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ABSTRACT 

Factor analysis (FA) is the most commonly used pattern recognition 

methodology in social and health research. A technique that may help to better 

retrieve true information from FA is the rotation of the information axes. The 

purpose of this study was to evaluate whether the selection of rotation type affects 

the repeatability of the patterns derived from FA, under various scenarios of 

random error introduced, based on simulated data from the Standard Normal 

distribution. It was observed that when applying promax non - orthogonal rotation, 

the results were more repeatable as compared to the orthogonal rotation, 

irrespective of the level of random error introduced in the model. 
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1. INTRODUCTION 

Accuracy of the results in both research and clinical practice is a cornerstone in research 

methodology in order to make robust conclusions about the tested hypothesis. An accurate 

medical assessment is of major importance in research in order to make robust conclusions 

(Golafshani, 2003; Hammersley, 1987; Rose and Barker, 1978). However, all experiments 

have some degree of random errors that are caused inevitably in an experimental process due 

to imponderable and uncontrollable factors and by extension influence the accuracy of a 

research. For the past twenty years, research has incorporated pattern recognition analysis into 

analytical methodologies. Pattern analysis is a classical multivariate statistical approach that 

aims to identify patterns in data in order to show certain attributes. The patterns are usually 

extracted through Factor Analysis (FA) and Principal Components Analysis (PCA) (Panaretos 

et al., 2016; Parmet, Edna and Sherman, 2010). Particularly, FA is a statistical procedure, 

which aims in finding patterns among a set of variables. In other words, that method was 

created in order to reduce the difficulty of the problem (the number of variables) without 

missing the initial information. A technique that may help to better retrieve true information 

from the FA is the rotation of the information axes (factors and components, respectively). It 

has been suggested that rotation of the axes is required so that the extracting factors can be 

more interpretable. The rotation maximizes the variance explained of the extracted 

components and makes the pattern of loadings more well-defined (Thurstone, 1947; Cattel, 

1978). The rotation can be orthogonal (the factors are uncorrelated) or non-orthogonal (the 

factors are correlated). The most common methods of orthogonal rotation are Varimax (Kaiser, 

1958) and Quartimax (Carroll, 1953; Neuhaus and Wrigley, 1954; Saunders, 1960) while the 

most common methods of non-orthogonal rotation are Promax (Hendrickson and White, 1964) 

and direct Oblimin (Jennrich and Sampson, 1966). 

In a previously published paper (Panaretos et. al, 2018) it was evaluated whether rotation 

type, in the presence of constant random error, influences the repeatability on simulated data 

derived from Normal and Uniform distributions. However, adding random error into all 

variables is not realistic for real data application. To the best of our knowledge, the role of the 

introduction of various levels of random error to different set of variables in relation to the 

repeatability of the extracted factors through FA, with or without rotation, has not been studied 

in the literature. Thus, the purpose of this study was to evaluate whether the selection of certain 

rotation type, under various scenarios of random error introduced in the initial variables, 

affects the repeatability of the patterns derived from the application of FA, based on simulated 

data obtained from the Standard Normal distribution.  

 

2. METHODS 

2.1 Theoretical background 

Let’s assume a set of observed variables X = [x1, x2, …, xp], supposed to be linked to a 

smaller number of common factors F = [f1, f2, …, fm], where m ≤ p. We may present X and 

F through a regression model of the form: 
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𝑋1 = 𝐿11𝐹1 + 𝐿12𝐹2 + ⋯ + 𝐿1𝑚𝐹𝑚 + 𝑢1 

𝑋2 = 𝐿21𝐹1 + 𝐿22𝐹2 + ⋯ + 𝐿2𝑚𝐹𝑚 + 𝑢2 

⋮ 

𝑋𝑝 = 𝐿𝑝1𝐹1 + 𝐿𝑝2𝐹2 + ⋯ + 𝐿𝑝𝑚𝐹𝑚 + 𝑢𝑝 

（2.1） 

where U = [u1, u2, …up] represents the error term 

The aforementioned may be written in matrix notation as 

                                  X(px1) = L(pxm) F(mx1) + U(px1)                                            (2.2) 

where X, U are column vectors of p components, F is a column vector of m (≤ p) components 

and L is a pxm matrix. The Lij are called factor loadings, and express the relationship (i.e., in 

a form of a correlation) of each variable to the common factor F, when the data are standardized. 

