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ABSTRACT

In this article, the maximum likelihood estimators of the k independent
exponential populations parameters are obtained based on joint progressive type-
I censored (JPC-1) scheme. The Bayes estimators are also obtained by
considering three different loss functions. The approximate confidence, two
Bootstrap confidence and the Bayes credible intervals for the unknown
parameters are discussed. A simulated and real data sets are analyzed to
illustrate the theoretical results.
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Notations
pdf Probability density function
cdf Cumulative density function
iid Independent and identically distributed
6 Number of censored stage
T; Prefixed censoring times, 1 < j < 6§
F- (1)) 1 — F(T}), Survival functions of the h populations atT;.
Ny, Ny, ..., No Samples of sizes
N k _,n-, The total sample size
W = (wy,wq,...,wy)  The order statistics of the N random variables
7 Number of units failed in T;_;, T;
s; (1) Number of units withdrawn at T; belonging to the h™"
samples
R; k. s;j (J), Number of units censored at time T;
z . Define as z; (1)) = {1' =1
= (z1(1), z(11),..., zs ([]). Ootllerwise
M, () =1 2; (1), Denote the number of X, — failures in W for
1<0<k
r k _, M,.(11), The total number of complete failures
L Likelihood function
1(.) Fisher’s information matrix
(A1) Prior density for the parameters A
(A1, Ay, ..., A \data)  Posterior density for the parameters A
A Maximum likelihood estimators of A
A 5s Bayes estimators of A under the SE loss function
1gL Bayes estimators of A under the LINEX loss function

A g Bayes estimators of A under the GE loss function
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1. Introduction

The joint censoring scheme is a very common way in conducting comparative life-tests of
products from various units within the same facility. Suppose products are being produced by
k different lines under the same conditions, and that k independent samples of sizes n,1 <
[ < kare selected from these k lines and placed simultaneously on a life-testing experiment.
Then, in order to reduce the cost and the experimental time, the experimenter may choose to
terminate the life-testing experiment before complete information on failure times for all
experimental units. Data arises from these experiments are called joint censored data. In this
situation, the experimenter may be interested in either point or interval estimation of the mean
lifetimes of units produced by the different k lines. In the literature, there were four types of
joint schemes, namely, joint Type-1l, joint progressive Type-Il, joint progressive Type-I and
joint type-l progressive hybrid censoring schemes. Balakrishnan and Rasouli (2008)
developed the likelihood inference for the parameters of two exponential populations under
joint Type-I1 censoring. Shafay et al. (2013), Ashour and Abo-Kasem (2014 a,b,c), considered
the jointly Type-Il censored sample. Rasouli and Balakrishnan (2010) studied the statistical
inference of two exponential populations under the joint progressive Type-II censoring. Parsi
etal. (2011) and Doostparast et al. (2013) considered the jointly progressive type-11 censored
sample.

Balakrishnan and Feng (2015) generalized the work of Balakrishnan and Rasouli (2008)
by considering a jointly Type-Il censored sample arising from k independent exponential
populations. Also, Balakrishnan et al. (2015) generalized Rasouli and Balakrishnan (2010)
work by considerring a jointly progressive Type-Il censored sample arising from k
independent exponential populations. Abo-Kasem et al. (2019) proposed a joint type-I
progressive hybrid censoring scheme and investigated the estimation problems in the case of
exponential distribution. Recently, Ashour and Abo-Kasem (2017) introduced JPC-1 scheme
and as a special case, joint Type-I censored scheme. They considered statistical inference for
two exponential populations under both JPC-I and joint Type-1 censored schemes. Abo-Kasem
and Nassar (2019) developed the estimation problems of two Weibull populations with the
same shape parameter under JPC-I censoring scheme. They obtained the maximum likelihood
estimators (MLEs) and the approximate confidence intervals. They also obtained the Bayes
estimates using squared error and LINEX loss functions under the assumption of independent
gamma priors.

