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ABSTRACT  

In this article, the maximum likelihood estimators of the k independent 

exponential populations parameters are obtained based on joint progressive type-

I censored (JPC-I) scheme. The Bayes estimators are also obtained by 

considering three different loss functions. The approximate confidence, two 

Bootstrap confidence and the Bayes credible intervals for the unknown 

parameters are discussed.  A simulated and real data sets are analyzed to 

illustrate the theoretical results.  
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Notations 

  

pdf Probability density function 

cdf Cumulative density function 

iid Independent and identically distributed 

𝛿 Number of censored stage 

𝑇𝑗 Prefixed censoring times, 1 ≤ 𝑗 ≤ 𝛿 

�̄�ℎ(𝑇𝑗) 1 − 𝐹ℎ(𝑇𝑗), Survival functions of the h populations at𝑇𝑗. 

𝑛1, 𝑛2, . . . , 𝑛ℎ Samples of sizes  

𝑁 ∑ 𝑛ℎ
𝑘
ℎ=1 , The total sample size 

𝑊 = (𝑤1, 𝑤1, . . . , 𝑤𝑁) The order statistics of the N random variables 

𝑟𝑗 Number of units failed in  𝑇𝑗−1, 𝑇𝑗 

𝑠𝑗(ℎ) Number of units withdrawn at 𝑇𝑗  belonging to the hth 

samples 

𝑅𝑗 ∑ 𝑠𝑗
𝑘
ℎ=1 (ℎ), Number of units censored at time 𝑇𝑗 

𝑧
= (𝑧1(ℎ), 𝑧2(ℎ), . . . , 𝑧𝛿(ℎ)) 

Define as 𝑧𝑖(ℎ) = {
1, 𝑖𝑓ℎ = ℎ𝑖

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑀𝑟(ℎ) ∑ 𝑧𝑖
𝑟
𝑖=1 (ℎ), Denote the number of 𝑋ℎ − failures in W for 

1 ≤ ℎ ≤ 𝑘 

𝑟 ∑ 𝑀𝑟(ℎ)
𝑘
ℎ=1 , The total number of complete failures 

𝐿 Likelihood function 

𝐼(. ) Fisher’s information matrix 

𝜋ℎ(𝜆ℎ) Prior density for the parameters 𝜆ℎ 

𝜋(𝜆1, 𝜆2, . . . , 𝜆𝑘\𝑑𝑎𝑡𝑎) Posterior density for the parameters 𝜆ℎ 

�̂�ℎ Maximum likelihood estimators of 𝜆ℎ 

�̂�ℎ𝐵𝑆 Bayes estimators of 𝜆ℎunder the SE loss function 

�̂�ℎ𝐵𝐿 Bayes estimators of 𝜆ℎunder the LINEX loss function 

�̂�ℎ𝐵𝐸 Bayes estimators of 𝜆ℎunder the GE loss function 
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1. Introduction 

The joint censoring scheme is a very common way in conducting comparative life-tests of 

products from various units within the same facility. Suppose products are being produced by 

k different lines under the same conditions, and that k independent samples of sizes 𝑛ℎ,1 ≤

ℎ ≤ 𝑘are selected from these k lines and placed simultaneously on a life-testing experiment. 

Then, in order to reduce the cost and the experimental time, the experimenter may choose to 

terminate the life-testing experiment before complete information on failure times for all 

experimental units. Data arises from these experiments are called joint censored data. In this 

situation, the experimenter may be interested in either point or interval estimation of the mean 

lifetimes of units produced by the different k lines. In the literature, there were four types of 

joint schemes, namely, joint Type-II, joint progressive Type-II, joint progressive Type-I and 

joint type-I progressive hybrid censoring schemes. Balakrishnan and Rasouli (2008) 

developed the likelihood inference for the parameters of two exponential populations under 

joint Type-II censoring. Shafay et al. (2013), Ashour and Abo-Kasem (2014 a,b,c), considered 

the jointly Type-II censored sample. Rasouli and Balakrishnan (2010) studied the statistical 

inference of two exponential populations under the joint progressive Type-II censoring. Parsi 

et al.  (2011) and Doostparast et al. (2013) considered the jointly progressive type-II censored 

sample.  