We assume that E(εi) = 0, Var(εi) = ψi , Cov(εi, εκ) = 0 , i≠κ and Cov(εi, fj) = 0 for all i 

and j. These assumptions are natural consequences of the basic model and the goals of factor 

analysis. (Rencher and Christensen, 2012) The assumptions Var(fj) = 1 and those that are 

described above, imply that the variance of the variable is given by 

σii = Var(Χi)  =  Var(Li1F1 + Li2F2 +…+ Lim Fm + ui)  

= 𝐿𝑖1
2 + 𝐿𝑖2

2 +…+𝐿𝑖𝑚
2 +ui  = ∑ 𝐿𝑖𝑗

2𝑚
𝑗=1 + ui 

So, FA model implies that the variance of each observed variable can be split into two 

parts. The first given by  

ℎ𝑖
2=  ∑ 𝐿𝑖𝑗

2𝑚
𝑗=1  

called communality of the variable and represent the variance shared with other variables via 

the common factors. The second part, ui, called specificity and represent the variance not 

shared with other variables. 

So that 

Cov(X) = Cov(LF + u) = Cov(LF) + Cov(u)  = L Cov(F) L΄ + U = L I L΄ + Ψ             = L L΄ + Ψ 

where LL΄ is the common factor covariance matrix. 

A technique that may help to better retrieve true information from the FA is the rotation of 

the information axes (factors). It has been suggested that rotation of the axes is required so that 

the extracting factors can be more interpretable. The objective of factor rotation is to achieve 

the most parsimonious and simple structure possible through the manipulation of the factor 

pattern matrix. There are two broad classes of rotation, orthogonal and non-orthogonal, which 

have different underlying assumptions, but which share the common goal of simple structure 

(Pett, Lackey and Sullivan, 2003). Orthogonal rotation shifts the factors in the factor space 

maintaining 900 angles of the factors to one another to achieve the best simple structure.  In 

contrast, a non-orthogonal rotation follows the same rotation principles as an orthogonal 

rotation, but due to the factors not being independent, a 900 angle of rotation is not fixed 

between the axes (Kieffer, 1998; Chris Chatfield, 2018). The most commonly used methods 

of orthogonal rotation are Varimax and Quartimax, while the methods of non-orthogonal 

rotation are direct Oblimin and Promax. 
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Τhe Varimax procedure chooses a rotation that maximizes the variation in the squares of 

the column entries of the estimated factor loading matrix, namely look for those Lij where 

maximize the function  

𝑉 =
1

𝑝
∑ [∑ 𝐿∗

𝑖𝑗
4𝑝

𝑖=1 −
(∑ 𝐿∗

𝑖𝑗
2𝑝

𝑖=1 )
2

𝑝
]𝑚

𝑗=1                                                         (2.3) 

On the other hand, the Quartimax procedure look for those Lij where maximize the 

function  

𝑄 = ∑ ∑ 𝐿∗
𝑖𝑗
4𝑝

𝑖=1
𝑚
𝑗=1                                                                      (2.4) 

The Oblimin rotation (Jennrich & Sampson, 1966) is a non-orthogonal rotation, which 

carry out by nminimizing the expression 𝑂𝐵𝑀𝐼𝑁 = ∑ [∑ 𝐿∗
𝑖𝑠
2 𝐿∗

𝑖𝑗
2 −𝑝

𝑖=1
𝑚
𝑠<𝑗=1

𝛿

𝑝
∑ 𝐿∗

𝑖𝑠
2𝑝

𝑖=1 ∑ 𝐿∗
𝑖𝑗
2𝑝

𝑖=1 ] where δ is a parameter which controls the degree of correlation between 

the factors. On the other hand, Promax (Hendrickson & White, 1964), of which name derives 

from Procrustean rotation, is similar to direct Oblimin but it is mostly used for very large 

datasets. Promax is often the oblique rotation strategy of choice, as it is relatively easy to use, 

typically provides good solutions, and tends to generate more replicable results than the direct 

Oblimin rotations (Kieffer &Kevin M, 1998). 

2.2 Simulation Study's setting  

To test the research hypothesis of the present study, i.e., the repeatability of factors derived 

through factor analysis under various rotation methods, a data file with 10 variables of 1000 

observations each, was created. This was conducted by simulating 1000 observations from the 

Standard Normal distribution. Random error from a Normal distribution on [-0.1, 0.1], [-0.3, 

0.3] and [-0.5, 0.5] was added respectively to each element of the constructed matrix. 