The JPC-I scheme in comparison to other joint censoring schemes provides an important
advantage of the known termination time point of the life-testing experiment. From the
experimenter point of view, this makes the JPC-lI scheme very appealing for its
implementation in practice. In spite of such a practical advantage, most of the inferential
studies carried out in the literature focused on joint Type-1l and joint progressive Type-II
censoring schemes. For this reason, our aim in this paper is to investigate the point and interval
estimation of k independent exponential populations under the JPC-I scheme. The rest of the
paper is organized as follows: we formulate the problem in Section 2. The maximum
likelihood estimation for k exponential populations and the approximate confidence intervals
are obtained in Section 3. Section 4 describes the various bootstrap confidence intervals. In
Section 5, we obtain the Bayes estimators under squared error, LINEX and general entropy
loss functions as well as the Bayesian credible intervals for the parameters. In Section 6, a
simulated and real data sets are analyzed. The paper is concluded in Section 7.
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2. Model Description and Notation

Suppose that (X;,...,Xy) are N jointly distributed random variables, with {X;,..., Xy} =
{X11, . X1n Xo1s oo Xonys Xkas - Xiny J» and N = Tf_y ny,. SUppose X4, X1z,..., X1p,are
the lifetimes of n, specimens from production line A;, and are independent and identically
distributed (iid) variables from a population with cumulative distribution function (cdf) F; (x)
and probability density function (pdf) f; (x). Similarly, X1, X35, ..., X5, are the lifetimes of
n,specimens from production line A,, and are assumed to be a sample from pdf £, (x) and cdf
F,(x), and so on, with Xyq, Xy4,..., Xin, denoting the lifetimes of n, specimens from
production line A4, being iid variables from pdf f,(x) and cdf F,(x). Denote the order
statistics of these k random samples by W, < W, <...< Wy, where N is the total sample size.
Now, a JPC-1 scheme between the k samples is implemented as follows: at the time T;, R, units
are randomly withdrawn from the remaining N — r; (r;number of units failed in time interval
(Ty — Ty)) surviving units. Next, at the second time T,, R,units are randomly withdrawn from
the remaining N — R; —r; — 1, (1, number of units failed in time interval (T; —T5,))
surviving units, and so on. Finally, at the time T all remaining Rs = N — Z;Ll T — Zf;ll R;
(rsnumber of units failed in time interval (Ts_; — Ts)), surviving units are withdrawn from
the life-testing experiment, the total number of complete failures r = Z}Llrj as well as the
progressive censoring scheme (Ry,...,Rs) are prefixed and has the decomposition R; =
Z;‘l:lsj (h),1 <j < 6, where s;(h) is the number of units withdrawn at the §fixed times
T,,T,,...,Ts belonging to the hth sample and these are unknown and are latent random
variables. The data observed in this form will consist of (Z,R,W), where W =
(Wi, Wa,..o,wy) , wy € X0, X 0,0, X} for 1<hy,hy,...,hs <k . Moreover,
associated to (hy, hy, ..., hs), letus define z = (z, (1)), z,([),...,zs([1)) as

1,ifl =1
zi(0) = {Ootherwisle '

Finally, let M,.(h) = }}i_; z; (h) denote the number of X, — failures in W for 1 < h <
kandr = ¥X_, M,.(h). Then the likelihood of (Z, R, W) is given as

L = C Ty T oo (F (wi)) 2O T, T o (B (1)) 7, (1)

where C is a constant and Fh(Tj) = 1 — F(T}) is the survival function of the h populations.
Note that, the special case of joint Type-1 censoring scheme is obtained when we set R, =
R; =...= Rs_4 = 0so that Rs = N — rin which case we will have s;(h) = 0 and s5()) =
n-, —M,(0) for all 1 <11 <k, where M,.(7) are completely observed failures from h
samples.

