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ABSTRACT 

We introduce a new family of distributions namely inverse 

truncated discrete Linnik G family of distributions. This family is a 

generalization of inverse Marshall-Olkin family of distributions, 

inverse family of distributions generated through truncated negative 

binomial distribution and inverse family of distributions generated 

through truncated discrete Mittag-Leffler distribution. A particular 

member of the family, inverse truncated negative binomial Weibull 

distribution is studied in detail. The shape properties of the 

probability density function and hazard rate, model identifiability, 

moments, median, mean deviation, entropy, distribution of order 

statistics, stochastic ordering property, mean residual life function 

and stress-strength properties of the new generalized inverse 

Weibull distribution are studied. The unknown parameters of the 

distribution are estimated using maximum likelihood method, 

product spacing method and least square method. The existence and 

uniqueness of the maximum likelihood estimates are proved. 

Simulation is carried out to illustrate the performance of maximum 

likelihood estimates of model parameters. An AR(1) minification 

model with this distribution as marginal is developed. The inverse 

truncated negative binomial Weibull  distribution is fitted to a real 

data set and it is shown that the distribution is more appropriate for 

modeling in comparison with some other competitive models. 
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1. Introduction 

In the last two decades researchers have greater intention toward the inversion 

of univariate probability models and their applicability under inverse 

transformation. The inverse distribution is the distribution of the reciprocal of a 

random variable. Dubey (1970) proposed inverted beta distribution, Voda (1972) 

studied inverse Rayleigh distribution, Folks and Chhikara (1978) proposed 

inverse Gaussian distribution, Prakash (2012) studied the inverted exponential 

model, Sharma et al. (2015) introduced inverse Lindley distribution, Gharib et al. 

(2017) studied Marshall-Olkin extended inverse Pareto distribution, Al-Fattah et 

al. (2017) introduced inverted Kumaraswamy distribution and Rana and 

Muhammad (2018) introduced Marshall-Olin extended inverted Kumaraswamy 

distribution. 

The inverse Weibull (IW) distribution is commonly used in statistical analysis 

of lifetime or response time data from reliability experiments. For the situations 

in which empirical studies indicate that the hazard function might be unimodal, 

the IW distribution would be an appropriate model. Khan et al. (2008) in their 

theoretical analysis of IW distribution mention that numerous failure 

characteristics such as wear out periods and infant mortality can be modeled 

through IW distribution. They mention the wide range of areas in reliability 

analysis where IW distribution model can be used successfully. The IW model 

has been derived as a suitable model for describing the degradation phenomena of 

mechanical components, such as the dynamic components of diesel engines, see, 

for example, Murthy et al. (2004). Erto and Rapone (1984) showed that IW model 

provides good fit to survival data such as the time to breakdown of an insulating 

fluid subject to the action of constant tension. Interpretation of IW in the context 

of load strength relationship for a component was provided by Calabria and 

Pulcini (1994). Furthermore, this distribution is one of the most popular 

distributions in complementary risk problems. Shafiei et al. (2016) mention that 

IW distribution is an appropriate model for situation where hazard function is 

unimodal. The Marshall-Olkin IW distribution and its application in the context 

of reliability analysis is discussed in Okasha et al. (2017).  Hassan and Nassar 

(2018) studied properties and applications of IW generator of distributions. 

Compounding IW distribution with zero truncated Poisson and geometric 

distributions are studied by Chakrabarty and Chowdhury (2018). 

Adding parameters to a well-established distribution is a time-honored 

technique for obtaining more flexible new families of distributions. Marshall and 

Olkin (1997) discussed a method of adding a new parameter to an existing 

distribution. It includes the baseline distribution as a special case, and gives more 

flexibility to model various types of data. One of the important properties of this 
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family is that Marshall-Olkin family of distributions possess stability property in 

the sense that if the method is applied twice, it returns to the same distribution. 

Also this family satisfies geometric extreme stability property. 

Marshall and Olkin (1997) started with a parent survival function F̅(x) and 

considered a family of survival functions given by 

�̅�(𝑥) =
𝛼�̅�(𝑥)

𝐹(𝑥) + 𝛼�̅�(𝑥)
, 𝛼 > 0 𝑥 ∈ ℝ (1) 

They described the motivation for the family of distributions (1) as follows:  

Let X1, X2, … be a sequence of independent and identically distributed (i.i.d.) 

random variables with survival function F̅(x). Let  

𝑈𝑁 = min(𝑋1, 𝑋2, … , 𝑋𝑁), (2) 

where N is the geometric random variable with probability mass function (pmf) 

P(N = n) = α(1 − α)n−1  for n = 1,2, …  and 0 < α < 1  and independent of 

Xi’s. Then the random variable UN has the survival function given by (1). If α >

1 and N is a geometric random variable with pmf of the form P(N = n) =

1

α
(1 −

1

α
)n−1, n = 1,2, …, then the random variable VN = max (X1, X2, … , XN) 

also has the survival function as (1). 

In the past, many authors have studied various univariate distributions 

belonging to the Marshall-Olkin family of distributions. We refer to the paper of 

Tahir and Nadarajah (2015) for a list of univariate Marshall-Olkin distributions. 

Besides special distributions, three families of distributions, which generalize 

Marshall-Olkin family of distributions, have been recently introduced. 

First, Nadarajah, Jayakumar and Ristić (2013) proposed a new generalization 

of the Marshal-Olkin family of distributions, by replacing the geometric 

distribution of N in (2), as truncated negative binomial distribution with pmf 

given by 

𝑃(𝑁 = 𝑛) =
𝛼𝜃

1 − 𝛼𝜃
(𝜃 + 𝑛− 1
𝜃 − 1

) (1 − 𝛼)𝑛,𝑛 = 1,2,…,  

where 𝛼 > 0 and 𝜃 > 0. The authors showed that the random minimum, 𝑈𝑁 =

min(𝑋1, 𝑋2, … , 𝑋𝑁) has the survival function of the form 

�̅�(𝑥;𝛼, 𝜃) =
𝛼𝜃

1 − 𝛼𝜃
[(𝐹(𝑥) + 𝛼�̅�(𝑥))

−𝜃
− 1]. (3) 

Note that if 𝛼 → 1, then �̅�(𝑥; 𝛼, 𝜃) → �̅�(𝑥). The family of distributions given in 

(3) is a generalization of Marshall-Olkin family of distributions, in the sense that 

when 𝜃 = 1, (3) reduces to (1). 

Pillai and Jayakumar (1995) introduced a class of discrete distributions 

containing geometric and named it as discrete Mittag-Leffler (DML) distribution, 

since it arises a discrete analogue of the well known continuous Mittag-Leffler 

distribution introduced by Pillai (1990). In DML distribution, the probability of 
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success depends on the trail number where as in geometric, it is constant through 

out the trails. Hence, the model obtained by replacing geometric minimum by 

truncated DML minimum of i.i.d random variables, may be more realistic. 

Second generalized family of distributions have been introduced by Sankaran 

and Jayakumar (2016). The authors introduced a family of distributions by 

replacing the distribution of 𝑁 in (2) as the discrete Mittag-Leffler distribution, a 

generalization of geometric distribution whose probability generating function 

(pgf) is given by 

𝐻(𝑠) =
1

1 + 𝑐(1 − 𝑠)𝛽
, 𝑐 > 0, 0 < 𝛽 ≤ 1.  

Using truncated discrete Mittag-Leffler distribution, they derived a family of 

distributions with parameters 𝛽 and 𝑐 having survival function 

�̅�(𝑥) =
1 − 𝐹𝛽(𝑥)

1 + 𝑐𝐹𝛽(𝑥)
. (4) 

Note that, the Marshall-Olkin method applied to 𝐹𝛽(𝑥), the exponentiated form 

of a parent distribution function 𝐹 , will also gives rise (4). The family of 

distributions generated using truncated discrete Mittag Leffler distribution can 

also be considered as a generalization of Marshall-Olkin family of distributions, 

since it reduces to Marshall-Olkin family, when 𝛽 = 1 and 𝑐 =
1−𝛼

𝛼
. 

A non negative integer valued random variable is said to be discrete Linnik 

distributed, if it has the pgf 

𝐻(𝑠) =

{
 
 

 
 
(

1

1 + 𝑐(1 − 𝑠)𝛽
)

𝜃

for 0 < 𝜃 < ∞

𝑒−𝑐(1−𝑠)
𝛽
 𝑓𝑜𝑟 𝜃 = ∞.

  

Third generalized family of distributions introduced by Jayakuamar and 

Sankaran (2019) using truncated discrete Linnik family of distributions with 

parameters β, θ and c have the survival function 

�̅�(𝑥) =
(1 + 𝑐)𝜃 − [1 + 𝑐𝐹𝛽(𝑥)]

𝜃

[(1 + 𝑐)𝜃 − 1][1 + 𝑐𝐹𝛽(𝑥)]
𝜃
. (5) 

In (5), when 𝜃 = 1 and 𝛽 ≠ 1, we obtain the survival function of the family of 

distributions generated using truncated discrete Mittag-Leffler distribution. When 

𝛽=1 and 𝜃 ≠ 1  in (5), we obtain the survival function of the family of 

distributions generated using truncated negative binomial distribution in (3). Also 

when 𝛽=1 and 𝜃 = 1 in (5), we obtain the survival function of Marshall-Olkin 

scheme, in (1). 

In this paper, we introduce a new family of distributions which we named as 

inverse truncated discrete Linnik G family of distributions. In particular, we study 
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inverse truncated negative binomial Weibull distribution distribution. The new 

proposed distribution is a generalization of Marshall-Olkin extended inverse 

Weibull, Marshall-Olkin extended inverse Rayleigh, Marshall-Olkin extended 

inverse exponential, inverse Weibull, inverse Rayleigh and inverse exponential 

distribution. 

The rest of the paper is organized as follows. In Section 2, we introduce a new 

family of distributions, namely inverse truncated discrete Linnik G distribution 

and their different sub models such as inverse family of distributions generated 

through discrete Mittag-Leffler G family of distributions, inverse family of 

distributions generated through truncated negative binomial G family of 

distributions and inverse family of distributions generated through 

Marshall-Olkin G family of distributions. In particular, we study inverse 

truncated negative binomial Weibull (GIW) distribution in Section 3. The shape 

properties of density and hazard function are studied. The model identifiability of 

the distribution is proved. The GIW distribution is represented as a mixture of 

inverse Weibull distribution. In Section 4, some structural properties of GIW 

distribution such as moments and generating function, quantiles, mean deviation, 

entropy, order statistics, stochastic ordering and mean residual life function are 

studied. Method of generation of random variate from GIW distribution is also 

discussed.  Estimation of stress-strength parameters are discussed in Section 5. 

Estimation of the model parameters by three methods- maximum likelihood 

estimation, method of product spacing, method of least squares are performed in 

Section 6. The existence and uniqueness of maximum likelihood estimates are 

also established.Simulation study is also carried out in order to establish the 

consistency property of the maximum likelihood estimates of our proposed model. 

An autoregressive minification process with GIW marginals is developed in 

Section 7. Finally, in Section 8, we present an application of a real data set, which 

exhibits the performance of GIW compared to twelve well known models. The 

GIW distribution has least – logL, AIC, CAIC, BIC, HQIC,W∗, A∗, K − S  statistic 

and highest p-value for this data set compared to all other models. 

 

2. Inverse family of distributions generated through truncated 

discrete Linnik distribution 

Let X~  truncated discrete Linnik family of distributions with survival 

function S(. ) and baseline distribution function F(. ). Then Y =
1

X
 is an inverse 

truncated discrete Linnik random variable with cumulative distribution function 

(cdf) G(x) given by 
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𝐺𝑦(𝑥) = 𝑃(𝑌 ≤ 𝑥) = 𝑃 (
1

𝑋
≤ 𝑥) = 𝑃 (𝑋 ≥

1

𝑥
) = 𝑆(1 𝑥⁄ ) 

=
(1 + 𝑐)𝜃 − [1 + 𝑐𝐹𝛽(1 𝑥⁄ )]𝜃

[(1 + 𝑐)𝜃 − 1][1 + 𝑐𝐹𝛽(1 𝑥⁄ )]𝜃
, 𝛽,𝜃, 𝑐 > 0; 𝑥 > 0  

 

(6) 

Hence, we obtain a new family of distributions, which we named as inverse 

family of distributions generated through discrete Linnik G distribution. 