Therefore, it was assumed that the same research takes place under the same conditions at a 

later time. Consequently, the random error has been distributed on 20%, 40%, 60%, 80% and 

100% of variables into the original data.  

2.2 Factor analysis with and without rotation  

Then, FA was applied in order to identify common factors between the 10 variables group 

in each case separately. For each case, 10 new variables were created, the factors, which can 

be generally identified in a subjective way as some non-measurable variables. The loadings 

matrix was saved separately, to take account of the three cases:  no rotation, orthogonal rotation 

and non-orthogonal rotation. The exact same procedure was applied to the matrices with added 

error. 

2.3 Testing repeatability of Factor Analysis under different scenarios  

After applying the previous steps, 4 matrices were created for each case: a matrix with 

loadings of the extracted factors before and 3 after the random error has been distributed (0.1, 

0.3 and 0.5). Then, for each case, 3 new matrices were created, which were the matrices of the 

difference between the loadings resulting from the factorial analysis before the error was 

introduced and the loadings after the error was introduced. The purpose in this step was to find 

the empirical expectation of the Frobenius matrix norm, ‖𝐿 − 𝐿′‖
𝐹

= [∑ (𝑙𝑖𝑗 − 𝑙𝑖𝑗
′ )

2
𝑖,𝑗 ]

1/2

that 

calculated as a more global measure of showing how the input of random errors affect the 
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repeatability of the results, under the Normal distributions (Tables 1, 2, 3, 4 & 5). Thus, the 

lowest the number of the metric, the higher the repeatability. The procedure was repeated, 

separately in case of not selecting any type of rotation and in the case of orthogonal and non-

orthogonal rotation. 

2.4 Simulation Process 

The above procedure was repeated 1000 times. Each time the percentage of differences in 

the loadings and the 95% Confidence Interval for the percentage was calculated, in order to 

measure to what extent, the introduction of random error between multiple and independent 

measurements, with and without rotation, affects the repeatability of the procedure. 

 

3. RESULTS 

Tables 1 and 5 presents the results of the Frobenius matrix norms of deviations of the 

loadings of the factorial analysis matrices, before and after the error adding into the data, based 

on 1000 simulations from Standard Normal distribution, respectively. In all cases it is noticed 

that as the error and percentage of variables with error increased, the deviations also increased 

in almost with a linear way (Figures 1-5). 

The orthogonal rotation, which was then applied as the most commonly used technique in 

order to improve the interpretation of the common factors, resulted in worse results compared 

to the absence of rotation of axes. In particular, in the case that the error was ± 0.1 and varimax 

rotation was applied, it was found that, deviations of the loadings of the factorial analysis 

matrices, before and after the error input the 20% of variables, was 3.54 (95%CI: 3.52 - 3.57) 

while the deviation was reduced to 3.61 in the case that the error was ±0.5 (95%CI: 3.58 - 

3.64). Respectively, in the case that the error (± 0.1) input the 100% of variables the deviation 

was 4.15 (95%CI: (4.09, 4.21). Similar behavior has occurred in the case of Quartimax rotation 

with slightly better results.  

Concerning the non-orthogonal rotation, the results were much better than the previous 

procedures. When selecting promax rotation with a random error input of ± 0.1, deviations of 

the loadings of the factorial analysis matrices, before and after the error input the 20% of 

variables, was 1.74 (95%CI:  1.68 - 1.80).  Respectively, in the case that the error (± 0.1) input 

the 100% of variables the deviation was 2.55 (95%CI: 2.49 - 2.61). Similar behavior was also 

observed in the case of Oblimin rotation with worse results. It is also important to note the fact 

that, when we did not apply any type of rotation, the results were much better from orthogonal 

or non – orthogonal rotation results.  

 

4. DISCUSSION  

In this work the influence of the factor's rotation in factor analysis on the repeatability 

(robustness) of the extracted patterns was examined based on simulated data; the main goal 

was to test the repeatability of the results derived through a commonly used pattern recognition 

methodology, i.e., factor analysis, and to reveal the best rotation method under various 

scenarios. The simulation studies showed that when the Promax method is used, the results are 

more robust (i.e., repeatable) as compared to the orthogonal rotation. It is also important to 

note the fact that, any type of rotation is not applied, the results were much less repeatable as 

it can be seen from Tables 1, 2, 3 and 4.  