3. Maximum Likelihood Estimators and Inference
Suppose that the k populations are exponential with pdf and cdf, respectively, as f- (x) =

e *and F (x) =1—e**1,>0,x>0,for1 <1 <k. In this case, the likelihood
function in (1) becomes
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My(D) 2w Zi() —2.T\Si (D)
L= CHI§=1AD ( )le=1 HE=1(9 A*W‘) }S=1 H’5=1(9 A T’) !
T

k 5
=C expi M, (1) In(A)— 4 zi(Mw; + ) s;(INDT;
u g g Z ]Zzl j Jj

i=1

From (2), we can obtain the MLE of A for 1 < [l <k, as
i = My (1)
o Zf=1zi(1)wl'+2}5=1 sj(C)T;

To obtain the approximate confidence intervals of the unknown parameters , we first
obtain the elements of the information matrix. Let [I(14,14,,...,4,) =
(Ii,q(zl,ﬂz, . .,/’lk)), i,q =1,2,..., k, denote the Fisher information matrix of the parameters

(A1, A2, .., A) »  Where Ii,q(/ll,ﬂz,...,/lk)z—E(%) . From (2), we have
i OAq

;i (A4, 25,..., 4) = 0 ifi # q. Consequently, the observed Fisher information matrix is given

by
1Aud,. 1) = —Di (021nL 9%inlL 0%inlL )
vAz, . Ag) = —Diag | ——— T N TV
02 |, 5 a5 |, 0% |,z
where
9%2inlL M,.(0)
e =
a2 | 22

Based on the asymptotic normality of the MLEs, the approximate 100(1 — a)%
confidence intervals of A, is given by

where Za is the upper % percentage point of the standard normal distribution.
2

4. Bootstrap Confidence Intervals

In this section, two bootstrap confidence intervals are discussed. The two bootstrap
methods are the percentile bootstrap (Boot-p) proposed by Efron (1982), and the bootstrap-t
method (Boot-t) proposed by Hall (1988). We can use the following algorithm to obtain the
Boot-p and Boot-t intervals,.

a) Bootstrap Percentile Interval Procedure (Boot-p)

(1) Compute the MLE 1,,0f A, based on JPC-I sample (w, z, s).

(2) Use 1,to generate a bootstrap JPC-1 sample (w*,z*,s*), and compute the bootstrap
estimate of A, sayA*,, based on this bootstrap sample.

(3) Repeat step 2 B times to have "™, 1"® . 1"®
(4) Arrange /T’;l(l), 22(2), . .,/T,‘l(B in ascending order to obtainA"™, A4 1181,

(5) A two-sided 100(1 — a)% Boot-p confidence interval fora,, say [A7,, ¥ ;] is given by
o 2« [ 2*(BZD x(BA-FD B
A Ay) = /15 ,lj ,0=12,....,k

376
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b) Studentized-t Interval Procedure (Boot-t)
The Boot-t confidence intervals estimators are obtained according to the following steps:
(1-2) Same as the steps 1-2 in (a).

(3) Compute the t —statistic Ty, = @ ”A’lh)where Sy is the bootstrap variance.
Ah
(4) Repeat steps 2—-3 B times and obtain T, TA(*Z), o) Tff).
(5) Arrange T(l) T(Z) .. T(B)ln ascending order to obtain T[f], T,1[*]' i) 71[5].
(6) A two- S|ded 100(1 — a)% Boot-t confidence mterval for Ahsay [ e, AT cu ], is given by
. B35+« (B(1—5375 o
</1 +T,. Vg A+ .. Z)DS,1 ) T=12,...,k

5. Bayesian Inference

Based on the likelihood function and the independent gamma prior distributions, viz.
G(ap, by) for 1 < [1 < k, with pdf given by

(A, = 28t Ab (4)

r(& )
where I'(. )denotes the complete gamma function. Combining (2) and (4), the joint posterior
density of 14, 4,,..., A given the data is

(A, Az, ..., A \data) = ATTS 2, A% O exp{=2. (b + U}, (5)

(b +U )ah+Mr(h)
where A = [T5, —tto—os—and Uy = i, 2i((Dw; + 2 5(DT;

From (5) the joint posterior density function of A,, 1,,..., 4, is a product of k independent
density functions, therefore the marginal posterior density functions of A,,1,,..., 4, given
the data, are G(M,.(h) + ay, Uy, + by,). To obtain the Bayesian estimation of 1,, 4,,..., 4, we
consider three loss functions. The first one, is the squared error (SE) loss function which is
symmetric loss function. The second is the LINEX loss function introduced by Varian (1975)
which is asymmetric loss function. The LINEX loss function with parameters  and vis given
by