Balakrishnan and Feng (2015) generalized the work of Balakrishnan and Rasouli (2008) 

by considering a jointly Type-II censored sample arising from k independent exponential 

populations. Also, Balakrishnan et al. (2015) generalized Rasouli and Balakrishnan (2010) 

work by considerring a jointly progressive Type-II censored sample arising from k 

independent exponential populations. Abo-Kasem et al. (2019) proposed a joint type-I 

progressive hybrid censoring scheme and investigated the estimation problems in the case of 

exponential distribution. Recently, Ashour and Abo-Kasem (7112) introduced JPC-I scheme 

and as a special case, joint Type-I censored scheme. They considered statistical inference for 

two exponential populations under both JPC-I and joint Type-I censored schemes. Abo-Kasem 

and Nassar (2019) developed the estimation problems of two Weibull populations with the 

same shape parameter under JPC-I censoring scheme. They obtained the maximum likelihood 

estimators (MLEs) and the approximate confidence intervals. They also obtained the Bayes 

estimates using squared error and LINEX loss functions under the assumption of independent 

gamma priors.  

The JPC-I scheme in comparison to other joint censoring schemes provides an important 

advantage of the known termination time point of the life-testing experiment. From the 

experimenter point of view, this makes the JPC-I scheme very appealing for its 

implementation in practice. In spite of such a practical advantage, most of the inferential 

studies carried out in the literature focused on joint Type-II and joint progressive Type-II 

censoring schemes. For this reason, our aim in this paper is to investigate the point and interval 

estimation of k independent exponential populations under the JPC-I scheme. The rest of the 

paper is organized as follows: we formulate the problem in Section 2. The maximum 

likelihood estimation for k exponential populations and the approximate confidence intervals 

are obtained in Section 3. Section 4 describes the various bootstrap confidence intervals. In 

Section 5, we obtain the Bayes estimators under squared error, LINEX and general entropy 

loss functions as well as the Bayesian credible intervals for the parameters. In Section 6, a 

simulated and real data sets are analyzed.  The paper is concluded in Section 7. 
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2. Model Description and Notation 

Suppose that (𝑋1, . . . , 𝑋𝑁) are N jointly distributed random variables, with {𝑋1, . . . , 𝑋𝑁} =

{𝑋11, . . . , 𝑋1𝑛1; 𝑋21, . . . , 𝑋2𝑛2; 𝑋𝑘1, . . . , 𝑋𝑘𝑛𝑘}, and 𝑁 = ∑ 𝑛ℎ
𝑘
ℎ=1 . Suppose 𝑋11, 𝑋12, . . . , 𝑋1𝑛1are 

the lifetimes of 𝑛1 specimens from production line 𝐴1, and are independent and identically 

distributed (iid) variables from a population with cumulative distribution function (cdf) 𝐹1(𝑥) 

and probability density function (pdf) 𝑓1(𝑥). Similarly, 𝑋21, 𝑋22, . . . , 𝑋2𝑛2are the lifetimes of 

𝑛2specimens from production line 𝐴2, and are assumed to be a sample from pdf 𝑓2(𝑥) and cdf 

𝐹2(𝑥) , and so on, with 𝑋𝑘1, 𝑋𝑘1, . . . , 𝑋𝑘𝑛𝑘  denoting the lifetimes of 𝑛𝑘  specimens from 

production line 𝐴𝑘  being iid variables from pdf 𝑓𝑘(𝑥)  and cdf 𝐹𝑘(𝑥) . Denote the order 

statistics of these k random samples by 𝑊1 ≤ 𝑊2 ≤. . . ≤ 𝑊𝑁, where N is the total sample size. 

Now, a JPC-I scheme between the k samples is implemented as follows: at the time 𝑇1, 𝑅1units 

are randomly withdrawn from the remaining 𝑁 − 𝑟1 (𝑟1number of units failed in time interval 

(𝑇0 − 𝑇1)) surviving units. Next, at the second time 𝑇2, 𝑅2units are randomly withdrawn from 

the remaining 𝑁 − 𝑅1 − 𝑟1 − 𝑟2  ( 𝑟2 number of units failed in time interval (𝑇1 − 𝑇2) ) 

surviving units, and so on. Finally, at the time 𝑇𝛿 all remaining 𝑅𝛿 = 𝑁 − ∑ 𝑟𝑗
𝛿
𝑗=1 − ∑ 𝑅𝑗

𝛿−1
𝑗=1  

(𝑟𝛿number of units failed in time interval (𝑇𝛿−1 − 𝑇𝛿)), surviving units are withdrawn from 

the life-testing experiment, the total number of complete failures 𝑟 = ∑ 𝑟𝑗
𝛿
𝑗=1  as well as the 

progressive censoring scheme (𝑅1, . . . , 𝑅𝛿)  are prefixed and has the decomposition 𝑅𝑗 =