The probability density function (pdf) and the hazard rate function (hrf) of a 

random variable from the introduced family are respectively, 

𝑔(𝑦,𝛽, 𝑐, 𝜃) =
𝛽𝜃𝑐(1 + 𝑐)𝜃𝑦−2𝑓(1 𝑦⁄ )𝐹𝛽−1(1 𝑦⁄ )

[(1 + 𝑐)𝜃 − 1][1 + 𝑐𝐹𝛽(1 𝑦⁄ )]
𝜃+1

, (7) 

and 

ℎ(𝑦,𝛽, 𝑐, 𝜃) =
𝛽𝜃𝑐𝐹𝛽−1(1 𝑦⁄ )𝑓(1 𝑦⁄ )

[1 + 𝑐𝐹𝛽(1 𝑦⁄ )][(1 + 𝑐𝐹𝛽(1 𝑦⁄ ))
𝜃
− 1]

. (8) 

2.1 Inverse truncated discrete Mittag-Leffler G family of distributions 

In equation (6), when θ = 1, the cdf reduces to inverse truncated discrete 

Mittag-Leffler G family of distributions. Hence the cdf, pdf and hrf of inverse 

truncated discrete Mittag-Leffler G family of distributions are respectively: 

𝐺(𝑦;𝛽, 𝑐, 1) =
1 − 𝐹𝛽(1 𝑦⁄ )

1 + 𝑐𝐹𝛽(1 𝑦⁄ )
, (9) 

𝑔(𝑦;  𝛽, 𝑐, 1) =
𝛽(1 + 𝑐)𝑦−2𝐹𝛽−1(1 𝑦⁄ )𝑓(1 𝑦⁄ )

[1 + 𝑐𝐹𝛽(1 𝑦⁄ )]
2 , (10) 

and 

ℎ(𝑦;  𝛽, 𝑐, 1) =
𝛽𝑦−2𝑓(1 𝑦⁄ )

𝐹(1 𝑦⁄ )[1 + 𝑐𝐹𝛽(1 𝑦⁄ )]
. (11) 

2.2 Inverse truncated negative binomial G family of distributions 

When in equation(6), β = 1  and c =
1−α

α
, the cdf reduces to inverse 

truncated negative binomial G family of distributions. So the cdf, pdf and hrf of 

inverse truncated negative binomial G family of distributions are respectively: 

𝐺(𝑦; 1, 𝛼, 𝜃) =
𝛼𝜃

1 − 𝛼𝜃
[[𝛼 + (1 − 𝛼)𝐹(1 𝑦⁄ )]−𝜃 − 1], (12) 

𝑔(𝑦; 1, 𝛼, 𝜃) =
𝛼𝜃(1 − 𝛼)𝑦−2𝜃𝑓(1 𝑦⁄ )

(1 − 𝛼𝜃)(𝛼 + (1 − 𝛼)𝐹(1 𝑦⁄ ))𝜃+1
, (13) 
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and 

ℎ(𝑦;  1, 𝛼, 𝜃) =
𝛼𝜃(1 − 𝛼)𝑦−2𝜃𝑓(1 𝑦⁄ )

[𝛼 + (1 − 𝛼)𝐹(1 𝑦⁄ )]𝜃 − 𝛼𝜃
. (14) 

2.3 Inverse Marshall-Olkin G family of distributions 

In equation (6), when 𝛽 = 1, 𝜃 = 1 and 𝑐 =
1−𝛼

𝛼
, the cdf reduces to inverse 

Marshall-Olkin G family of distributions. So the cdf, pdf and hrf of inverse 

Marshall-Olkin G family of distributions are respectively: 

𝐺(𝑦; 1, 𝛼,1) =
𝛼�̅�(1 𝑦⁄ )

1 − (1 − 𝛼)�̅�(1 𝑦⁄ )
, 

(15) 

𝑔(𝑦; 1, 𝛼,1) =
𝛼𝑦−2𝑓(1 𝑦⁄ )

[𝛼 + (1 − 𝛼)𝐹(1 𝑦⁄ )]2
, (16) 

and 

ℎ(𝑦;  1, 𝛼, 1) =
𝛼𝑦−2𝑓(1 𝑦⁄ )

𝐹(1 𝑦⁄ )[𝛼 + (1 − 𝛼)𝐹(1 𝑦⁄ )]
. (17) 

Also when 𝛼 = 1, the inverse Marshall-Olkin G family of distribution reduces to 

inverse family of distributions. 

 

3. A new generalization of inverse Weibull distribution 

Now we consider, generalized inverse Weibull distribution generated through 

inverse truncated negative binomial and Weibull distribution. Negative binomial 

is a generalization of the geometric, and Poisson distributions is a limiting 

particular case. The negative binomial distribution with support over the set of all 

non-negative integers is also a generalization of the Poisson distribution in the 

sense that it can deduced as a hierarchial model if X~Poisson (Λ) with Λ being a 

gamma random variable. 

3.1 Distribution function 

Let X  follows Weibull distribution with parameters λ > 0  and β > 0 

having cdf F(x) = 1 − e−(λx)
β

 and pdf f(x) = βλβxβ−1e−(λx)
β

. Hence from 

(12), the cdf of the random variable Y is given by 

𝐺(𝑦;  𝛼, 𝜃, 𝜆, 𝛽) =
𝛼𝜃

1 − 𝛼𝜃

[
 
 
 
 
 
1 − [1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
𝛽

]

𝜃

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

]
 
 
 
 
 

. (18) 
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3.2 Probability density function 

The pdf of the new distribution is given by 

𝑔(𝑦;  𝛼, 𝜃, 𝜆, 𝛽) =
𝛼𝜃(1 − 𝛼)𝜃𝜃𝛽𝜆𝛽𝑦−(𝛽+1)𝑒

−(
𝜆
𝑦
)
𝛽

(1 − 𝛼𝜃) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃+1. (19) 

We refer to this new distribution having cdf (18) as inverted truncated negative 

binomial Weibull distribution  with parameters 𝛼, 𝜃, 𝜆 and 𝛽. We write it as 

𝐺𝐼𝑊(𝑦;  𝛼, 𝜃, 𝜆, 𝛽). 

The graph of 𝑔(𝑦) for different values of the parameters is given in Figure 1. 

 

Figure 1: The plots of the pdf of GIW distribution when 𝛼 = 1.5 and 𝜆 = 1.0. 

Some sub-models of the GIW distribution are listed below: 

i. When 𝜃 = 1, we have the inverse Marshall-Olkin Weibull distribution. 

ii. When 𝜃 = 1 and 𝛽 = 2, we have the inverse Marshall-Olkin Rayleigh 

distribution. 

iii. When 𝜃 = 1  and 𝛽 = 1 , we have the inverse Marshall-Olkin 

exponential distribution. 

iv. When 𝛼 → 1, we have the inverse Weibull distribution. 

v. When 𝛼 → 1 and 𝛽 = 2, we have the inverse Rayleigh distribution. 

vi. When 𝛼 → 1 and 𝛽 = 1, we have the inverse exponential distribution. 

3.3 Unimodality 

The pdf of the GIW model is either decreasing or unimodal. In order to 

investigate the critical points of density function, its first derivative with respect 

to y is 
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𝑔′(𝑦) =
𝛼𝜃(1 − 𝛼)𝜃𝜃𝛽𝜆𝛽𝑦−(𝛽+1)𝑒

−(
𝜆
𝑦
)
𝛽

(1 − 𝛼𝜃)𝑦 [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃+1

[
 
 
 
 

−(𝛽 + 1) + 𝛽 (
𝜆

𝑦
)
𝛽

+
(1 − 𝛼)𝛽(𝜃 + 1) (

𝜆
𝑦
)
𝛽

𝑒
−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]
]
 
 
 
 

. 

 

𝑔′(𝑦) = 0 implies, 

(1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

[(𝛽 + 1) + 𝜃𝛽 (
𝜆

𝑦
)
𝛽

] + 𝛽 (
𝜆

𝑦
)
𝛽

= 𝛽 + 1. (20) 

Since equation (20) is a nonlinear equation in 𝑦, there may be more than one 

positive root to (20). If 𝑦 = 𝑦0 is a root of (20), then it corresponds to a local 

maximum if 𝑔′ (𝑦) > 0 for all 𝑦 < 𝑦0. It corresponds to a local minimum if 

𝑔′ (𝑦) < 0 for all 𝑦 < 𝑦0 and 𝑔′ (𝑦) > 0 for all 𝑦 > 𝑦0. It corresponds to a 

point of inflexion if either 𝑔′ (𝑦) > 0 for all 𝑦 ≠ 𝑦0 or 𝑔′ (𝑦) < 0 for all 𝑦 ≠

𝑦0. 

3.4 Hazard rate 

The hazard rate is given by 

ℎ(𝑦) =
𝛼𝜃(1 − 𝛼)𝜃𝜃𝛽𝜆𝛽𝑦−(𝛽+1)𝑒

−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

] {[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃}

. 
(21) 

The critical point of ℎ(𝑦) is the roots of the equation 
𝜕𝑙𝑜𝑔ℎ(𝑦)

𝜕𝑦
= 0, which yields 

𝛽 + 1

𝑦

−
(
𝜆
𝑦)

𝛽

(
𝛽
𝑦)

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

(

 
 
 [1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
𝛽

]

𝜃

[1 + 𝜃(1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

] − 𝛼𝜃

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

] 3𝜃 − 𝛼𝜃

)

 
 
 

= 0. 

(22) 

There may be more than one roots for (22). Let τ(𝑦) =
𝜕2𝑙𝑜𝑔ℎ(𝑦)

𝜕𝑦2
. We have τ(𝑦)=  



 

K. Jayakumar, K. K. Sankaran                                 10 

 

 

=
𝛽 + 1

𝑦2
−

2 (
𝜆
𝑦3
)𝛽 [1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
𝛽

]

𝜃−1

[1 + 𝜃(1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

− 𝛼𝜃]

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

+

(1 − 𝛼)𝛽2 (
𝜆
𝑦3
) (
𝜆
𝑦
)
𝛽

𝑒
−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃−2

[1 + 𝜃(1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

− 𝛼𝜃]

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

+

(1 − 𝛼)𝜃𝛽 (
𝜆
𝑦2
) (
𝜆
𝑦
)
𝛽

(
𝛽
𝑦
) 𝑒

−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃−2

[2 + (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

(𝜃 − 1)]

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

+

(1 − 𝛼)𝜃𝛽2 (
𝜆
𝑦3
) (
𝜆
𝑦)

𝛽

𝑒
−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

2(𝜃−1)

[1 + 𝜃(1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

− 𝛼𝜃]

{[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃}

2
.. 

 

If 𝑦 = 𝑦0 is a root of (20), then it refers to a local maximum if τ(𝑦) > 0 for all 

𝑦 < 𝑦0 and τ(𝑦) < 0 for all 𝑦 > 𝑦0 . It corresponds to a local minimum if 

τ(𝑦) < 0 for all 𝑦 < 𝑦0 and τ(𝑦) > 0 for all 𝑦 > 𝑦0. It gives an inflexion 

point if either τ(𝑦) > 0 for all 𝑦 ≠ 𝑦0 or τ(𝑦) < 0 for all 𝑦 ≠ 𝑦0. 

The graph of h(y) for different values of the parameters is given in Figure 2. 

 

Figure 2: The plots of the hazard rate of GIW distribution when 𝛼 = 1.5 and 𝜆 =

1.0. 

Note that inverse truncated negative binomial Weibull (GIW) distribution and 

truncated negative binomial inverse Weibull distribution are seems to be similar 
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structure, but little different. For example, let G1(y;  α, θ, λ, β)  and 

H1(y;  α, θ, λ, β) are the cdf and hazard function of GIW distribution respectively 

and G2(y;  α, θ, λ, β) and H2(y;  α, θ, λ, β) are the cdf and hazard function of 

truncated negative binomial inverse Weibull distribution respectively. In Table 1, 

we consider the values of cdf and hazard function for α = 1.5, θ = 0.5, λ = 1.0  

and β = 0.5. 

