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ABSTRACT 

Earthquake in recent years has increased tremendously. This paper outlines 

an evaluation of Cumulative Sum (𝐶𝑈𝑆𝑈𝑀)  and Exponentially Weighted 

Moving Average (𝐸𝑊𝑀𝐴) charting technique to determine if the frequency of 

earthquake in the world is unusual. The frequency of earthquake in the world is 

considered from the period 1973 to 2016. As our data is auto correlated we cannot 

use the regular control chart like Shewhart control chart to detect unusual 

earthquake frequency. An approach that has proved useful in dealing with auto 

correlated data is to directly model time series model such as Autoregressive 

Integrated Moving Average (𝐴𝑅𝐼𝑀𝐴), and apply control charts to the residuals. 

The 𝐸𝑊𝑀𝐴 control chart and the 𝐶𝑈𝑆𝑈𝑀 control chart have detected unusual 

frequencies of earthquake in the year 2012 and 2013 which are state of 

statistically out of control. 

 

Keywords: CUSUM chart, EWMA chart, ARIMA. 
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1. Introduction 

Earthquake is one of the most horrific and devastating natural phenomena in the world. It 

is the sudden, rapid shaking of the earth, caused by the breaking and shifting of subterranean 

rock as it releases strain that has accumulated over a long time. Earthquakes may damage 

household items, building to move off foundations or collapse, damage roads, bridges and 

dams, cause fires and explosions. They may also trigger landslides, avalanches and tsunamis. 

The origin of earthquake is as old as the origin of the Earth, but due to lack of knowledge 

and scientific instruments it was tremendous challenge for ancient scientists to collect and 

analysis the earthquake data. Now-a-days the advancement of science and technology makes 

it easy to collect and analysis the earthquake data. Chen et al. (2010) analysed earthquake data 

with the help of frequency time analysis. Machado and Lopes (2013) analysed global 

earthquake data covering the period from 1962 up to 2011. Gupta and Gupta (2016) analysed 

earthquake data with the help of Big Data technology and visualized with the help of Tableau 

in India from 1800 to 2014. A multivariate non-parametric hazard model (Ata and Ozel, 2011) 

was used to analyse 111 destructive earthquakes having magnitude greater than 5 between the 

years 1903 to 2009 in Turkey. Reyes (2013) studied the spatial distribution of cluster 

associated to the aftershocks of the megathrust Maule earthquake for the year 2010. Besides 

the analysis of earthquake data, there are some studies that predict the occurrences of large 

scale earthquakes. For example, Amei et al. (2012) predicted a total number of 12 large scale 

earthquakes based on the worldwide earthquake data during 1986 to 2009. Alam (2015) 

forecasted the earthquake behaviour in Indonesia based on the earthquake data during the year 

1980 to 2007. Last et al. (2016) predicted the magnitude of the earthquakes in the area of Israel 

and its neighbouring countries using the earthquake data from the year 1983 to 2010. 

Recently, much research in the literature has focused on whether there is an increase in 

the frequency of earthquake occurrences. Any increase in the frequency of earthquakes is due 

to climate change in the world (Yi˘giter, 2012). There is considerable debate on whether 

climate change really does increase the frequency of natural disasters such as earthquakes and 

volcano eruptions. In many studies, it is emphasized that there is serious concern about impact 

of climate change on the frequencies of hazardous events (Lindsey, 2007; Mandeville, 2007 

etc.).  

The earth has experienced several earthquakes starting from the end of 19th century. 

Although this amount has been increased a little higher than the previous years, statistical 

evidence is thus required to determine whether this recent number of earthquake is just a 

random phenomenon or a genuine shift. Statistical control chart is a technique that can be used 

to determine the shift in number of earthquake. This technique was used (Justin et al. 2012) 

to detect climate change in Masvingo city in Zimbabwe. 

The standard assumptions that are used to apply control charts are that the data are 

normally and independently distributed. When these assumptions are satisfied, one may apply 

conventional control charts and draw conclusions. The conventional control charts do not 

work well and give misleading results if the data exhibit even low levels of correlation over 

time (Bisgaard and Kulahci 2005). An approach that has proved useful in dealing with auto 

correlated data is to directly model time series model such as Autoregressive Integrated 

Moving Average (ARIMA), and apply control charts to the residuals (Montgomery and 

Mastrangelo, 1991). The purpose of this study is to determine whether the recent number of 
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earthquake is just a random phenomenon or a genuine shift using statistical control chart 

techniques. The earthquake data is an auto correlated data. So to detect shift in number of 

earthquake, we identify an appropriate 𝐴𝑅𝐼𝑀𝐴 model to the earthquake data and then apply 

the residuals of this 𝐴𝑅𝐼𝑀𝐴  model to Cumulative Sum Control Chart (Page, 1961) and 

Exponentially Weighted Moving Average (Roberts, 1959). 