{’(é, 9) = v{eT(a‘Q) —17(60 —0) — 1} (6)
where 7 and v are constants. From (6) the Bayes estimator 8 of 8 is given by
~ 1 _
HBL:—;lnE(e ), 70 (7)

The third is the GE asymmetric loss function 85 proposed by Calabria and Pulcini (1994)
and given by
L@ ,0) < ()"

(8)

where ¢ is a shape parameter whose minimum occurs at (8* = ). The Bayes estimate 6*
of 0 under GE loss function in (8) is given by

5 = (Bplo<])< . ©)

Under SE loss function, the Bayes estimators of 1, 4,,..., A, is the posterior mean which
can be obtained from (5) as
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- My (h)+
Anps = ﬁ 1<0<k. (10)

It is to be noted that when a;, = b, = 0, forl < h < k, the Bayes estimators in (10)
coincide with the corresponding MLEs in (3). Let Q;, = 24, (U, + by,) evidently, the pivots
Qy, follow Xg(Mr(hHah) distributions, provided that 24, (M,.(h) + a;) is positive integers. In
this case, the 100(1 — a)% Bayes credible intervals for A4, 1, ..., A under JPC-1 scheme are

x? a X @
2(Mr(M)+ap)i—5 “2Mr(M)+ap)y =12 k
2(Up+by) ~ 2Uptby) )T T T

where xZ , is the apercentage point of the yZdistribution with vdegrees of freedom.
Under LINEX loss function in (6), the Bayes estimators of A;, 1,,..., A, are given by

S My,(h)+a T
AnpL = fhln (1 + Uh+bh)’ 0=12,....,k

where T # 0. Under the GE loss function in (9), the Bayes estimators of 1,,1,,..., 4, are
given by

1
A _ (TMy(W+ap—c)\ "¢ 1 _
AhBE - ( I'(My(h)+ap) ) Up+by’ - 1'2' B k.

6. Numerical Illustration

This section is devoted to illustrate the theoretical result obtained in the previous sections
numerically by analyzing a simulated and real data sets.
Example (1): Real data-set

To illustrate the usefulness of the proposed estimators obtained in sections 3, 4 and 5 with
real situations, we consider Nelson’s data (1982, Ch. 10, Table 4.1) which correspond to
breakdown in minutes of an insulating fluid subjected to high voltage stress. These failure
times were observed in the form of groups with each group reporting data on 10 insulating
fluids. Let us consider the following three groups of samples of failure time data presented in
Table (1).

Table 1: The failure time data as three groups of insulating fluids
Group Data
1 0.31 0.66 154 170 182 189 217 224 403 9.99

2 000 018 055 066 071 130 163 217 275 10.60
3 049 064 082 093 108 199 206 215 257 4.75

Table (2) presents the JPC-1 sample data that have been obtained from the three samples
in Table (1) with T, =1, T, = 2 and T; = 3 (in minutes). The generated JPC-I sample size
is 23 and presented in Table (2) along with the realized values of other pertinent variables. We
obtain the MLEs and Bayes estimates of A;,4, and A; (with the choice of
(aq,a3,as3, by, by, b3) = (1.1,1.4,1.6,1,1,1) as hyper-parameters values, these results are
presented in Table (3). Table (4) shows the asymptotic variance covariance matrix of the
MLEs. Table (5) presents the 95% approximate, Boot-p, Boot-t (with B =1000 bootstrap
samples) and Bayes credible intervals for 1, 1, and A5.
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Table 2: The JPC-I sample data from Nelson’s data (1982, Ch. 10, Table 4.1)

j N; Failure
Times
Wi

z; (1)

(1)

R_] T

z;(1)

zi(2)

z;(3)

si(D)

s;(2)

s;(3)

0.00
0.18
0.31
0.49
0.55
0.64
0.66
0.66
0.71
0.82
0.93

o

o

11

1.08
1.30
1.54
1.63
1.70
1.82
1.89
1.99

2.06
2.17
2.24
2.75

O P P O|IOFRPFFPPFPOPFPFOOOO0OD OO EFr,r OO OoOLkr o

P O OO0 0O 00O PFrRPFOFRPROI0O0OFRP, P OO OOF Pk

O OO RrRPRIPOOOOOOR|IPPOOOEFR, OPRFr OO

Total

23

Table 3: The MLE and Bayesian estimates ofA;, 4, and A5

MLEs

0.49
0.626
0.538

o oy Dy
w N =

Bayesian estimates

Squared

error

LINEX

General entropy

7=0.1

7=0.5

c=05 ¢=01 c=05

0.525
0.682
0.614

0.524
0.68
0.612

0.518
0.67
0.603

0.511
0.659
0.593

0.511
0.664
0.596

0.494
0.643
0.575

0.482
0.628
0.561

Table 4: Estimates of the asymptotic variance covariance matrix of the MLEs based on JPC-I

sample.

