exp(-lameda*((1-exp(-(G/(1-G))2))theta)))/(1-exp(-lameda)) 

return(G.PBX) 

} 

pdf_PBXIR - function(par,x){ 

lameda = par[1] 
theta = par[2] 

a = par[3] 

g =b*(a2)*x(-(2+1))*(exp(-((a/x)(2)))) 
G =exp(-((a/x)(2))) 

c= (2*theta*g*G/(1-G)3)*exp(-(G/(1-G))2)*(1-exp(-(G/(1-G))2))(theta-1) 
C= (1-exp(-(G/(1-G))2))theta 

g.PBrX =(lameda*((2*theta*g*G/(1-G)3)*exp(-(G/(1-G))2)*(1-exp(-(G/(1-  

G))2))(theta-1))*exp(-lameda*((1-exp(-(G/(1-G))2))theta)))/(1-exp(-lameda)) 

G.PBrX =(1-exp(-lameda*((1-exp(-(G/(1-G))2))theta)))/(1-exp(-lameda)) 
return(g.PBX) 

} 
n = 20; 

#lameda = 0.5; theta = 1.5; a = 2.5 

lameda = 1.5; theta = 0.5; a = 1.5 

x =Q(u) 

fit = goodness.fit(pdf=pdf_PBXIR, cdf=cdf_PBXIR, starts = c(initial,initial,initial), data=x, 
method=“N”, domain=c(0,Inf), mle=NULL) 

fit$mle 

#———————————————————– 

for(i in 1:length(NN)){ 
N = NN[i] 

cat(“i=”,i,“ n=”,N,’n’) 
ml = matrix(NA, nr=M, nc=3, byrow=T) 

j = 1 
while(j = M){ 

x = Q(u) 

fit = goodness.fit(pdf=pdf_BXfr, cdf=cdf_PBXIR, starts = c(initial,initial,initial), data=x, 
method=“N”, domain=c(0,Inf), mle=NULL) 
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if(fit$Convergence == 0) { 

ml[j,] = fit$mle 
j = j + 1 

} 
# for(k in 1:length(ml[,1])){ 

# if(ml[k,1] 1.5*lameda) ml[k,1] = NA 
# if(ml[k,2] 1.5*theta) ml[k,2] = NA 

# if(ml[k,3] 1.5*a) ml[k,3] = NA 
# } 

bias[i,]=apply((ml-pa), 2, FUN=mean, na.rm=TRUE) 

MSE[i,]=apply((ml-pa)2, 2, FUN=mean, na.rm=TRUE) 

bias; MSE 