 

2. Methodology 

2.1 ARIMA time series analysis 

In statistics and econometrics and in particular time series analysis, an autoregressive 

integrated moving average (𝐴𝑅𝐼𝑀𝐴) model is a generalization of an autoregressive moving 

average (𝐴𝑅𝑀𝐴) model. Both of these models are fitted to time series data either to better 

understand the data or to predict future points in the series (forecasting). 

ARIMA model is denoted by 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) where 𝑝 represents autoregressive terms and 𝑞 

represents moving average terms. Combine both 𝑝  autoregressive terms and 𝑞  moving 

average terms, 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) with mean 𝜇 can be written as: 

 
   𝑋𝑡 = 𝜇 +  ∑ 𝜙𝑖𝑋𝑡−𝑖 +  ∑ 𝜃𝑖𝜖𝑡−𝑖

𝑞

𝑖=1

+  𝜖𝑡

𝑝

𝑖=1

 

 

 

(1) 

where 𝑋𝑡 is the original series, for every t. The 𝜙𝑖are the parameters of the autoregressive 

part of the model and 𝜃𝑖  are the parameters of the moving average part. Assumed that t is 

independent of 𝑋𝑡−𝑖;  𝑖 = 1, . . . , 𝑝. If the process is non-stationary then the model will be 

written as 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞). 

Modelling an 𝐴𝑅𝑀𝐴 (𝑝, 𝑞) process requires stationarity. A stationary process has a mean 

and variance that do not change over time and the process does not have trends. Stationarity 

test can be performed in many ways. In this study we perform the graphical test and the 

Augmented Dickey-Fuller (ADF) test. 

In graphical procedure, observations are plotted against the time. If there is any trend of 

increasing or decreasing, then it will be interpreted as that the process is non-stationary and 

then an appropriate procedure has to be taken to achieve stationarity. However, if there is no 

trend, then the process will be interpreted as stationary. 

The most widely used test to check stationarity is the Dickey-Fuller (DF) test. Assuming 

an 𝐴𝑅(1) model as below: 

 ∆𝑋𝑡  = 𝛾∗𝑋𝑡−1  +  𝑒𝑡.        (2) 

 
we test the null hypothesis that 𝛾∗ = 0, meaning that the time series 𝑋𝑡 is not stationary. 

In addition to the model (2) above, a drift µ and additional lags of the dependent variable can 

be added: 

 

Δ𝑋𝑡 =  𝜇 + 𝛾∗𝑋𝑡−1 + ∑ 𝜙𝑗Δ𝑋𝑡−𝑗 +  𝜖𝑡.

𝑝−1

𝑗=1

 

 

 

(3) 
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The augmented Dickey-Fuller test evaluates the null hypothesis that 𝛾∗ = 0. The model (3) 

will be non-stationary if 𝛾∗ = 0. The model with a time trend can be considered as: 

 

 Δ𝑋𝑡 =  𝜇 + 𝛽𝑡 + 𝛾∗𝑋𝑡−1 +  ∑ 𝜙𝑗Δ𝑋𝑡−𝑗 +  𝜖𝑡.

𝑝−1

𝑗=1

 

 

 

(4) 

 

Then we test the hypothesis that β = 0 and 𝛾∗ = 0. Again, the model will be nonstationary 

if 𝛾∗ = 0. 

After checking stationarity, model identification is required. In this paper we use two 

procedures for model identification. One is graphical procedure (ACF and PACF plot). And 

another is Akaike Information Criterion (AIC). 

An ARIMA model can be chosen upon inspection of the Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF). This approach relies on the following facts: (i) 

the ACF of a stationary AR process of order p goes to zero at an exponential rate, while the 

PACF becomes zero after lag p. (ii) for an MA process of order q the theoretical ACF and 

PACF exhibit the reverse behaviour (the ACF truncates after lag q and the PACF goes to zero 

relatively quickly). It is usually clear to detect the order of an AR or MA model. However, 

with processes that include both an AR and MA part the lag at which they are truncated may 

be blurred because both the ACF and PACF will decay to zero. One way to proceed is to fit 

first an AR or MA model (the one that seems more clear in the ACF and PACF) of low order. 