An issue that has rarely been examined in the literature is the repeatability of the extracted 
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patterns derived through the factor analysis. The importance of achieving repeatable and 

reliable information in both research and clinical practice is a fundamental issue in research 

methodology.  

Generally, it is argued that employing a method of orthogonal rotation may be preferred 

over oblique rotation, due to better understanding the results in terms of interpretation. 

However, orthogonal rotations often do not honor a given researcher's view of reality as the 

researcher may believe that two or more of the extracted and retained factors are correlated. 

Secondly, orthogonal rotation of factor solutions may oversimplify the relationships between 

the variables and the factors and may not always accurately represent these relationships. In 

contrast, an oblique rotation offers a better chance of finding simple structure, but at the price 

of complicating the interpretation (Marley W. Watkins, 2018). In practical terms there is no 

obvious reason why factors of substantive interest should be uncorrelated as orthogonality 

implies (Bartholomew, Knott and Moustaki, 2011).  

In our study, of course it was found that in case of Quartimax rotation the results were 

worse than Promax rotation. The inconsistency between the methods of rotation is inevitable 

due to the different mathematical structure, but what really matters is how different they are. 

Direct Oblimin (Jennrich & Sampson, 1966) results in higher eigenvalues but diminished 

interpretability of the factors.  

In a previously published paper (Panaretos et. al, 2018) it was evaluated whether rotation 

type, in the presence of constant random error, influences the repeatability on simulated data 

derived from Normal and Uniform distributions. From the results of the simulation studies 

performed there it was observed that when applying non-orthogonal rotation, and specifically 

the Promax method, the results were more robust (i.e., repeatable) as compared to the 

orthogonal rotation, while when we did not apply any type of rotation, the results were much 

less repeatable and thus, it was not possible to generalize. 

 As shown in the present study, when a random error occurs in measurements, except for 

promax non – orthogonal rotation, the results are not repeatable. This was confirmed by using 

the Frobenius matrix norms. The result from the aforementioned findings should be made with 

conscious and further research is needed in order to prove them. To the best of our knowledge, 

this kind of study has not been carried out before, making this study unique in exploring the 

inherent properties of factor analysis as a robust pattern recognition tool.  According to the 

findings of this simulation study, it is strongly concluded that when rotation is needed to 

improve the interpretation of patterns derived through factor analysis, promax non-orthogonal 

rotation seems to produce more robust results.  
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Table 1: Results of the Frobenius matrix norms of deviations of the loadings of the factorial 

analysis matrices, before and after the error input into the 20% of variables from the Normal 

distribution, under various rotation methods used (1000 simulations). 

Random 

Error  

 

None 

Orthogonal Rotation of axes  Non – orthogonal rotation of axes 

Varimax Quartimax Promax Oblimin 

Error = ±0.1 0.49                   

(0.45,  0.54) 

3.54                 

(3.52, 3.57) 

2.24                      

(2.18, 2.30) 

1.74 

(1.68,  1.80) 

4.18 

(4.16,  4.20) 

Error = ±0.3 1.49  

(1.44, 1.54) 

3.53                   

(3.50, 3.56) 

3.05                         

(3.01,  3.09) 

2.61 

(2.55,  2.66) 

4.22 

(4.20, 4.23) 

Error = ±0.5 2.22 

(2.17, 2.27) 

3.61                                

(3.58, 3.64) 

3.41 

(3.38, 3.45) 

3.07 

(3.03, 3.12) 

4.23 

(4.21, 4.24) 

 

 

Table 2: Results of the Frobenius matrix norms of deviations of the loadings of the factorial 

analysis matrices, before and after the error input into the 40% of the variables from the Normal 

distribution, under various rotation methods used (1000 simulations). 

Random 

Error  

 

None 

Orthogonal Rotation of axes Non – orthogonal rotation of axes 

Varimax Quartimax Promax Oblimin 

Error = ±0.1 0.70 

(0.66, 0.75) 

3.59  

(3.57, 3.62) 

2.78  

(2.73, 2.83) 

1.85 

(1.79, 1.92) 

4.18 

(4.16, 4.20) 

Error = ±0.3 2.02 

(1.97, 2.07) 

3.62 

(3.60, 3.65) 

3.40 

(3.36, 3.43) 

2.85 

(2.80, 2.90) 

4.23 

(4.22, 4.25) 

Error = ±0.5 2.88 

(2.83, 2.92) 

3.77   

 (3.74, 3.79) 

3.69 

(3.65, 3.72) 

3.30 

(3.34, 3.34) 

4.24 

(4.22, 4.25) 
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Table 3: Results of the Frobenius matrix norms of deviations of the loadings of the factorial 

analysis matrices, before and after the error input into the 60% of variables from the Normal 

distribution, under various rotation methods used (1000 simulations). 