Table 1: The values of cdf and hazard function when 𝜶 = 𝟏. 𝟓,𝜽 = 𝟎.𝟓, 𝝀 =

𝟏. 𝟎 and 𝜷 = 𝟎. 𝟓. 

𝑦 𝐺1(𝑦) 𝐺2(𝑦) 𝐻1(𝑦) 𝐻2(𝑦) 

0.1 0.057 0.032 0.025 0.014 

0.25 0.176 0.104 0.084 0.048 

0.5 0.304 0.192 0.157 0.093 

1.0 0.441 0.301 0.253 0.155 

2.0 0.569 0.418 0.365 0.235 

5.0 0.706 0.567 0.531 0.363 

10.0 0.784 0.664 0.666 0.474 

25.0 0.859 0.769 0.851 0.636 

50.0 0.899 0.829 0.995 0.766 

100.0 0.928 0.875 1.141 0.902 

500.0 0.967 0.941 1.484 1.232 

1000.0 0.977 0.958 1.633 1.378 

3.5 Model identifiability 

We have to prove model identifiability only with respect to the parameters α 

and θ, since the other two parameters (λ and β) are from the parent distribution. 

Let us suppose that G(y;  α1, θ1) = G(y;  α2, θ2) for all y > 0. We will show 

that this condition implies that  α1 =  α2  and θ1 = θ2 . For proving model 

identifiability, we use Theorem 2.4 of Chandra (1977). 

Proposition : The class of all mixing distribution relative to the GIW distribution 

is identifiable. 

Proof : If 𝑁𝑖 is truncated negative binomial random variable, truncated  at 0, 

then the probability generating function is 

𝜙𝑖(𝑠) = (1 −  𝛼)𝜃 [
1

(1 − 𝑠𝛼)𝜃
− 1] ; 𝑖 = 1,2.  

From the cdf of 𝑁𝑖, we have 

𝐺1 < 𝐺2 when  𝛼1 =  𝛼2 and 𝜃1 < 𝜃2 

and 
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𝐺1 < 𝐺2 when 𝜃1 = 𝜃2 and 𝛼1 <  𝛼2 

Let 𝐷𝜙1(𝑠) = (−∞,  𝛼1), 𝐷𝜙2(𝑠) = (−∞,  𝛼2) and 𝑠 =
1

 𝛼1
. Hence 

lim
𝑠→

1
 𝛼1

𝜙1(𝑠) = (1 −   𝛼1)
𝜃1 [

1

(1 −
1
 𝛼1
 𝛼1)𝜃1

− 1] = ∞. (23) 

When 𝜃1 = 𝜃2 and  𝛼2 <  𝛼1, we obtain 

lim
𝑠→

1
 𝛼1

𝜙2(𝑠) = (1 −   𝛼2)
𝜃1 [

1

(1 −
1
 𝛼1
 𝛼2)𝜃1

− 1] > 0.  

So 

lim
𝑠→ 𝛼1

𝜙2(𝑠)

𝜙1(𝑠)
= 0.  

and thus the identifiability is proved. Hence the cdf 𝐺 is identifiable with respect 

to 𝛼 and 𝜃. 

3.6 Expansion for distribution function and density function 

For |z|<1 and k>0, we have 

(1 − z)−k =∑
Γ(k + j)

Γ(k)j!

∞

j=0

zj, (24) 

where Γ(. ) is the gamma function. 

By using (24), the cdf of GIW distribution can be expressed as 

𝐺(𝑦) =
𝛼𝜃

1 − 𝛼𝜃
[[1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
𝛽

]

−𝜃

− 1]

=
𝛼𝜃

1 − 𝛼𝜃
[∑

Γ(𝜃 + j)

Γ(𝜃)j!

∞

j=0

(1 − 𝛼)j𝑒
−𝑗(

𝜆
𝑦
)
𝛽

− 1] . 

(25) 

In similar manner the pdf of GIW distribution can be expressed as 

𝑔(𝑦) =∑
𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)j!

∞

j=0

(1 − 𝛼)j+1𝜃𝛽𝜆𝛽𝑦−(𝛽+1)𝑒
−(𝑗+1)(

𝜆
𝑦
)
𝛽

. (26) 
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4. General properties of GIW distribution  

4.1 The moments  

We know that moments are important in any statistical analysis. In this 

subsection, we present rth moments of GIW distribution. 

From the definition of moments, we have 

𝐸(𝑌𝑟) = ∫ 𝑦𝑟  ∑
𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)j!

∞

j=0

(1 − 𝛼)j+1𝜃𝛽𝜆𝛽𝑦−(𝛽+1)𝑒
−(𝑗+1)(

𝜆
𝑦
)
𝛽

𝑑𝑦
∞

0

=∑
𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)j!

∞

j=0

(1 − 𝛼)j+1𝜃𝛽𝜆𝛽∫ 𝑦𝑟−(𝛽+1)𝑒
−(𝑗+1)(

𝜆
𝑦
)
𝛽

𝑑𝑦
∞

0

 

 

Put 𝑥 = 𝜆𝛽(𝑗 + 1)𝑦−𝛽. Then, 

𝐸(𝑌𝑟) =∑
𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)(j + 1)!

∞

j=0

𝜃(1 − 𝛼)j+1𝜆𝑟(𝑗 + 1)
𝑟
𝛽∫ 𝑥

𝑟
𝛽𝑒−𝑥𝑑𝑥

∞

0

=∑
𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)(j + 1)!

∞

j=0

𝜃(1 − 𝛼)j+1𝜆𝑟(𝑗 + 1)
𝑟
𝛽Γ (1 −

𝑟

𝛽
) ,

𝛽 > 𝑟. 

(27) 

By putting 𝑟 = 1  and 𝑟 = 2  in (27), we can easily obtain the mean and 

variance of GIW distribution. 

4.2 The moment generating function  

The moment generating function is given by 

𝑀𝑌(𝑡) =  ∫ 𝑒𝑡𝑦𝑔(𝑦) 𝑑𝑦
∞

0

  

By using the Tayler's series of expansion of the function 𝑒𝑡𝑦, we obtain, 
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𝑀𝑌(𝑡) = ∫ ∑
(𝑡𝑦)𝑘

𝑘!
[∑

𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)(j + 1)!

∞

j=0

(1

∞

𝑘=0

∞

0

− 𝛼)j+1𝜃𝛽𝜆𝛽𝑦−(𝛽+1)𝑒
−(𝑗+1)(

𝜆
𝑦)
𝛽

]𝑑𝑦

=∑∑
𝑡𝑘

𝑘!

𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)(j + 1)!

∞

j=0

(1

∞

𝑘=0

− 𝛼)j+1𝜃𝛽𝜆𝛽∫ 𝑦𝑘−(𝛽+1)
∞

0
𝑒
−(𝑗+1)(

𝜆
𝑦)
𝛽

𝑑𝑦 

As before, putting 𝑥 = 𝜆𝛽(𝑗 + 1)𝑦−𝛽 and simplifying, we have 

𝑀𝑌(𝑡) = ∑∑
𝑡𝑘

𝑘!

𝛼𝜃

1 − 𝛼𝜃
Γ(𝜃 + j + 1)

Γ(𝜃 + 1)(j + 1)!

∞

j=0

𝜃(1 − 𝛼)j+1𝜆𝑘(𝑗 + 1)
𝑘
𝛽Γ (1 −

𝑘

𝛽
) ,

∞

𝑘=0

𝛽 > 𝑘 (28) 

4.3 Simulation and Quantiles 

Random variable 𝑌 having GIW distribution can be easily simulated by 

inverting the cdf. Let 𝑈 has unform 𝑈(0,1) distribution, then 

𝛼𝜃

1 − 𝛼𝜃
[[1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
𝛽

]

−𝜃

− 1] =  𝑈, 

which yields 

𝑌 = 𝜆 {−𝑙𝑜𝑔 [
1

1 − 𝛼
(1 − [

𝛼𝜃

𝑈(1 − 𝛼𝜃) + 𝛼𝜃
]

1
𝜃

)]}

−
1
𝛽

. (29) 

In addition, the 𝑞𝑡ℎ quantile 𝑦𝑞 of GIW distribution is given by 

𝑦𝑞 = 𝜆{−𝑙𝑜𝑔 [
1

1 − 𝛼
(1 − [

𝛼𝜃

𝑞(1 − 𝛼𝜃) + 𝛼𝜃
]

1
𝜃

)]}

−
1
𝛽

, (30) 

0 < 𝑞 < 1. 

In particular, the median of GIW distribution is given by 
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𝑀𝑒𝑑𝑖𝑎𝑛 = 𝜆 {−𝑙𝑜𝑔 [
1

1 − 𝛼
(1 − [

𝛼𝜃

0.5(1 − 𝛼𝜃) + 𝛼𝜃
]

1
𝜃

)]}

−
1
𝛽

. (31) 

The Bowley's skewness is based on quantiles: 

𝑆 =
𝑄(3 4⁄ ) + 𝑄(1 4⁄ ) − 2𝑄(1 2⁄ )

𝑄(3 4⁄ ) − 𝑄(1 4⁄ )
, 

and the Moors' kurtosis is based on octiles: 

𝐾 =
𝑄(7 8⁄ ) − 𝑄(5 8⁄ ) + 𝑄(3 8⁄ ) − 𝑄(1 8⁄ )

𝑄(6 8⁄ ) − 𝑄(2 8⁄ )
, 

where 𝑄(. ) represents the quantile function of 𝑋. These measures are less 

sensitive to outliers and they exist even for distributions without moments. 

Skewness measures the degree of the long tail and kurtosis is a measure of the 

degree of peakedness. When the distribution is symmetric, S = 0 and when the 

distribution is left(or right) skewed, 𝑆 < 0 (or 𝑆 > 0). As 𝐾 increases, the tail 

of the distribution becomes heavier. We compute mean, median, variance, 

skewness and kurtosis numerically using R software and presented in Table 2 

when 𝜆 = 1.0 and 𝛽 = 5.0. 

Table 2: Mean, Median, Variance, Skewness and Kurtosis of GIW distribution for 

some parameter values when 𝝀 = 𝟏. 𝟎 and 𝜷 = 𝟓. 𝟎. 

  Mean Median Variance Skewness Kurtosis 

𝛼 = 0.1 

𝜃

= 0.1 

1.446 1.324 0.295 0.166 1.303 

𝜃

= 0.2 

1.476 1.354 0.311 0.159 1.301 

𝜃

= 0.5 

1.570 1.448 0.355 0.141 1306 

𝜃

= 1.0 

1.724 1.600 0.417 0.130 1.328 

𝜃

= 2.0 

1.987 1.849 0.501 0.143 1.352 

𝜃

= 5.0 

2.447 2.268 0.655 0.173 1.360 

𝛼 = 0.5 

𝜃

= 0.1 

1.235 1.139 0.166 0.185 1.348 

𝜃

= 0.2 

1.242 1.146 0.169 0.184 1.346 
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𝜃

= 0.5 

1.263 1.165 0.178 0.180 1.342 

𝜃

= 1.0 

1.298 1.198 0.193 0.173 1.339 

𝜃

= 2.0 

1.368 1.265 0.221 0.162 1.340 

𝜃

= 5.0 

1.568 1.456 0.287 0.153 1.356 

𝛼 = 1.5 

𝜃

= 0.1 

1.127 1.043 0.119 0.201 1.376 

𝜃

= 0.2 

1.124 1.039 0.118 0.202 1.378 

𝜃

= 0.5 

1.114 1.031 0.114 0.204 1.381 

𝜃

= 1.0 

1.098 1.018 0.107 0.205 1.387 

𝜃

= 2.0 

1.068 0.992 0.094 0.206 1.397 

𝜃

= 5.0 

0.989 0.873 0.060 0.189 1.410 

𝛼 = 2.5 

𝜃

= 0.1 

1.085 1.004 0.104 0.210 1.389 

𝜃

= 0.2 

1.078 0.998 0.101 0.211 1.392 

𝜃

= 0.5 

1.058 0.981 0.093 0.213 1.401 

𝜃

= 1.0 

1.026 0.955 0.080 0.212 1.414 

𝜃

= 2.0 

0.971 0.914 0.057 0.197 1.424 

𝜃

= 5.0 

0.868 0.844 0.018 0.119 1.344 

From Table 2, we can see that GIW distribution is positively skewed and 

leptokurtic.  When 𝛼 < 1 and 𝜃 is increasing, mean, median and variance are 

increasing while when 𝛼 > 1 and 𝜃 is increasing, mean, median and variance 

are decreasing. 