Then, if there is some further structure it will show up in the residuals, so the ACF and PACF 

of the residuals is checked to determine if additional AR or MA terms are necessary. 

The Akaike information criterion was developed by Hirotugu Akaike (Akaike, 1974), 

originally under the name “an information criterion”. The Akaike Information Criterion (AIC) 

is a way of selecting a model from a set of models. It is based on information theory, but a 

heuristic way to think about it is as a criterion that seeks a model that has a good fit to the truth 

but few parameters. It is defined as: 

 A𝐼𝐶 =  −2(𝑙𝑛(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑))  +  2𝐾. 
 

(5) 

Where likelihood is the probability of the data given a model and K is the number of free 

parameters in the model. AIC scores are often shown as ∆AIC scores, or difference between 

the best model (smallest AIC) and each model (so the best model has a ∆AIC of zero). 

For further use of the model, first we have to check whether the fitted model is appropriate. 

Whether the parameters of the model are significant or not is need to be checked as well as if 

the residuals are white noise or not. Whether the parameters are significant, can be examined 

by p-values and whether the residuals are white noise, can be checked by Ljung-Box statistic 

and the ACF plot of residuals. If the plot shows that the residuals stay within the limits, then 

it is said that residuals are white noise. 

The Ljung-Box test is a type of statistical test of whether any of a group of autocorrelations 

of a time series is different from zero. Instead of testing randomness at each distinct lag, it 

tests the “overall” randomness based on a number of lags. Here, the null hypothesis is of data 

that are independently distributed and the alternative hypothesis is of data that are not 

independently distributed; they exhibit serial and the test statistic is: 
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𝑄 = 𝑛(𝑛 + 2) ∑

�̂�𝑘
2

𝑛 − 𝑘

ℎ

𝑘=1

 ,   
 

(6) 

where, n is the sample size, �̂�k is the sample autocorrelation at lag k, and h is the number 

of lags being tested. Under the null hypothesis that the series is white noise (data are 

independently distributed), Q has a limiting χ2 distribution with p degrees of freedom. 

 

2.2 Cumulative Sum(CUSUM) chart 

The CUSUM chart directly incorporates all the information in the sequence of sample 

values by plotting the cumulative sums of observations of the deviations of the sample values 

from a target value. Let 𝑦𝑖 be the 𝑖𝑡ℎ  observation, which has a normal distribution with 𝜇0 and 

standard deviation σ. Now if 𝜇0 is the target, the CUSUM control chart is formed by plotting 

the quantity 𝐶𝑖 = ∑ (𝑦𝑖 − 𝜇0)𝑖
𝑗=1  against the sample number 𝑖. Ci is called the cumulative sum 

up to and including the 𝑖𝑡ℎ  sample. The tabular CUSUM works by accumulating derivations 

from 𝜇0 that are above target with one statistic C+ and accumulating derivations from 𝜇0 that 

are below target with another statistic C−. The statistics C+ and C− are called one-sided upper 

and lower CUSUMs, respectively. They are 

 𝐶𝑖
+ = 𝑚𝑎𝑥[0,   𝑦𝑖 − (𝜇0 + 𝐾) + 𝐶𝑖−1

+ ],         

 

(7) 

 𝐶𝑖
− = 𝑚𝑎𝑥[0,   (𝜇0 − 𝐾) −   𝑦𝑖 + 𝐶𝑖−1

− ], 

 

(8) 

where the starting values are 𝐶0
+ = 𝐶0

− = 0. K is usually called the reference value and it 

is often chosen about halfway between the target 𝜇0 and the out-of-control value of the mean 

𝜇1, and it can be calculated by 

 
  𝐾 =

𝛿

2
𝜎 =

|𝜇1 − 𝜇0|

2
 

(9) 

 

𝐶0
+ and 𝐶0

− both are greater than K and if either 𝐶0
+ or 𝐶0

− exceed the decision interval H, the 

process is considered to be out of control. We define 𝐻 =  ℎ𝜎 and 𝐾 =  𝑘𝜎, where σ is the 

standard deviation of the sample variable used in forming the CUSUM. Using h = 4 or h = 5 

and 𝑘 =  
1

2
 will generally provide a CUSUM that has good ARL properties against a shift of 

about 1σ in the process mean. 

 

2.3 Exponentially Weighted Moving Average (EWMA) Control Chart 

The EWMA control chart is approximately the same as CUSUM control chart and in some 

cases it is easier to set up and operate. This chart considers all previous points using a 

weighting factor that makes the outcome more influenced by recent points. 