Asymptotic variance covariance matrix




O.E. Abo-Kasem and Mazen Nassar 380

0.03 0 0
0 0.049 0

0 0 0.0414

Table 5: The 95% approximate, Boot-p, Boot-t and Bayes credible intervals for 4;, 1, and 4;.

Method P P A3
Approximate (0.15, 0.829) (0.192,1.06) _ (0.139, 0.937)
Boot-p (0.398, 0.684) (0.436,0.974)  (0.33,0.731)
Boot-t (0.394, 0.649) (0.377,0.89)  (0.309, 0.781)
Bayes credible (0.241, 0.917) (0.318,1.182)  (0.275, 1.087)

From the results in Tables 3 and 4, we can observe that the estimates to be quite stable.
From Tables 5, we also observed that the Boot-t intervals for A, and A, perform better than
those based on approximate, Boot-p and Bayes credible intervals. We also observed that the
Boot-p interval for A5 performing better than other methods.

Example (2) Simulated example
To illustrate the use of the estimation method proposed in this article, a JPC-1 sample are

generated from three exponential populations with parameters (4; = 2,4, = 3 and1; = 5),
n- = 15 and we consider the following schemes:
SCheme (1) 6 = 3, (Tl = 0.1, TZ = 0.2, T3 = O.4)and(R1 = 7, R2 = 7, R3 = 2)
Scheme (2): § =5,(T, = 0.1,T, = 0.15,T; = 0.2, T, = 0.35,Ts = 0.6) and
(Rl = 6,R2 = 5,R3 = 5,R4_ = 2,R5 = 1)

The JPC-1 sample of size 29 from scheme (1) and 26 from scheme (2) are generated and
presented in Tables (6) and (7) along with the realized values of other pertinent variables. We
compute the MLEs, mean squared errors (MSE) and Bayesian estimates (with the choice of
((aq, ay, as, by, by, b3) = (1.5,1.5,6,1.1,1.2,1). These results are displayed in Table (8). Table
(9) presents the 95% approximate, Boot-p, Boot-t (with B =1000 bootstrap samples) and
Bayes credible intervals for 1,, 1, and A5.
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Table 6: The JPC-I censored data from scheme (1)

I N Failure z;([1) s;i (1) R; T
e 0w a0 M 5@ 50

1 45 0.009
0.009
0.010
0.067
0.073
0.095
0.097

2 31 0.102
0.103
0.105
0.113
0.113
0.126
0.138
0.144
0.164
0.172
0.175
0.184

3 12 0.205
0.216
0.231
0.241
0.276
0.303
0.304
0.332
0.347
0.382

Total 9 3 4 16 29

o
-
o

O OO OO FrRPR OO0 0O0D 0D 00O O0OPFrRPOPFPOOO0O|lOOCO L, - PF, O
P P RPOPFPOORFRPRPRPRPRIOOPFPORFPOOOOORFR, RPRP|IOOOOODO
O o oOpPrPoo0oOpPrPocoo0OoIPPOPOPFPOPFPOPRFP, OO, P OOOEPR
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Table 7: The JPC-I censored data from scheme (2)

Failure
Times
Wi

zi (1)

z;(1)

zi(2)

z;(3)

s;i(D)

si(2)  si(3)