4.4 Mean deviation  

 The mean deviation about mean is defined by 
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D1(y) = ∫ |𝑦 − 𝜇|𝑔(𝑦)𝑑𝑦
∞

0

, 

where μ is the mean, which can be rewritten as 

D1(y) = ∫ (𝜇 − 𝑦)𝑔(𝑦)𝑑𝑦
𝜇

0

+∫ (𝑦 − 𝜇)𝑔(𝑦)𝑑𝑦
∞

𝜇

. 

Using integration by parts, it simplifies to 

D1(y) = 2μG(μ) − 2∫ 𝑦𝑔(𝑦)𝑑𝑦
∞

𝜇

, 

where G(. ) denote the cdf of GIW distribution. Hence, 

D1(y) = 2μG(μ) − 2
𝛼𝜃𝜃𝜆

1 − 𝛼𝜃
 ∑

Γ(𝜃 + j + 1)

Γ(𝜃 + 1)(j + 1)!

∞

j=0

(1 − 𝛼)j+1(𝑗 + 1)
1
𝛽Γ (1 −

1

𝛽
, μ) , 𝛽 > 1,  

where Γ(s, y) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
∞

y
, 𝑐 > 0. 

The mean deviation about median is defined as 

D2(y) = ∫ |𝑦 −𝑀|𝑔(𝑦)𝑑𝑦
∞

0

= ∫ (𝑀 − 𝑦)𝑔(𝑦)𝑑𝑦
M

0

+∫ (𝑦 −𝑀)𝑔(𝑦)𝑑𝑦
∞

M

,  

where M stands for median. Hence, 

D2(y) = −μ + 2∫ 𝑦𝑔(𝑦)𝑑𝑦
∞

𝑀

= −μ + 2
𝛼𝜃𝜃𝜆

1 − 𝛼𝜃
 ∑

Γ(𝜃 + j + 1)

Γ(𝜃 + 1)(j + 1)!

∞

j=0

(1 − 𝛼)j+1(𝑗 + 1)
1
𝛽Γ(1 −

1

𝛽
,M) , 𝛽 > 1. 

 

4.5 Entropy  

An entropy is a measure of variation or uncertainty. The Rényi entropy of a 

random variable with pdf g(. ) is defined as 

IR(γ) =
1

1 − γ
log ∫ gγ(y)dy

∞

0

, γ > 0, γ ≠ 1.  

We have 

∫ gγ(y)dy
∞

0

= [
𝛼𝜃(1 − 𝛼)𝜃𝛽𝜆𝛽

1 − 𝛼𝜃
]

𝛾

∫
y−γ(β+1)𝑒

−𝛾(
𝜆
𝑦
)
𝛽

[1 − (1 − α)𝑒
−(
𝛾
𝑦
)
]
γ(θ+1)

dy
∞

0

= [
𝛼𝜃(1 − 𝛼)𝜃𝛽𝜆𝛽

1 − 𝛼𝜃
]

𝛾
1

[λβ𝑗(𝛾 + 1)]
(β+1)(γ−1)

𝛽

Γ [
𝛾(1 + 𝛽) − 1

𝛽
]. 
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Therefore, 

IR(γ) =
γ

1 − γ
log [

𝛼𝜃(1 − 𝛼)𝜃𝛽𝜆𝛽

1 − 𝛼𝜃
] −

(β + 1)(γ − 1)

𝛽(𝛾 − 1)
log[γβj(γ + 1)]

+
1

1 − γ
log (Γ [

𝛾(1 + 𝛽) − 1

𝛽
]). 

 

4.6 Order statistics  

Let Y1, Y2, … , Yn be a random sample of size n from the GIW distribution 

and Y(1), Y(2), … , Y(n)  denote the corresponding order statistics. When the 

population cdf and pdf are G(y) and g(y) respectively, then the rth order (r =

1,2, … , n) cdf and pdf are respectively, given by, 

G(r)(y) =∑(
𝑛
𝑐
)𝐺𝑐(𝑦)[1 − 𝐺(𝑦)]𝑛−𝑐

n

c=r

=∑∑(
𝑛
𝑐
) (
𝑛 − 𝑐
𝑑

) (−1)𝑑𝐺𝑐+𝑑(𝑦)

n−c

d=0

n

c=r

=∑∑(
𝑛
𝑐
) (
𝑛 − 𝑐
𝑑

) (−1)𝑑 [
𝛼𝜃

1 − 𝛼𝜃
]

𝑐+𝑑

{[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

−𝜃

− 1}

𝑐+𝑑

,

n−c

d=0

n

c=r

 

 

and 

g(r)(y) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝐺𝑟−1(𝑦)[1 − 𝐺(𝑦)]𝑛−𝑟𝑔(𝑦)

=
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
∑(−1)𝑑 (

𝑛 − 𝑟
𝑑

)𝐺𝑟+𝑑−1(𝑦)𝑔(𝑦)

𝑛−𝑟

𝑑=0

=
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
∑(−1)𝑑 (

𝑛 − 𝑟
𝑑

) (1

𝑛−𝑟

𝑑=0

− 𝛼)𝜃𝛽𝜆𝜃𝑦−(𝛽+1)𝑒
−(
𝜆
𝑦
)
𝛽

[
𝛼𝜃

1 − 𝛼𝜃
]

𝑟+𝑑
{1 − [1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
𝛽

]

𝜃

}

𝑟+𝑑−1

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃(𝑟+𝑑)+1
. 

 

Define the minimum as Y(1) = min (Y1, Y2, … , Yn) , the maximum as Y(n) =

max (Y1, Y2, … , Yn) and the median as Y(m+1) with m = [n/2]. Therefore the 

pdf of the minimum, maximum and median are respectively 

g(1)(y) = 𝑛[1 − 𝐺(𝑦)]
𝑛−1𝑔(𝑦)

=

𝑛𝛼𝜃(1 − 𝛼)𝜃𝛽𝜆𝜃𝑦−(𝛽+1)𝑒
−(
𝜆
𝑦
)
𝛽

{[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃}

𝑛−1

(1 − 𝛼𝜃)𝑛 [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝑛𝜃+1
. 
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g(n)(y) = 𝑛[𝐺(𝑦)]
𝑛−1𝑔(𝑦)

= 𝑛 [
𝛼𝜃

1 − 𝛼𝜃
]

𝑛
(1 − 𝛼)𝜃𝛽𝜆𝜃𝑦−(𝛽+1)𝑒

−(
𝜆
𝑦
)
𝛽

{1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

𝑛−1

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝑛𝜃+1
. 

 

 

g(m+1)(y) =
(2𝑚 + 1)!

𝑚!𝑚!
[𝐺(𝑦)]𝑚[1 − 𝐺(𝑦)]𝑚𝑔(𝑦)

=
(2𝑚 + 1)!

(𝑚!)2

𝛼𝑚𝜃+1 {1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

𝑚

{[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃}

𝑚

(1 − 𝛼𝜃)2𝑚+1 [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃(2𝑚+1)+1
(1

− 𝛼)𝜃𝛽𝜆𝜃𝑦−(𝛽+1)𝑒
−(
𝜆
𝑦
)
𝛽

. 

 

4.7 Stochastic ordering  

Stochastic orders have been used during the last forty years, at an accelerated 

rate, in many diverse areas of probability and statistics. Such areas include 

reliability theory, survival analysis, queueing theory, biology, economics, 

insurance and actuarial science (see, Shaked and Shanthikumar (2007)). Let X 

and Y be two random variables having cdf's F and G respectively, and denote 

by F̅ = 1 − F  and G̅ = 1 − G  their respective survival functions, with 

corresponding pdf's f, g. The random variable X is said to be smaller than Y in 

the: 

i. stochastic order (denoted as X ≤st Y) if F̅(𝑥) ≤ G̅(𝑥) for all x;  

ii. likelihood ratio order (denoted as X ≤lr Y) if f(x)/g(x) is decreasing in 

x ≥ 0;  

iii. hazard rate order (denoted as X ≤hr Y)if F̅(𝑥)/G̅(𝑥) is decreasing  in x ≥

0;  

iv. reversed hazard rate order (denoted as X ≤rhr Y ) if F(x)/G(x)  is 

decreasing in x ≥ 0. 

The four stochastic orders defined above are related to each other, have the 

following implications (see, Shaked and Shanthikumar (2007)): 

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (32) 

Case I : 𝛉𝟏 < 𝛉𝟐 

Let X~GIW(α, θ1, λ, β) and Y~GIW(α, θ2, λ, β). Then 
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𝑔X(𝑦)

𝑔Y(𝑦)
=

α1
θ𝜃1(1 − α2

θ) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃2+1

α2
θ𝜃2(1 − α1

θ) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃1+1
.  

Since 𝜃1 < 𝜃2, 

𝑑

𝑑𝑥
[
𝑔X(𝑦)

𝑔Y(𝑦)
] = −α

θ1
θ2
𝜃1(1 − α2

θ)

𝜃2(1 − α1
θ)
[(𝜃2

− 𝜃1) (
𝜆

𝑦
)
𝛽

(
𝛽

𝑦
) 𝑒

−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃2−𝜃1−1

] < 0. 

 

Hence, 𝑔𝑋(𝑦)/𝑔𝑌(𝑦)  is decreasing in 𝑦 . That is X ≤lr Y . The remaining 

statement follow from the implication (32). 

Case II : 𝜶𝟐 < 𝜶𝟏  

Let X~GIW(α1, θ, λ, β) and Y~GIW(α2, θ, λ, β). Then 

𝑔X(𝑦)

𝑔Y(𝑦)
=
α1
θ(1 − 𝛼1)(1 − α2

θ)

α2
θ(1 − 𝛼2)(1 − α1

θ)
[
1 − (1 − 𝛼2)𝑒

−(
𝜆
𝑦
)
𝛽

1 − (1 − 𝛼1)𝑒
−(
𝜆
𝑦
)
𝛽]

𝜃+1

.  

Since α2 < α1, 

𝑑

𝑑𝑥
[
𝑔X(𝑦)

𝑔Y(𝑦)
] = −(α1 − α2)(θ + 1) (

𝜆

𝑦
)
𝛽

(
𝛽

𝑦
)𝑒

−(
𝜆
𝑦
)
𝛽 [1 − (1 − 𝛼2)𝑒

−(
𝜆
𝑦
)
𝛽

]

𝜃

[1 − (1 − 𝛼1)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃+2
< 0.  

Hence, 𝑔𝑋(𝑦)/𝑔𝑌(𝑦)  is decreasing in 𝑦 . That is X ≤lr Y .. The remaining 

statement follow from the implication (32). 

4.8 Mean residual life function  

Given that a component survives up to time t ≥ 0, the residual life is the 

period beyond t until the time of failure and defined by the conditional random 

variable Y − t|Y > t. The mean residual life (MRL) function is an important 

function in survival analysis, actuarial science, economics and other social 

sciences and reliability for characterizing life time. Although the shape of the 

failure rate function plays an important role in repair and replacement strategies, 

the MRL function is more relevant as the latter summarize the entire residual life 

function, where the former considers only the risk of instantaneous failure. In 

reliability, it is well known that the MRL function and ratio of consecutive 

moments of residual life determine the distribution uniquely (Gupta and Gupta 

(1983)). 
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The rthorder moment of the residual life time of the distribution is given by 

the general formula: 

𝑚𝑟(𝑡) = 𝐸[(Y − t)
r|Y > t] =

1

�̅�(𝑡)
∫ (𝑦 − 𝑡)𝑟𝑔(𝑦)𝑑𝑦
∞

𝑡

.  

Hence the MRL function of the GIW distribution is given by 

𝑚1(𝑡) =
1

�̅�(𝑡)
∫ (𝑦 − 𝑡)𝑔(𝑦)𝑑𝑦
∞

𝑡

=
1

�̅�(𝑡)
∫ 𝑦𝑔(𝑦)𝑑𝑦
∞

𝑡

− 𝑡

=
1

�̅�(𝑡)
∑

𝛼𝜃 Γ(θ + j + 1)

(1 − 𝛼𝜃)Γ(θ + 1)j!