The EWMA 𝑧𝑖  is computed sequentially as a linear interpolation between the present 

observation 𝑦𝑖  and 𝑧𝑖−1, the previous EWMA. So the exponentially weighted moving average 

is defined as 

 𝑧𝑖  =  𝜆𝑦𝑖 + (1 −  𝜆)𝑧𝑖−1. 

 

(10) 
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Where, 0 <  𝜆 <  1 is a weighted constant and the starting value is the process target, i.e. 

𝑧0 =  𝜇0. Sometimes the average of preliminary data is used as the starting value of EWMA, 

so that 𝑧0 = �̅�. 

The EWMA is sometimes called a geometric moving average (GMA). The EWMA is used 

widely in time series modelling and forecasting. Since the EWMA can be viewed as a 

weighted average of all past and current observations, it is very insensitive to the normality 

assumption. It is therefore an ideal control chart to use with individual observations. 

If the observations 𝑦𝑖  are independent random variables with variance 𝜎2 , then the 

variance of 𝑧𝑖  is 

 
𝜎𝑧𝑖

2 =  𝜎2 (
𝜆

2 − 𝜆
) [1 − (1 − 𝜆)2𝑖]. 

 

(11) 

By plotting 𝑧𝑖  versus the sample number 𝑖 (or time), the EWMA control chart would be 

constructed. The UCL, CL and LCL for the EWMA control chart are as follows: 

 

  𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎√(
𝜆

2 − 𝜆
) [1 − (1 − 𝜆)2𝑖],    

 

(12) 

 𝐶𝐿 = 𝜇0,    

 

(13) 

 

 

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎√(
𝜆

2 − 𝜆
) [1 − (1 − 𝜆)2𝑖],   

 
(14) 

 

where factor L is the width of the control limits.  L = 3 (the usual three-sigma limits) works 

reasonably well. 

 

3. Description and analysis of earthquake data 

3.1 Data description 

United States Geological Survey (USGS) is one of the providers of earthquake data from 

all over the world. The data provided by USGS for year 1900 to 2016 contains too many 

variables. Our variables of interest are year of occurrence and magnitude. Figure 1(a) displays 

the total number of earthquake for different magnitudes and Figure 1(b) displays the total 

number of earthquake for different years. 
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Figure 1: (a) Total number of earthquake for different magnitudes and (b) Total number of 

earthquake for different year. 

 

The time series plot for the earthquake data (Figure 1(b)) indicates three significant shifts 

of number of occurrences such as 1900 to 1949, 1950 to 1972 and 1973 to 2016. We observe 

that the frequency of earthquake from 1900 to 1949 is very low and at the year 1950 there is 

a sudden shift. This shift continued for year 1950 to 1972. At year 1973 there is a very large 

shift in the frequency. Thus from 1973 the new shift has continued until present year. 

Though from the graphical method it is quite clear that there are two shifts in the mean, 

however we can check this by performing global mean test (ANOVA). The test of hypothesis 

is: 𝐻0 : 𝜇1 = 𝜇2 = 𝜇3 vs 𝐻𝑎: at least two are not equal. Where 𝜇1, 𝜇2, 𝜇3are the mean of the 

number of earthquake for year 1900-1949, 1950-1972, 1973-2016 respectively. 

Table 1: Analysis of variance table 

 

Frequency Group DF Sum sq Mean sq F-value p-value 

Factor effect 2 64370424 32185212 914.27 < 0.001 

Residuals 114 4013175 35203   

 

From Table 1 we can say that, as the p-value is less than the significant level α = 0.05, we 

reject the null hypothesis. Thus we conclude that there is mean difference in year 1900-1949, 

1950-1972 and 1973-2016 for total. As the number of occurrences is higher during the period 

1973 to 2016, in this study we analyse this period. 

 

3.2 Analysis of the data for 1973 to 2016 

To analyse the time series earthquake data first we check for stationarity of the data. Figure 

2 shows the time against frequency of the earthquake data. From the figure we find that 

sometimes the frequency of earthquake is increasing and sometimes decreasing and the mean 

and variance are not constant. And from ADF test (Table 2), we observe that for zero 

difference the p-value is insignificant. So we cannot reject the null hypothesis. That means, 

both techniques provide the same results, that the earthquake data is nonstationary. 
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Figure 2. Plot of Frequency vs time 

 

 

 

 

 

Table 2: Results of Augmented Dickey-Fuller (ADF) test 

 

 p-value  

Difference 0 Difference 1 Difference 2 

0.4376 0.0794 0.01 

 

For difference 1, the data also remain nonstationary. However, the earthquake data become 

stationary at difference 2. So, the integrated part of the 𝐴𝑅𝐼𝑀𝐴 model is 2. 