∑ 𝑠𝑗
𝑘
ℎ=1 (ℎ),1 ≤ 𝑗 ≤ 𝛿, where 𝑠𝑗(ℎ)  is the number of units withdrawn at the 𝛿 fixed times  

𝑇1, 𝑇2, . . . , 𝑇𝛿  belonging to the hth sample and these are unknown and are latent random 

variables. The data observed in this form will consist of (𝑍, 𝑅,𝑊) , where 𝑊 =

(𝑤1, 𝑤1, . . . , 𝑤𝑟) , 𝑤𝑖 ∈ {𝑋ℎ𝑖1
, 𝑋ℎ𝑖2

, . . . , 𝑋ℎ𝑖𝑛𝑖
}  for 1 ≤ ℎ1, ℎ2, . . . , ℎ𝛿 ≤ 𝑘 . Moreover, 

associated to (ℎ1, ℎ2, . . . , ℎ𝛿), let us define 𝑧 = (𝑧1(ℎ), 𝑧2(ℎ), . . . , 𝑧𝛿(ℎ)) as   
 

𝑧𝑖(ℎ) = {
1, 𝑖𝑓ℎ = ℎ𝑖

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  . 

Finally, let 𝑀𝑟(ℎ) = ∑ 𝑧𝑖
𝑟
𝑖=1 (ℎ) denote the number of 𝑋ℎ − failures in W for 1 ≤ ℎ ≤

𝑘and𝑟 = ∑ 𝑀𝑟(ℎ)
𝑘
ℎ=1 . Then the likelihood of (𝑍, 𝑅,𝑊) is given as 

 

                               𝐿 = 𝐶∏ ∏ (𝑓ℎ(𝑤𝑖))
𝑧𝑖(ℎ)𝑘

ℎ=1
𝑟
𝑖=1 ∏ ∏ (�̄�ℎ(𝑇𝑗))

𝑠𝑗(ℎ)𝑘
ℎ=1

𝛿
𝑗=1 ,                      (1) 

  

where C is a constant and  �̄�ℎ(𝑇𝑗) = 1 − 𝐹ℎ(𝑇𝑗) is the survival function of the h populations. 

Note that, the special case of joint Type-I censoring scheme is obtained when we set 𝑅1 =

𝑅1 =. . . = 𝑅𝛿−1 = 0so that 𝑅𝛿 = 𝑁 − 𝑟in which case we will have 𝑠𝑗(ℎ) = 0 and 𝑠𝛿(ℎ) =

𝑛ℎ −𝑀𝑟(ℎ)  for all 1 ≤ ℎ ≤ 𝑘 , where 𝑀𝑟(ℎ)  are completely observed failures from h 

samples. 

 

3. Maximum Likelihood Estimators and Inference 

Suppose that the k populations are exponential with pdf and cdf, respectively, as 𝑓ℎ(𝑥) =

𝜆ℎ𝑒
−𝜆ℎ𝑥and 𝐹ℎ(𝑥) = 1 − 𝑒−𝜆ℎ𝑥,𝜆ℎ > 0, 𝑥 > 0, for 1 ≤ ℎ ≤ 𝑘. In this case, the likelihood 

function in (1) becomes 
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          𝐿 = 𝐶∏ 𝜆ℎ

𝑀𝑟(ℎ)𝑘
ℎ=1 ∏ ∏ (𝑒−𝜆ℎ𝑤𝑖)

𝑧𝑖(ℎ)𝑘
ℎ=1

𝑟
𝑖=1 ∏ ∏ (𝑒−𝜆ℎ𝑇𝑗)

𝑠𝑗(ℎ)𝑘
ℎ=1

𝛿
𝑗=1  

= 𝐶∏𝑒𝑥𝑝{𝑀𝑟(ℎ) 𝑙𝑛( 𝜆ℎ) − 𝜆ℎ (∑𝑧𝑖(ℎ)𝑤𝑖

𝑟

𝑖=1

+∑𝑠𝑗(ℎ)𝑇𝑗

𝛿

𝑗=1

)} .