∞

𝑗=0

(1 − 𝛼)𝑗+1𝜃𝛽𝜆𝛽∫ 𝑦−𝛽𝑒−𝜆
𝛽(𝑗+1)𝑦−𝛽𝑑𝑦

∞

𝑡

− 𝑡

=
1

�̅�(𝑡)
∑

𝛼𝜃 Γ(θ + j + 1)(1 − 𝛼)𝑗+1𝜃𝜆(𝑗 + 1)
1
𝛽

(1 − 𝛼𝜃)Γ(θ + 1)(j + 1)!

∞

𝑗=0

𝛾 (1 −
1

𝛽
, 𝜆𝛽(𝑗 + 1)𝑦−𝛽) − 𝑡, 

 

where γ(c, x) = ∫ yc−1e−y𝑑𝑦
x

0
, c > 0.On the other hand, we analogously discuss 

the reversed residual life and some of its properties. The reversed residual life can 

be defined as the conditional random variable t − Y|Y ≤  t which denotes the 

time elapsed from the failure of a component given that its life is less than or 

equal to t. This random variable may also be called the inactivity time (or time 

since failure) (see Nanda et al. (2003) and Kundu and Nanda (2010)). Also in 

reliability, the mean reversed residual life (MRRL) and ratio of two consecutive 

moments of reversed residual life characterize the distribution uniquely. The 

reversed hazard rate function of the GIW distribution is given by 

𝑟(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
=

(1 − 𝛼)𝜃𝛽𝜆𝛽𝑦−(𝛽+1)𝑒
−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

] {1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

. 
 

The rth  moment of the reversed residual life function can be obtained the 

formula 

𝜇𝑟(𝑥) = 𝐸[(𝑡 − 𝑦)
𝑟|𝑌 ≤ 𝑡] =

1

𝐺(𝑡)
∫ (𝑡 − 𝑦)𝑟𝑔(𝑦)𝑑𝑦
𝑡

0

.  

Hence the MRRL function of the GIW distribution is given by 

𝜇1(𝑥) =
1

𝐺(𝑡)
∫ (𝑡 − 𝑦)𝑔(𝑦)𝑑𝑦
𝑡

0

= 𝑡 −
1

𝐺(𝑡)
∑

𝛼𝜃 Γ(θ + j + 1)(1 − 𝛼)𝑗𝜃𝛽𝜆𝛽

(1 − 𝛼𝜃)Γ(θ + 1)j!
∫ 𝑦−𝛽𝑒

−(
𝜆
𝑦
)
𝛽

𝑑𝑦
∞

𝑡

∞

𝑗=0

= 𝑡 −
1

𝐺(𝑡)
∑

𝛼𝜃 Γ(θ + j + 1)(1 − 𝛼)𝑗+1𝜃𝜆(𝑗 + 1)
1
𝛽

(1 − 𝛼𝜃)Γ(θ + 1)(j + 1)!

∞

𝑗=0

Γ (
1

𝛽
, 𝜆(𝑗 + 1)𝑡−𝛽) , 𝛽 > 1, 

 

where Γ(c, x) = ∫ yc−1e−y dy
∞

x
, c > 0. 
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5. Stress-strength parameter  

Suppose that the random variable Y is the strength of a component, which is 

subjected to a random stress Z. The component fails whenever Y < Z and there 

is no hazard when Y > Z . In the context of reliability, the stress-strength 

parameter R = P(Y > Z)  is a measure of component reliability and its 

estimation when Y and Z are independent and follow a specified distribution 

has been discussed widely in the literature. Here, we estimate R = P(Y > Z) for 

the GIW distribution. 

Case I : 𝛉𝟏  ≠  𝛉𝟐 

Assume that Y~GIW(α, θ1, λ, β) and Z~GIW(α, θ2, λ, β) are independent. The 

pdf of Y and the cdf of Z can be expressed respectively as: 

𝑔1(𝑦) =∑
𝛼𝜃1

1 − 𝛼𝜃1

 Γ(θ1 + j + 1)

Γ(θ1 + 1)j!
(1 − 𝛼)𝑗+1𝜃1𝛽𝜆

𝛽𝑦−(𝛽+1)𝑒−𝜆
𝛽(𝑗+1)𝑦−𝛽

∞

𝑗=0

, 
 

𝐺2(𝑦) =
𝛼𝜃2

1 − 𝛼𝜃2
[∑

 Γ(θ2 + k)

Γ(θ2)k!
(1 − 𝛼)𝑘𝑒−𝜆

𝛽𝑘𝑦−𝛽
∞

𝑘=0

− 1]. 

 

We have 

R = ∫ 𝑔1(𝑦)𝐺2(𝑦)𝑑𝑦
∞

0

   

=∑∑
 𝛼𝜃1+𝜃2Γ(θ1 + j + 1)Γ(θ2 + k)(1 − 𝛼)

𝑗+𝑘+1𝜃1𝛽𝜆
𝛽

(1 − 𝛼𝜃1)(1 − 𝛼𝜃2)Γ(θ1 + 1)Γ(θ2)j! k!

∞

𝑘=0

∞

𝑗=0

  

∫ 𝑦−(𝛽+1)𝑒−𝜆
𝛽(𝑗+𝑘+1)𝑦−𝛽𝑑𝑦

∞

0

−
𝛼𝜃2

1 − 𝛼𝜃2
  

=∑∑
 𝛼𝜃1+𝜃2Γ(θ1 + j + 1)Γ(θ2 + k)(1 − 𝛼)

𝑗+𝑘+1𝜃1
(1 − 𝛼𝜃1)(1 − 𝛼𝜃2)Γ(θ1 + 1)Γ(θ2)j! k! (j + k + 1)

∞

𝑘=0

∞

𝑗=0

−
𝛼𝜃2

1 − 𝛼𝜃2
. (33) 

Let us assume that y1, y2, … , yn and z1, z2, … , zm are independent observations 

from Y and Z respectively. The total log-likelihood function LR(Θ
∗) where 

Θ∗ = (α, θ1, θ2, λ, β)
T, becomes 
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LR(Θ
∗) = log(𝛼) (𝑛𝜃1 + 𝑚𝜃2) − 𝑛 log(1 − 𝛼

𝜃1) −𝑚 log(1 − 𝛼𝜃2) + 𝑛 log(𝜃1)

+ 𝑚 log(𝜃2) + (𝑛 + 𝑚) log(𝛽𝜆
𝛽) − (𝛽 + 1) [∑ log(𝑦

𝑖
) +∑ log(𝑧𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

]

−∑(
λ

y
i

)

β𝑛

𝑖=1

−∑(
λ

zj
)

β𝑚

𝑗=1

− (𝜃1 + 1)∑ log [1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

𝑛

𝑖=1

− (𝜃2 + 1)∑ log [1 − (1 − 𝛼)𝑒
−(

𝜆
𝑧𝑗
)
𝛽

]

𝑚

𝑗=1

. 

 

By taking the first partial derivatives of the total log-likelihood function with 

respect to five parameters in Θ∗ , we obtain the five normal equations. The 

maximum likelihood estimates Θ̂∗ of Θ∗ is obtained by solving the system of 

non linear normal equations numerically. From the solution of these equations, 

we can estimate R by inserting the estimate of Θ̂∗ in equation (33). 

Case II : 𝛂𝟏 ≠ 𝛂𝟐, 𝛉𝟏 ≠ 𝛉𝟐 

Assume that Y~GIW(α1, θ1, λ, β) and Z~GIW(α2, θ2, λ, β) are independent. The 

pdf of Y and the cdf of Z can be expressed respectively as: 

 

𝑔1(𝑦) =∑
𝛼1
𝜃1

1 − 𝛼1
𝜃1

 Γ(θ1 + j + 1)

Γ(θ1 + 1)j!
(1 − 𝛼1)

𝑗+1𝜃1𝛽𝜆
𝛽𝑦−(𝛽+1)𝑒−𝜆

𝛽(𝑗+1)𝑦−𝛽
∞

𝑗=0

, 
 

𝐺2(𝑦) =
𝛼2
𝜃2

1 − 𝛼2
𝜃2
[∑

 Γ(θ2 + k)

Γ(θ2)k!
(1 − 𝛼2)

𝑘𝑒−𝜆
𝛽𝑘𝑦−𝛽

∞

𝑘=0

− 1]. 

 

We have 

R = ∫ 𝑔1(𝑦)𝐺2(𝑦)𝑑𝑦
∞

0

  
 

=∑∑
 𝛼1
𝜃1𝛼2

𝜃2Γ(θ1 + j + 1)Γ(θ2 + k)(1 − 𝛼1)
𝑗+1(1 − 𝛼2)

𝑘𝜃1𝛽𝜆
𝛽

(1 − 𝛼1
𝜃1) (1 − 𝛼2

𝜃2) Γ(θ1 + 1)Γ(θ2)j! k!

∞

𝑘=0

∞

𝑗=0

 

 

∫ 𝑦−(𝛽+1)𝑒−𝜆
𝛽(𝑗+𝑘)𝑦−𝛽𝑑𝑦

∞

0

−
𝛼2
𝜃2

1 − 𝛼2
𝜃2

 

 

=∑∑
 𝛼1
𝜃1𝛼2

𝜃2Γ(θ1 + j + 1)Γ(θ2 + k)(1 − 𝛼1)
𝑗+1(1 − 𝛼2)

𝑘𝜃1
(1 − 𝛼𝜃1)(1 − 𝛼𝜃2)Γ(θ1 + 1)Γ(θ2)j! k! (j + k + 1)

∞

𝑘=0

∞

𝑗=0

−
𝛼2
𝜃2

1 − 𝛼2
𝜃2
. 

(34) 

Let us assume that y1, y2, … , yn and z1, z2, … , zm are independent observations 

from Y and Z respectively. The total log-likelihood function LR(Θ
∗) where 

Θ∗ = (α1, α2, θ1, θ2, λ, β)
T, becomes 
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LR(Θ
∗) = 𝑛𝜃1 log(𝛼1) + 𝑚𝜃2 log(𝛼2) − 𝑛 log(1 − 𝛼1

𝜃1) − 𝑚 log(1 − 𝛼2
𝜃2) + 𝑛 log(𝜃1)

+ 𝑚 log(𝜃2) + (𝑛 + 𝑚) log(𝛽𝜆
𝛽) − (𝛽 + 1) [∑ log(𝑦

𝑖
) +∑ log(𝑧𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

]

−∑(
λ

y
i

)

β𝑛

𝑖=1

−∑(
λ

zj
)

β𝑚

𝑗=1

− (𝜃1 + 1)∑ log [1 − (1 − 𝛼1)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

𝑛

𝑖=1

− (𝜃2 + 1)∑ log [1 − (1 − 𝛼2)𝑒
−(

𝜆
𝑧𝑗
)
𝛽

]

𝑚

𝑗=1

. 

 

By taking the first partial derivatives of the total log-likelihood function with 

respect to six parameters in Θ∗ , we obtain the six normal equations. The 

maximum likelihood estimates Θ̂∗ of Θ∗ is obtained by solving the system of 

non linear normal equations numerically. From the solution of these equations, 

we can estimate R by inserting the estimate of Θ̂∗ in equation (34). 

 

6. Estimation of the parameters  

6.1 Maximum likelihood estimation  

Several approaches for parameter estimation have been proposed in the 

literature, but maximum likelihood method is the most commonly employed. We 

consider estimation of the unknown parameters of GIW distribution by the 

method of maximum likelihood. Let y1, y2, … , yn be observed values from the 

GIW distribution with parameters α, θ, λ and β. The log-likelihood function for 

(α, θ, λ, β) is given by 

log L = 𝑛log [
𝛼𝜃(1 − 𝛼)𝜃𝛽𝜆𝛽

1 − 𝛼𝜃
] − (𝛽 + 1)∑log(𝑦𝑖)

𝑛

𝑖=1

−∑(
λ

yi
)
β𝑛

𝑖=1

− (𝜃 + 1)∑log [1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

𝑛

𝑖=1

. 