As the integrated part i.e. d of the models for the earthquake data is known, to identify the 

value of 𝑝 and 𝑞, we use two techniques, graphical procedure and AIC value. Figure 3 shows 

the ACF and PACF of second difference of the data. These figures suggested an 𝐴𝑅 (2) and 

𝑀𝐴 (0) model is operating. The minimum value of AIC for the data is also for 𝐴𝑅𝐼𝑀𝐴 (2,2,0) 

(Table 3). So for the earthquake data, we have identified an 𝐴𝑅𝐼𝑀𝐴 (2,2,0) model. 

 

 
Figure 3: (a) ACF and (b) PACF plots for second difference 

 

Table 3: AIC values for different 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) models for earthquake data: 
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 AIC values  

𝐴𝑅𝐼𝑀𝐴(0,2,0) 𝐴𝑅𝐼𝑀𝐴(1,2,0) 𝐴𝑅𝐼𝑀𝐴(2,2,0) 

613.8245 603.7525 598.8686 

 

After model identification, we have to check the model adequacy i.e. if the residuals are 

white noise or not. The ACF plot (Figure 4) of the residuals from the 𝐴𝑅𝐼𝑀𝐴 (2,2,0) model 

shows all correlations within the threshold limits indicating that the residuals are behaving 

like white noise. A Ljung-Box test (Table 4) returns a large p-value, also suggesting the 

residuals are white noise i.e. residuals are independently distributed. And the selected models 

can be fitted for further procedure. 

 
Figure 4: ACF plot for the residuals 

 

Table 4: Box-Ljung test 

 

χ2 DF p-value 

17.832 20 0.5985 

 

Now the residuals of the 𝐴𝑅𝑀𝐴 (2,2,0) model are plotted to two control charts such as 

𝐶𝑈𝑆𝑈𝑀 and 𝐸𝑊𝑀𝐴 to identify whether the number of earthquake is statistical control or not. 

For constructing 𝐶𝑈𝑆𝑈𝑀 control chart, we use h = 4 and 𝑘 =  
1

2
. Here, we define for UCL, H 

= ℎ𝜎 and for LCL, H = −ℎ𝜎. Figure 5 shows that most of the 𝐶𝑈𝑆𝑈𝑀 points lie on the central 

line 0, however there are two 𝐶𝑈𝑆𝑈𝑀 points (year 2012 and 2013) which are beyond the LCL 

line. So there is abnormality in the frequency of earthquake data and we may conclude that it 

is out of statistical control. 
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Figure 5: Cumulative sum control chart 

 

For 𝐸𝑊𝑀𝐴 control chart, we use the value of λ equals to 0.4 for our earthquake data. 

Figure 6 shows that, the starting residual is zero. Then the residuals gradually increase and 

decrease over time. And for the year 2012, we find that the state of the process is out of control. 

 
Figure 6: Exponentially Weighted Moving Average control chart 

 

4. Conclusion 

Now-a-days with the help of science and technology, it is possible to collect and analyse 

earthquake data. Earthquake is a natural disaster and increase of the frequency of earthquake 

indicates the change of world climate which is a big issue now-a-days. In this paper we are 

trying to identify whether the number of earthquake in the world is under state of statistical 

control or not. 

In this article it is observed that there are two shifts in the mean of the number of 

earthquakes. For the year 1900-1949, the mean was very small. Then, for the year 1950-1972 

the mean had increased slightly. However, we witnessed a tremendous shift in mean at 1973. 

There can be several reasons for this significant difference. It is possible that at the beginning 

of the 1900s, the measurement and detecting equipments of earthquakes were so ancient that 

those could not detect the earthquakes correctly. Back then science and technology was not as 

advanced as now. But at the end of the century, the situation has changed. Better and advanced 



 

 

 

 
54  Application Of Statistical Control Charts To Detect Unusual Frequency Of Earthquake In The World 

 

tools have invented that can detect the magnitude correctly. Yet, may be in the 1900s, 

earthquake did not appear as frequent as now. 

In recent year, world has experienced several earthquakes. At the beginning of the study 

we had hypothesised that may be there are some abnormalities for these consequences. 

Though we have found most of the points are in the control zone, but some of them are in the 

state of out of control. So we may conclude that the predominant number of earthquake is not 

a random phenomenon, moreover it is a genuine shift that we should be concerned about and 

perform necessary research to find the real reasons behind those earthquakes. 
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