Random 

Error  

 

None 

Orthogonal Rotation of axes  Non – orthogonal rotation of axes 

Varimax Quartimax Promax Oblimin 

Error = ±0.1 0.89                   

(0.84,  0.94) 

3.61                  

(3.58, 3.63) 

2.90                      

(2.86, 2.95) 

2.18 

(2.12,  2.24) 

4.19 

(4.18,  4.21) 

Error = ±0.3 2.36  

(2.31, 2.41) 

3.71                    

(3.68, 3.74) 

3.55                          

(3.52,  3.59) 

3.28 

(3.24,  3.32) 

4.25 

(4.23, 4.26) 

Error = ±0.5 3.16 

(3.11, 3.20) 

3.88                                

(3.86, 3.91) 

3.82 

(3.80, 3.85) 

3.67 

(3.64, 3.70) 

4.25 

(4.24, 4.27) 

 

 

Table 4: Results of the Frobenius matrix norms of deviations of the loadings of the factorial 

analysis matrices, before and after the error input into the 80% of the variables from the Normal 

distribution, under various rotation methods used (1000 simulations). 

Random 

Error  

 

None 

Orthogonal Rotation of axes Non – orthogonal rotation of axes 

Varimax Quartimax Promax Oblimin 

Error = ±0.1 0.97 

(0.92, 1.01) 

3.62  

(3.59, 3.64) 

3.03  

(2.99, 3.07) 

2.41 

(2.35, 2.46) 

4.21 

(4.19, 4.22) 

Error = ±0.3 2.55 

(2.50, 2.60) 

3.75 

(3.73, 3.78) 

3.68 

(3.65, 3.71) 

3.45 

(3.41, 3.49) 

4.25 

(4.23, 4.26) 

Error = ±0.5 3.35 

(3.31, 3.40) 

3.94   

 (3.92, 3.96) 

4.22 

(4.17, 4.27) 

3.81 

(3.78, 3.84) 

4.25 

(4.23, 4.26) 
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Table 5: Results of the Frobenius matrix norms of deviations of the loadings of the factorial 

analysis matrices, before and after the error input into the 100% of variables from the Normal 

distribution, under various rotation methods used (1000 simulations). 

Random 

Error  

 

None 

Orthogonal Rotation of axes  Non – orthogonal rotation of axes 

Varimax Quartimax Promax Oblimin 

Error = ±0.1 1.05                   

(1.00,  1.10) 

3.66                  

(3.63, 3.68) 

3.05                      

(3.01, 3.09) 

2.55 

(2.49,  2.61) 

4.22 
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Figure 1: Illustration of the results derived from the simulation study, showing the Results of the 

Frobenius matrix norms of deviations of the loadings of the factorial analysis matrices, before and 
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after the error input into the 20% of variables from the Normal distribution, under various rotation 

methods used (1000 simulations). 

 

 

 

 

Figure 2: Illustration of the results derived from the simulation study, showing the Results of the 

Frobenius matrix norms of deviations of the loadings of the factorial analysis matrices, before and 

after the error input into the 40% of variables from the Normal distribution, under various rotation 

methods used (1000 simulations). 
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Figure 3: Illustration of the results derived from the simulation study, showing the Results of the 

Frobenius matrix norms of deviations of the loadings of the factorial analysis matrices, before and 

after the error input into the 60% of variables from the Normal distribution, under various rotation 

methods used (1000 simulations). 
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Figure 4: Illustration of the results derived from the simulation study, showing the Results of the 

Frobenius matrix norms of deviations of the loadings of the factorial analysis matrices, before and 

after the error input into the 80% of variables from the Normal distribution, under various rotation 

methods used (1000 simulations). 
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Figure 5: Illustration of the results derived from the simulation study, showing the Results of the 

Frobenius matrix norms of deviations of the loadings of the factorial analysis matrices, before and 

after the error input into the 100% of variables from the Normal distribution, under various rotation 

methods used (1000 simulations). 

 