 

The derivatives of the log-likelihood function with respect to the parameters 

α, θ, λ and β are given by respectively, 

𝜕log L

𝜕𝛼
=
𝑛𝜃

𝛼
−

𝑛

1− 𝛼
+
𝑛𝜃𝛼𝜃−1

1 − 𝛼𝜃
−∑

(𝜃 + 1)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

 (35) 

𝜕log L

𝜕𝜃
= 𝑛log(α)−

𝑛

𝜃
+
𝑛𝛼𝜃log(α)

1 − 𝛼𝜃
−∑log

𝑛

𝑖=1

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

] (36) 
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𝜕log L

𝜕𝜆
=
𝑛𝛽

𝜆
−
𝛽

𝜆
∑(

λ

yi
)
β𝑛

𝑖=1

−∑
(𝜃 + 1)(1 − 𝛼)

𝛽
𝜆
(
λ
yi
)
β

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

 (37) 

𝜕log L

𝜕𝛽
=
𝑛

𝛽
+ 𝑛log(λ)−∑log(𝑦𝑖)

𝑛

𝑖=1

−∑(
λ

yi
)
β

log (
λ

yi
)

𝑛

𝑖=1

  

−∑
(𝜃 + 1)(1 − 𝛼) (

λ
yi
)
β

log (
λ
yi
) 𝑒

−(
𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

 

 

(38) 

The maximum likelihood estimates of ( α, θ, λ, β ), say ( α̂, θ̂, λ̂, β̂ ) are the 

simultaneous solutions of the equation 
𝜕log L

𝜕𝛼
= 0, 

𝜕log L

𝜕𝜃
= 0, 

𝜕log L

𝜕𝜆
, and 

𝜕log L

𝜕𝛽
= 0. 

Maximization of the likelihood function can be performed by using nlm or optim 

in R statistical package. 

Now, we study the existence and uniqueness of the maximum likelihood 

estimates, when the other parameters are known (given). 

 

Theorem 6.1: Let 𝑔1(𝛼; 𝜃, 𝜆, 𝛽, 𝑦)  denote the function on the 

right-hand-side (RHS) of equation (35), where 𝜃, 𝜆, 𝛽 are the true value of the 

parameters. Then there exist a solution for 𝑔1(𝛼; 𝜃, 𝜆, 𝛽, 𝑦) = 0 for 𝛼 ∈  (0,∞) 

and the solution is unique when 𝐴1 > 𝐵1 , where 𝐴1 =
𝑛𝜃

𝛼2
+

𝑛

(1−𝛼)2
+

𝑛𝜃𝛼𝜃−1(1−𝜃−𝛼𝜃)

𝛼(1−𝛼𝜃)
2  and 𝐵1 = ∑

(𝜃+1)(𝑒
−(

𝜆
𝑦𝑖
)
𝛽

)

2

[1−(1−𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

2
𝑛
𝑖=1 . 

Proof: We have 

𝑔1(𝛼; 𝜃, 𝜆, 𝛽, 𝑦) =
𝑛𝜃

𝛼
−

𝑛

1 − 𝛼
+
𝑛𝜃𝛼𝜃−1

1 − 𝛼𝜃
−∑

(𝜃 + 1)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

.  

Now 

lim
𝛼→0

𝑔1(𝛼;𝜃, 𝜆, 𝛽, 𝑦) = ∞− 𝑛− 0−∑
(𝜃 + 1)𝑒

−(
𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

= ∞. 

Also 
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lim
𝛼→∞

𝑔1(𝛼; 𝜃, 𝜆, 𝛽, 𝑦) = 0− 0− 0− lim
𝛼→∞

∑
(𝜃 + 1)𝑒

−(
𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

< 0. 

Therefore, there exist at least one root say α̂  ∈ (0,∞)  such that 

𝑔1(α̂; 𝜃, 𝜆, 𝛽, 𝑦) = 0.  

For uniqueness of root, the first derivative of 𝑔1(𝛼; 𝜃, 𝜆, 𝛽, 𝑦) is 

𝜕𝑔1(𝛼; 𝜃, 𝜆, 𝛽, 𝑦)

𝜕𝛼

= −
𝑛𝜃

𝛼2
−

𝑛

(1 − 𝛼)2
−
𝑛𝜃𝛼𝜃−1(1 − 𝜃 − 𝛼𝜃)

𝛼(1 − 𝛼𝜃)2
+∑

(𝜃 + 1) (𝑒
−(

𝜆
𝑦𝑖
)
𝛽

)

2

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

2

𝑛

𝑖=1

< 0 

 

when 𝐴1 > 𝐵1. 

So there exist a solution for 𝑔1(𝛼; 𝜃, 𝜆, 𝛽, 𝑦) = 0 and the solution is unique 

when 𝐴1 > 𝐵1. 

 

Theorem 6.2: Let 𝑔2(𝜃; 𝛼, 𝜆, 𝛽, 𝑦)  denote the function on the RHS of 

equation (36), where 𝛼, 𝜆, 𝛽 are the true value of the parameters. Then there 

exist a solution for 𝑔2(𝜃; 𝛼, 𝜆, 𝛽, 𝑦) = 0 for 𝜃 ∈  (0,∞). The solution is unique 

when 
𝑛

𝜃2
+
𝑛𝛼𝜃𝑙𝑜𝑔(𝛼)2

(1−𝛼𝜃)
2 < 0. 

Proof: We have 

𝑔2(𝜃; 𝛼, 𝜆, 𝛽, 𝑦) =
𝑛𝛽

𝜆
−
𝛽

𝜆
∑(

λ

y
i

)

β𝑛

𝑖=1

−∑

(𝜃 + 1)(1 − 𝛼)
𝛽
𝜆
 (
λ
y
i

)
β

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

.  

Then 

lim
𝜃→0

𝑔2(𝜃;𝛼, 𝜆, 𝛽, 𝑦) = 𝑛log(α)−∞−∞−∑log

𝑛

𝑖=1

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

] = −∞. 

On the other hand, when α <1, 

lim
𝜃→∞

𝑔2(𝜃;𝛼, 𝜆, 𝛽, 𝑦) = 𝑛log(α)− 0− 0−∑log

𝑛

𝑖=1

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

] > 0. 

Therefore, there exist at least one root say θ̂ such that 𝑔2(𝜃; 𝛼, 𝜆, 𝛽, 𝑦) = 0. 



 

27          A Generalization Of Inverse Marshall-Olkin Family Of Distributions 

 

Also 

𝝏𝒈
𝟐
(𝜽;𝜶, 𝝀, 𝜷, 𝒚)

𝝏𝜽
=
𝐧

𝛉𝟐
+
𝐧𝛂𝛉𝐥𝐨𝐠(𝛂)𝟐

(𝟏 − 𝛂𝛉)𝟐
. 

(39) 

Hence the root is unique when equation (39) < 0. 

 

Theorem 6.3: Let 𝑔3(𝜆; 𝛼, 𝜃, 𝛽, 𝑦)  denote the function on the RHS of 

equation (37), where 𝛼, 𝜃, 𝛽 are the true value of the parameters. Then there 

exist a solution for 𝑔3(𝜆; 𝛼, 𝜃, 𝛽, 𝑦) = 0 for 𝜆 ∈  (0,∞). The solution is unique 

when 𝐴3 < 0, where 

A3

= −
𝑛𝛽

𝜆2
−
𝛽(𝛽 − 1)

𝜆2
∑(

λ

y
i

)

β𝑛

𝑖=1

−∑

(𝜃 + 1)(1 − 𝛼)𝛽(𝛽 − 1)𝜆2 (
λ
y
i

)
β

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

[1 − 𝛽 (
λ
y
i

)
β

− (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

2

𝑛

𝑖=1

. 

 

Proof: We have 

 𝑔3(𝜆; 𝛼, 𝜃, 𝛽, 𝑦) =
𝑛𝛽

𝜆
−
𝛽

𝜆
∑ (

λ

yi
)
β

𝑛
𝑖=1 − ∑

(𝜃+1)(1−𝛼)
𝛽

𝜆
(
λ

yi
)
β

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

1−(1−𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛
𝑖=1 .  

Now 

lim
𝜆→0

𝑔3(𝜆; 𝛼, 𝜃, 𝛽, 𝑦) = ∞− 0 − 0 = ∞. 

 and 

lim
𝜆→∞

𝑔3(𝜆;𝛼, 𝜃, 𝛽, 𝑦) = 0−∞−∞ = −∞. 

Therefore, there exist at least one root say λ̂ ∈  (0,∞)  such that 

𝑔3(λ̂; 𝛼, 𝜃, 𝛽, 𝑦) = 0. The root is unique when 

𝝏𝑔
3
(𝜆; 𝛼, 𝜃, 𝛽, 𝑦)

𝝏𝝀
= −

𝑛𝛽

𝜆2
−
𝛽(𝛽− 1)

𝜆2
∑(

λ

yi
)
β

−

𝑛

𝑖=1
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∑

(𝜃 + 1)(1 − 𝛼)𝛽(𝛽− 1)𝜆2 (
λ
yi
)
β

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

[1 − 𝛽 (
λ
yi
)
β

− (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

2

𝑛

𝑖=1

< 0. 

 

Theorem 6.4: Let 𝑔4(𝛽; 𝛼, 𝜃, 𝜆, 𝑦)  denote the function on the RHS of 

equation (38), where 𝛼, 𝜃, 𝜆 are the true value of the parameters. Then there 

exist a solution for 𝑔4(𝛽; 𝛼, 𝜃, 𝜆, 𝑦) = 0 for 𝛽 ∈ (0,∞). The solution is unique 

when 𝐴4 < 0 , where  

A4 = −
𝑛

𝛽2
−∑(

λ

y
i

)

β

log(
λ

y
i

)

𝑛

𝑖=1

2

−  

∑

(𝜃 + 1)(1 − 𝛼) (
λ
yi
)
β

log (
λ
yi
)
2

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

[1− (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

− (
λ
yi
)
β

]

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

2

𝑛

𝑖=1

.  

Proof: We have 

𝑔4(𝛽; 𝛼, 𝜃, 𝜆, 𝑦) =
𝑛

𝛽
+ 𝑛log(λ) −∑ log(𝑦

𝑖
)

𝑛

𝑖=1

−∑(
λ

y
i

)

β

log(
λ

y
i

)

𝑛

𝑖=1

  

−∑
(𝜃 + 1)(1 − 𝛼) (

λ
yi
)
β

log (
λ
yi
)𝑒

−(
𝜆
𝑦𝑖
)
𝛽

1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝑛

𝑖=1

. 

 

 

Now 

lim
𝛽→0

𝑔4(𝛽;𝛼, 𝜃, 𝜆, 𝑦) =∞+ 𝑛log(λ)−∑log(𝑦𝑖)

𝑛

𝑖=1

—∑log (
λ

yi
)

𝑛

𝑖=1

 

 

 

−∑
(𝜃 + 1)(1 − 𝛼)log (

λ
yi
) 𝑒−1

1 − (1 − 𝛼)𝑒−1

𝑛

𝑖=1

= ∞.  

On the other hand 

lim
𝛽→∞

𝑔4(𝛽;𝛼, 𝜃, 𝜆, 𝑦) = 0 + 𝑛log(λ)−∑log(𝑦𝑖)

𝑛

𝑖=1

−∞− 0 = −∞. 

 

 



 

29          A Generalization Of Inverse Marshall-Olkin Family Of Distributions 

 

Therefore, there exist at least one root say β̂ ∈ (0,∞) such that 

𝑔4(β̂; 𝛼, 𝜃, 𝜆, 𝑦) = 0. 

Also 

𝝏𝑔4(𝛽;𝛼, 𝜃, 𝜆, 𝑦)

𝝏𝛽
= −

𝑛

𝛽2
−∑(

λ

yi
)
β

log (
λ

yi
)

𝑛

𝑖=1

2

−  

∑

(𝜃 + 1)(1 − 𝛼) (
λ
yi
)
β

log (
λ
yi
)
2

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

[1− (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

− (
λ
yi
)
β

]

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

2

𝑛

𝑖=1

. (40) 

Hence there exist a unique solution for 𝑔4(β̂; 𝛼, 𝜃, 𝜆, 𝑦) = 0, when equation (40) 

< 0. 

The normal approximation of the maximum likelihood estimates of the 

parameters can be adopted for constructing approximate confidence intervals and 

for testing hypotheses on the parameters (𝛼, 𝜃, 𝜆, 𝛽). Under conditions that are 

fulfilled for the parameters in the interior of the parameter space and applying the 

usual large sample approximation, it can be shown that √n(Θ − Θ̂) can be 

approximated by a multivariate normal distribution with zero means and 

variance-covariance matrix K−1(Θ) , where K(Θ)  is the unit expected 

information matrix. 