45

0.009
0.009
0.010
0.067
0.095
0.097

o

[ER

o

33

0.102
0.103
0.105
0.113
0.113
0.144

22

0.164
0.172
0.175
0.184
0.196

12

0.216
0.231
0.303
0.304
0.332

0.382
0.411
0.416
0.572

P O FP Ol P P OOk, OO0 00|00 P OO0 O0O|lO0OO - -, O

O OO RFrRPR|IOOOPFRP PFRPIOOOPFR O|JFP OO0 OPF PO O OO Oo

O P OO0 0000 O P PORFRPIOFRPOPF OO, P OO P

Total

26

382
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Table 8: The MLEs and Bayes estimates of 1,, 1, and A5 and MSE's in parentheses using
different schemes

Scheme (1)
MLEs Bayes estimates
Squared LINEX General entropy

error =01 =05 tT=1 ¢=-05 ¢=0.1 c=0.5
1 2.434 2.104 2.075 1.969 1.854 2.035 1.951 1.895
(0.188) (0.011)  (0.006) (0.001) (0.021)  (0.001) (0.002) (0.0112)
1, 3.94 3.179 3.143 3.006 2.855 3.121 3.051 3.003
(0.884) (0.032)  (0.020) (3.6E-05) (0.021)  (0.015) (0.003) (9E-06)
A3 4.944 5.271 5.191 4.901 4.591 5.194 5.102 5.039
(0.003) (0.073)  (0.036) (0.010) (0.167)  (0.038) (0.010) (0.006)

Scheme (2)
1 2.303 2.097 2.076 1.998 1.912 2.047 1.988 1.948
(0.092) (0.009)  (0.006) (4E-06)  (0.008)  (0.002)  (0.0001)  (0.003)
A, 3.009 2.462 2.43 2.315 2.189 2.398 2.32 2.268
(8.1E-05)  (0.289)  (0.325) (0.469) (0.658)  (0.362) (0.462) (0.536)
A 4.269 4.826 4.75 4.475 4.184 4.746 4.65 4.586
(0.534) (0.030)  (0.063) (0.276) (0.666)  (0.065) (0.123) (0.1712)

Table 9: The 95% approximate, Boot-p, Boot-t and Bayes credible confidence intervals fori,, A,

and As.

Method

Scheme 1

A

A

A3

Approximate
Boot-p

Boot-t

Bayes credible

(0.486, 4.382)
(0.975, 3.794)
(1.031, 3.687)
(0.878, 3.855)

(1.711, 6.169)
(2.261, 5.294)
(2.678, 5.156)
(1.716, 5.086)

(2.022, 7.865)
(3.631, 6.301)
(3.782, 6.335)
(3.071, 8.057)

Scheme 2

Approximate (0.798, 3.808) (0.924,5.094) (1.48, 7.059)
Boot-p (1.579, 3.164) (2.021, 4.521) (3.12, 6.623)
Boot-t (1.599, 3.142) (2.852,5.178) (3.488, 6.6)

Bayes credible

(1.027, 3.542)

(1.154, 4.257)

(2.701, 7.558)

From Table 8 and 9, it is observed that the Bayes estimates perform better than MLES in
terms of minimum MSE in most of the cases. Comparing the two schemes, we can see that
the estimates A, and A, under scheme (2) perform better than those based on scheme (1), while
the estimate of A5 is better in scheme (1) than scheme (2). Also, it is noted that the
approximate and Bayes credible confidence intervals are not satisfactory compared to the
Boot-p and Boot-t confidence intervals for both two schemes. Finally, it can be seen that the
Boot-p and Boot-t intervals for A; and A, perform better than those based on approximate and
Bayes credible intervals in scheme (2) than scheme (1), while Boot-p and Boot-t intervals for
A5 performing better in scheme (1) than scheme (2).

7. Conclusions

In this paper, for k exponential distributions based on the JPC-I scheme the maximum
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likelihood estimators and the Bayes estimators based on squared error, LINEX and general
entropy loss functions are investigated. Also, the approximate, Boot-t, Boot-p confidence and
Bayes credible intervals are discussed. We apply a set of real data set by Nelson (1982) and a
simulated example for illustration purpose. It is observed that the Bayes estimates perform
better than the maximum likelihood estimates in terms of minimum MSE. Also, the Boot-p
and Boot-t confidence intervals perform better than other methods. We propose as a future
work to investigate the estimation problems of the k Weibull distributions as a very popular
life time distribution based on the JPC-1 scheme
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