As n tends to infinity, we have the asymptotic result 

K(Θ) = lim
𝑛→∞

1

𝑛
𝐼(Θ)  

where 𝐼(Θ) is the observed Fisher information matrix. Since K(Θ) involves the 

unknown parameters of Θ, we may replace it with the MLE Θ̂. Thus, the average 

matrix estimated at Θ̂, say 
1

𝑛
𝐼(Θ), can be used to estimate K(Θ). The estimated 

multivariate normal distribution can thus be used to construct approximate 

confidence intervals for the unknown parameters and for the hazard rate and 

survival function. 

6.2 Method of product spacing  

This method was introduced by Cheng and Amin (1983) as an alternative to 

method of maximum likelihood estimation. The cdf of the GIW distribution is 

given by equation (18), and the uniform spacing are defined as follows: 
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D1 = G(y1) =
αθ

1 − αθ
[[1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦1
)
𝛽

]

−𝜃

− 1],  

Dn+1 = 1 − G(yn) = 1 −
αθ

1 − αθ
[[1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦𝑛
)
𝛽

]

−𝜃

− 1],  

and the general term of spacing is given by 

Di = G(yi) − G(yi−1) =
αθ

1 − αθ
[[1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦𝑖
)
𝛽

]

−𝜃

− [1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖−1

)
𝛽

]

−𝜃

− 1] 

 

such that ∑ Di = 1. Method of product spacing method choose the estimates 

which maximizes the product of spacings or in other words, maximizes the 

geometric mean of the spacing. That is, 

G = (∏𝐷𝑖

𝑛+1

𝑖=1

)

1
n+1

.  

Taking the logarithm of G, we get, 

S =
1

n + 1
∑ 𝑙𝑜𝑔(𝐷𝑖)

𝑛+1

𝑖=1

, where S = logG.  

We can rewrite S as 

S =
1

n + 1
{𝑙𝑜𝑔(𝐷1) +∑𝑙𝑜𝑔(𝐷𝑖)

𝑛

𝑖=2

+ 𝑙𝑜𝑔(𝐷𝑛+1)}  

=
1

n + 1
log (

αθ

1 − αθ
{[1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦1
)
𝛽

]

−𝜃

− 1}) +  

1

n + 1
∑log(

αθ

1 − αθ
{[1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦𝑖
)
𝛽

]

−𝜃

− [1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖−1

)
𝛽

]

−𝜃

})

n

i=2

+ 

 

1

n + 1
log

(

 
 
 1 − α

θ [1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑛
)
𝛽

]

−𝜃

1 − αθ

)

 
 
 
.  

Differentiating the above equation partially, with respect to the parameters α, θ, λ 

and β respectively and then equating them to zero, we get the normal equations. 
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Since the normal equations are non-linear, we can use iterative method to obtain 

the solution. 

6.3 Method of least squares  

Let y1 < y2 < ⋯ < yn be the n ordered random sample of any distribution 

with cdf G(y), we get 

E[G(yi)] =
i

n + 1
.  

The least square estimates are obtained by minimizing 

P(α, θ, λ, β) =∑(G(yi) −
i

n + 1
)
2n

i=1

. (41) 

Putting the cdf of GIW distribution in equation (41), we get 

P(α, θ, λ, β) =∑

(

 
 
 αθ

1 − αθ

{
 
 

 
 
1 − [1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦𝑖
)
𝛽

]

𝜃

[1 − (1 − 𝛼)𝑒
−(

𝜆
𝑦𝑖
)
𝛽

]

𝜃

}
 
 

 
 

−
i

n + 1

)

 
 
 

2

n

i=1

. (42) 

In order to minimize equation (42), we have to differentiate it with respect to 

α, θ, λ and β, which gives the following equations: 

∑
αθ

1 − αθ
(
1 − Aθ

Aθ
−

i

n + 1
)(

αθ𝜃(1 − Aθ)

αAθ(1 − αθ)
[1 +

αθ

1 − αθ
]

n

i=1

−
αθ𝜃𝑒

−(
𝜆
𝑦𝑖
)
𝛽

A(1 − αθ)
[1 +

1 − Aθ

Aθ
]) = 0. 

 

∑
αθ

1 − αθ
(
1 − Aθ

Aθ
−

i

n + 1
)(
αθ(1 − Aθ)log (𝛼)

Aθ(1 − αθ)
[1 +

αθ

1 − αθ
]

n

i=1

−
αθlog (𝐴)

1 − αθ
[1 +

1 − Aθ

Aθ
]) = 0. 

 

∑
αθ

1 − αθ
(
1 − Aθ

Aθ
−

i

n + 1
)

(

 
 α

θ𝜃(1 − 𝛼) (
𝛽
𝜆
) (
𝜆
𝑦𝑖
)
𝛽

𝑒
−(

𝜆
𝑦𝑖
)
𝛽

𝐴(1 − αθ)
[1 +

1 − Aθ

Aθ
]

)

 
 
= 0

n

i=1

. 
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∑
αθ

1 − αθ
(
1 − Aθ

Aθ
−

i

n + 1
)

(

 
 α

θ𝜃(1 − 𝛼) (
𝜆
𝑦𝑖
)
𝛽

log (
𝜆
𝑦𝑖
) 𝑒

−(
𝜆
𝑦𝑖
)
𝛽

𝐴(1 − αθ)
[1 +

1 − Aθ

Aθ
]

)

 
 
= 0

n

i=1

. 

where A = 1 − (1 − α)𝑒
−(

𝜆

𝑦𝑖
)
𝛽

. The above normal equations cannot be solved 

analytically. So we can use nlm or optim in R statistical package to obtain the 

solution. 

6.4. Simulation  

We asses the performance of the maximum likelihood estimates of GIW 

(α, θ, λ, β) distribution by conducting simulation for different sample sizes and 

parameter values. We use equation (29) to generate random samples from the 

GIW distribution with parameters α, θ, λ and β. The different sample sizes 

considered in the simulation are n = 30,70,100 and 200. We have used nlm 

package in R software to find the estimate. We have repeated the process 1000 

times and report the average estimates and associated mean square errors in Table 

3. 

Table 3: Simulation results for different values of the parameters α, θ, λ and β. 

𝑛   α̂(MSE(α̂))  θ̂(MSE(θ̂))  λ(̂MSE(λ̂))  β̂(MSE(β̂))  

30 

70 

100 

200 

α = 0.5 

θ = 0.5  

λ = 1.0 

β = 1.5  

0.599(0.295) 

0.483(0.028) 

0.563(0.016) 

0.541(0.012)  

0.573(1.056) 

0.580(0.841) 

0.432(0.184) 

0.506(0.071)  

1.234(0.267) 

1.056(0.145) 

0.984(0.127) 

1.051(0.112)  

1.857(0.028) 

1.452(0.015) 

1.564(0.011) 

1.487(0.009)  

30 

70 

100 

200 

α = 1.5 

θ = 0.5  

λ = 1.0 

β = 2.0  

1.539(0.295) 

1.578(0.244) 

1.560(0.196) 

1.553(0.144)  

0.487(0.267) 

0.522(0.165) 

0.476(0.093) 

0.523(0.051)  

1.341(0.243) 

0.896(1.420) 

1.254(0.937) 

1.187(0.532)  

1.314(2.429) 

2.607(1.161) 

1.503(1.026) 

2.224(0.764)  
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30 

70 

100 

200 

α = 0.5 

θ = 1.5  

λ = 1.0 

β = 1.5  

0.829(4.329) 

0.432(3.012) 

0.306(2.019) 

0.458(1.282)  

1.554(0.507) 

1.468(0.302) 

1.547(0.187) 

1.459(0.103)  

0.831(2.354) 

0.776(1.423) 

0.813(0.937) 

0.913(0.532)  

1.451(0.106) 

1.536(0.084) 

1.458(0.065) 

1.567(0.042)  

30 

70 

100 

200 

α = 5.0 

θ = 1.5  

λ = 1.0 

β = 2.0  

6.265(5.661) 

4.847(5.062)  

0.304(0.109) 

0.085( 0.021)  

1.732(0.159) 

1.624(0.127)  

1.485(0.098)  

1.526(0.074)  

1.541(1.056) 

1.320(0.841) 

1.023(0.821) 

0.994(0.563)  

2.191(0.645) 

1.936(0.391) 

2.264(0.169) 

2.185(0.114)  

From Table 3, we can see that as the sample size increase, the estimated 

values are close to the actual values and the mean square errors decreases, which 

establishes the consistency property of the MLEs. 

 

7. Autoregressive GIW minification process  

We develop a first order autoregressive (AR(1)) minification process with 

GIW distribution as marginal distribution. 

Consider an AR(1) minification process with structure 

Yn = {
𝜖𝑛 𝑤. 𝑝 𝜌

min (𝑌𝑛−1, 𝜖𝑛) 𝑤. 𝑝 1 − 𝜌 (43) 

where 0 < ρ < 1, n ≥  1 and {ϵn} is a sequence of i.i.d. random variables. 

In order to develop time series models with GIW marginals, we need the 

following definition. 

Definition 7.1: A random variable X  on (0,∞)  is said to have 

Marshall-Olkin inverse truncated negative binomial Weibull (MOGIW) 

distribution and write as X =d  MOGIW(ν, α, θ, λ, β ) if it has the survival 

function 

F̅(𝑥) =
1

1 +
1
𝜈

(

 
 
 [1 − (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

(1 − 𝛼𝜃) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

)

 
 
 

 

 

 

Theorem 7.1: The AR(1) process given by (43) defines a stationary AR(1) 

minification process with GIW(𝛼, 𝜃, 𝜆, 𝛽) as marginal distribution if and only if 
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𝜖′𝑛s are i.i.d. MOGIW(𝜌−1, 𝛼, 𝜃, 𝜆, 𝛽) with 𝑌0 =
𝑑 𝐺𝐼𝑊(𝛼, 𝜃, 𝜆, 𝛽). 

Proof: We have, for GIW(𝛼, 𝜃, 𝜆, 𝛽), 

G̅𝑌(𝑦) =

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

(1 − 𝛼𝜃) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

=
1

1 +

𝛼𝜃 {1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

 
 

The model (43) can be rewritten in terms of survival function as 

P(Yn > 𝑦) = P(𝜖𝑛 > 𝑦)[𝜌 + (1 − 𝜌)P(Yn−1 > 𝑦)].  

That is, 

G̅𝑌𝑛(𝑦) = G̅𝜖𝑛(𝑦)[𝜌 + (1 − 𝜌)G̅𝑌𝑛−1(𝑦)]. (44) 

If {Yn} is stationary with GIW(α, θ, λ, β) marginals, then 

G̅𝜖𝑛(𝑦) =
G̅𝑌(𝑦)

𝜌 + (1 − 𝜌)G̅𝑌(𝑦)
=

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

(1 − 𝛼𝜃) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

𝜌 + (1 − 𝜌)

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

(1 − 𝛼𝜃) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

  

=
1

1 + 𝜌

𝛼𝜃 {1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃
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That is, ϵ′ns are i.i.d. MOGIW(ρ−1, α, θ, λ, β). 

Conversely, if ϵ′n  are i.i.d. MOGIW( ρ−1, α, θ, λ, β ) with 

𝑌0 =
𝑑 𝐺𝐼𝑊(𝛼, 𝜃, 𝜆, 𝛽), then from (44), we have 

G̅𝑌1(𝑦) = 𝜌G̅𝜖1(𝑦) + (1 − 𝜌)G̅𝜖1(𝑦)G̅𝑌0(𝑦)  

=
𝜌

1 + 𝜌𝛼𝜃

{1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

+ (1 − 𝜌) 

 

1

1 + 𝜌𝛼𝜃

{1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

∙
1

1 + 𝛼𝜃

{1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

  

 

=
1

1 +

𝛼𝜃 {1 − [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

}

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

 

 

=

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃

− 𝛼𝜃

(1 − 𝛼𝜃) [1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

𝜃
  

That is, 𝑌1 =
𝑑 𝐺𝐼𝑊(𝛼, 𝜃, 𝜆, 𝛽). 

If we assume that Yn−1 =
d GIW(α, θ, λ, β) , then by induction, we can 

establish that Yn =
d GIW(α, θ, λ, β). 

Hence the process {Yn} is stationary with GIW marginals. 

 

8. Application to real data  

In this section, we analyze one data set to demonstrate how the GIW 

distribution can be a good life time model in comparison with many known 
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distributions. We consider the data set originally reported by Bjerkedal(1960). 

This data set consists of 72 observations of survival times guinea pigs injected 

with different doses of tubercle bacilli. The data set has been considered by 

several authors in the literature, see, Kundu and Howlader (2010) and Cordeiro et 

al. (2012). The data set follows: 

 

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60 60 

60 60 61 62 63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 85 87 91 95 96 98 99 

109 110 121 127 129 131 143 146 146 175 175 211 233 258 258 263 297 341 341 

376 

 

The descriptive statistics of the data is presented in Table 4. 

Table 4: Descriptive statistics of pig data. 

Min Median Mean Max SD Skewness Kurtosis 

12.000 70.000 99.820 376.000 81.118 1.796 5.614 

The distribution of the data is positively skewed and leptokurtic. We compare 

the GIW distribution with the following life time distributions: 

1. Inverse exponential (IE) distribution having the pdf 

𝑔(y; λ) = λy−2𝑒
−
𝜆
𝑦; 𝜆 > 0, 𝑦 > 0.  

2. Inverse Rayleigh (IR) distribution having the pdf 

𝑔(y; λ) = 2λ2y−3𝑒
−(
𝜆
𝑦
)
2

; 𝜆 > 0, 𝑦 > 0.  

3. Weibull (W) distribution having the pdf 

𝑔(y; λ, β) = λβ𝛽yβ−1𝑒−(𝜆𝑦)
𝛽
; 𝜆, 𝛽 > 0, 𝑦 > 0.  

4. Inverse Weibull (IW) distribution having the pdf 

𝑔(y; λ, β) = λβ𝛽y−(β+1)𝑒
−(
𝜆
𝑦
)
𝛽

; 𝜆, 𝛽 > 0, 𝑦 > 0. 
 

5. Exponentiated inverse Weibull (EIW) distribution having the pdf 

𝑔(y; α, λ, β) = 𝛼λβ𝛽𝛼−1y−(β+1)𝑒
−(
𝜆
𝑦
)
𝛽

[1 − 𝑒
−(
𝜆
𝑦
)
𝛽

]

𝛼−1

; 𝛼, 𝜆, 𝛽 > 0, 𝑦 > 0.  

6. Inverse Weibull logarithmic (IWL) distribution having the pdf 

𝑔(y; α, λ, β) =
𝛼λ𝛽y−(β+1)𝑒−𝜆𝑦

−𝛽

(1 − 𝛼𝑒−𝜆𝑦
−𝛽
) log(1 − α)−1

; 0 < 𝛼 < 1, 𝜆, 𝛽 > 0, 𝑦 > 0.  

7. Inverse Weibull Poisson (IWP) distribution having the pdf 

𝑔(y; α, λ, β) =
𝑒𝛼𝑒

−𝜆𝑦−𝛽

𝑒𝛼 − 1
𝛼λ𝛽y−(β+1)𝑒−𝜆𝑦

−𝛽
; −∞ < 𝛼 < ∞, 𝜆, 𝛽 > 0, 𝑦 > 0.  
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8. Inverse Marshall-Olkin Weibull (IMOW) distribution having the pdf 

𝑔(y; α, λ, β) =
𝛼λβ𝛽y−(β+1)𝑒

−(
𝜆
𝑦
)
𝛽

[1 − (1 − 𝛼)𝑒
−(
𝜆
𝑦
)
𝛽

]

2 ; 𝛼, 𝜆, 𝛽 > 0, 𝑦 > 0. 
 

9. Kumaraswamy Marshall-Olkin inverse exponential (Kw-MOIE) distribution  

having the pdf 

𝑔(y; a, b, α, λ) = 𝑎𝑏𝛼𝜆𝑥−2𝑒
−𝑎(

𝜆
𝑦
)
[𝛼 + (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
]

−𝑎−1

  

[1 − 𝑒
−𝑎(

𝜆
𝑦
)
[𝛼 + (1 − 𝛼)𝑒

−(
𝜆
𝑦
)
]

−𝑎

]

𝑏−1

; 𝑎, 𝑏, 𝛼, 𝜆 > 0, 𝑦 > 0.  

10. Kumaraswamy Fréchet (Kw-Fr) distribution having the pdf 

𝑔(y; a, b, λ, β) = 𝑎𝑏𝛽𝜆𝛽𝑦−𝛽−1𝑒
−𝑎(

𝜆
𝑦
)
𝛽

[1 − 𝑒
−𝑎(

𝜆
𝑦
)
𝛽

]

𝑏−1

; 𝑎, 𝑏, 𝜆, 𝛽 > 0, 𝑦

> 0. 

 

11. Beta Fréchet (BFr) distribution having the pdf 

𝑔(y; a, b, λ, β) =
𝛤(𝑎)𝛤(𝑏)𝛽𝜆𝛽 

𝛤(𝑎 + 𝑏)
𝑦−𝛽−1𝑒

−𝑎(
𝜆
𝑦
)
𝛽

[1 − 𝑒
−(
𝜆
𝑦
)
𝛽

]

𝑏−1

; 𝑎, 𝑏, 𝜆, 𝛽

> 0, 𝑦 > 0. 

 

12. Exponentiated Weibull-Poisson (EWP) distribution having the pdf 

𝑔(y; α, λ, β, θ) =
𝛼𝜃𝛽𝜆𝛽

𝑒𝜃 − 1
𝑦𝛽−1𝑒−(𝜆𝑦)

𝛽
  

(1 − 𝑒−(𝜆𝑦)
𝛽
)
𝛼−1

𝑒𝜃(1−𝑒
−(𝜆𝑦)𝛽)

𝛼

; 𝛼, 𝜆, 𝛽, 𝜃 > 0, 𝑦 > 0.  

The parameters is estimated numerically using maximum likelihood estimate 

method. The values of log-likelihood (−log 𝐿), Akaike information criterion 

(AIC), consistent Akaike information criterion (CAIC), Bayesian information 

criterion (BIC) and Hannan-Quinn information criterion (HQCI) statistics for GIW 

and their sub-models are calculated. The better distribution corresponds to 

smaller −log L, AIC, CAIC, BIC and HQCI. 

We apply the Crammer-von Mises(W∗) and Anderson-Darling (A∗) statistic 

for formal goodness-of-fit to verify which distribution fits better to this data. In 

general, the smaller the values of the statistics W∗ and A∗, shows better the fit to 

the data. Let G(x; θ) be the cdf, where the form of G is known but θ (a 

4-dimensional parameter vector, say) is unknown. We calculate the statistics W∗ 

and A∗ as follows:(i) Compute ψi = G(xi; θ̂), where the xi's are in ascending 
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order; (ii) Compute xi = ϕ
−1(ψi), where ϕ(. ) is the normal cdf and ϕ−1(. ) 

its inverse.; (iii) Compute ui = ϕ{(xi − x̅)/sx } , where x̅ = n−1∑ xi
n
i=1  and 

sx
2 = (n − 1)−1∑ (xi − x̅)

2 n
i=1 ; (iv) Calculate 

𝑊2 =∑{𝑢𝑖 −
2𝑖 − 1

2𝑛
}
2

+
1

12𝑛

𝑛

𝑖=1

  

and 

𝐴2 = −𝑛 −
1

𝑛
∑{(2𝑖 − 1) log(𝑢𝑖) + (2𝑛 + 1 − 2𝑖) log(1 − 𝑢𝑖)}

𝑛

𝑖=1

;  

(v) Modify 𝑊2  into 𝑊∗ = 𝑊2(1 + 0.5/𝑛)  and 𝐴2  into 𝐴∗ = 𝐴2(1 +

0.75/n + 2.25/n2). For further details, see Chen and Balakrishnan (1995). 

The values of estimates, −log L, AIC, CAIC, BIC, HQCI are listed in Table 5 

and  W∗, A∗, K − S, p-values for all models are listed in Table 6. 

Table 5: MLEs of the parameters and some measures for the fitted models. 

Model Parameters −log L AIC CAIC BIC HQIC 

IE λ̂ = 60.0975  402.6718 807.3436 807.4007 809.6203 808.2499 

IR λ̂ = 46.7748  406.7361 815.4722 815.5293 817.7489 816.3785 

W λ̂ = 0.0090, β̂ = 1.3932  397.1477 798.2954 798.4693 802.8487 800.1081 

IW λ ̂= 54.188, β̂ = 1.4148  395.6491 795.2982 795.4721 799.8515 797.1109 

EIW 

α̂ = 8.2725, λ̂  = 

336.3775 

β̂ = 0.6207  

390.5000 787.0000 787.3529 793.8300 789.7190 

IWL α̂ = 0.9002, λ̂ = 719.78 394.8100 795.6200 795.9729 802.4500 798.3590 
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β̂ = 1.8558  

IWP 
α̂ =−13.8900, λ̂=33.0030  

β̂ = 0.5544  
390.2600 786.5200 786.8729 793.3500 789.2390 

IMOW 
α̂ = 0.0162, λ̂= 14.1986  

β̂ = 2.4845  
389.7090 785.4180 785.7709 792.2480 788.1370 

Kw-MOI

E 

â = 68.1393, b̂ = 2.6258  

α̂ = 8.8727, λ̂ = 0.1758  
391.3500 790.7000 791.3000 799.8000 794.3000 

Kw-Fr 
â = 45.7326, b̂ = 8.2723  

λ̂ = 0.7111, β̂ = 0.6207  
390.2500 788.5000 789.1000 797.6000 792.1000 

BFr 
â =19.9786, b̂ = 20.1331  

λ̂ = 24.5032, β̂ = 0.3220  
390.3000 788.6000 789.2000 797.7000 792.3000 

EWP 

α̂ = 356.1600, λ̂  = 

0.2495  

β̂ = 44.6070, θ̂ = 4.0840  

389.5800 787.1500 787.7297 796.2600 790.7854 

GIW 
α̂ = 0.0009, θ̂ = 1.3744 

λ̂ = 2.9633, β̂ = 2.3122  
387.6737 782.9474 783.5444 792.0541 786.5728 

 

Table 6: Goodness-of-fit statistics for various models fitted to pig data. 

Model W∗ A∗ K−S p-value 

IE 

IR 

W 

IW  

0.8322 

1.2574 

0.4325 

0.2521 

4.5927 

6.4936 

2.3763 

1.5017 

0.1847 

0.2508 

0.1468 

1.1520 

0.0148 

0.0002 

0.0899 

0.0718 
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EIW 

 IWL 

 IWP 

IMOW 

Kw-MOIE 

Kw-Fr  

BFr 

EWP 

GIW 

0.1362 

0.1958 

0.1287 

0.1030 

0.1219 

0.1360 

0.1382 

0.1075 

0.0929  

0.7546 

1.1447 

0.7188 

0.6260 

0.7404 

0.7544 

0.7631 

0.6158 

0.5464  

0.1003 

0.1124 

0.0983 

0.0900 

0.1181 

0.1004 

0.0998 

0.0891 

0.0856  

0.4642 

0.3516 

0.4899 

0.6034 

0.2674 

0.4623 

0.4418 

0.6176 

0.6668  

From the Table 5 and Table 6, we can see that, GIW distribution has smallest 

−log L, AIC, CAIC, BIC, HQCI, W∗, A∗, K − S values. Also the GIW distribution 

has highest p-value. Hence the new model, that is GIW distribution, yields a 

better fit than the other models for this data set. 

The fitted density and the empirical cdf plot of the GIW distribution are 

presented in Figure 3. The figure indicates a satisfactory fit for the GIW 

distribution. 

 

Figure 3: Plots of the estimated pdf and cdf of the GIW model for pig data. 

To test the null hypothesis H0: IMOW versus H1: GIW or equivalently 

H0: θ = 1 versus H1: θ ≠ 1 we use likelihood ratio test statistic whose value is 

4.4706(p-value=0.0345). As a result, the null model IMOW is rejected in favor of 

alternative model GIW at any level > 0.0345. 
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