𝑘

ℎ=1

 

(2) 

From (2), we can obtain the MLE of 𝜆ℎ for 1 ≤ ℎ ≤ 𝑘, as  

�̂�ℎ =
𝑀𝑟(ℎ)

∑ 𝑧𝑖(ℎ)𝑤𝑖
𝑟
𝑖=1 +∑ 𝑠𝑗(ℎ)𝑇𝑗

𝛿
𝑗=1

                                                        (3) 

To obtain the approximate confidence intervals of the unknown parameters , we first 

obtain the elements of the information matrix. Let 𝐼(𝜆1, 𝜆2, . . . , 𝜆𝑘) =

(𝐼𝑖,𝑞(𝜆1, 𝜆2, . . . , 𝜆𝑘)), 𝑖, 𝑞 = 1,2, . . . , 𝑘, denote the Fisher information matrix of the parameters 

(𝜆1, 𝜆2, . . . , 𝜆𝑘) , where 𝐼𝑖,𝑞(𝜆1, 𝜆2, . . . , 𝜆𝑘) = −𝐸 (
∂2 𝑙𝑛 𝐿

∂𝜆𝑖 ∂𝜆𝑞
) . From (2), we have 

𝐼𝑖,𝑞(𝜆1, 𝜆2, . . . , 𝜆𝑘) = 0 if𝑖 ≠ 𝑞. Consequently, the observed Fisher information matrix is given 

by 

𝐼(�̂�1, �̂�2, . . . , �̂�𝑘) = −𝐷𝑖𝑎𝑔 (
𝜕2 𝑙𝑛 𝐿

𝜕𝜆1
2 |

𝜆1=�̂�1

,
𝜕2 𝑙𝑛 𝐿

𝜕𝜆2
2 |

𝜆2=�̂�2

, . . . ,
𝜕2 𝑙𝑛 𝐿

𝜕𝜆𝑘
2 |

𝜆𝑘=�̂�𝑘

) 

where  

𝜕2 𝑙𝑛 𝐿

𝜕𝜆ℎ
2 |

𝜆ℎ=�̂�ℎ

= −
𝑀𝑟(ℎ)

𝜆ℎ
2  

Based on the asymptotic normality of the MLEs, the approximate 100(1 − 𝛼)% 

confidence intervals of 𝜆ℎ is given by 

�̂�ℎ ± 𝑍𝛼

2

√
�̂�ℎ
2

𝑀𝑟(ℎ)
, 

where 𝑍𝛼

2
 is the upper 

𝛼

2
 percentage point of the standard normal distribution. 

4. Bootstrap Confidence Intervals 

In this section, two bootstrap confidence intervals are discussed. The two bootstrap 

methods are the percentile bootstrap (Boot-p) proposed by Efron (1982), and the bootstrap-t 

method (Boot-t) proposed by Hall (1988). We can use the following algorithm to obtain the 

Boot-p and Boot-t intervals,. 

 

a) Bootstrap Percentile Interval Procedure (Boot-p) 

(1) Compute the MLE �̂�ℎof 𝜆ℎbased on JPC-I sample (𝑤, 𝑧, 𝑠). 

(2) Use �̂�ℎ to generate a bootstrap JPC-I sample (𝑤∗, 𝑧∗, 𝑠∗) , and compute the bootstrap 

estimate of 𝜆ℎ, say�̂�ℎ
∗ , based on this bootstrap sample. 

(3) Repeat step 2 B times to have �̂�ℎ

∗(1)
, �̂�ℎ

∗(2)
, . . . , �̂�ℎ

∗(𝐵)
. 

(4) Arrange �̂�ℎ
∗(1)

, �̂�ℎ
∗(2)

, . . . , �̂�ℎ
∗(𝐵)

in ascending order to obtain�̂�ℎ

∗[1]
, �̂�ℎ

∗[2]
, . . . , �̂�ℎ

∗[𝐵]
. 

(5) A two-sided 100(1 − 𝛼)% Boot-p confidence interval for𝜆ℎ, say [�̂�ℎ𝐿
∗ , �̂�ℎ𝑈

∗ ] is given by 

(�̂�ℎ𝐿
∗ , �̂�ℎ𝑈

∗ ) = (�̂�
ℎ

∗([𝐵
𝛼
2
])
, �̂�

ℎ

∗([𝐵(1−
𝛼
2
])
) ,ℎ = 1,2, . . . , 𝑘 
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b) Studentized-t Interval Procedure (Boot-t) 

The Boot-t confidence intervals estimators are obtained according to the following steps: 

(1–2) Same as the steps 1–2 in (a).  

(3) Compute the t –statistic 𝑇�̂�ℎ
∗ =

(�̂�ℎ
∗−�̂�ℎ)

�̂��̂�ℎ
∗

where �̂��̂�ℎ
∗  is the bootstrap variance. 

(4) Repeat steps 2–3 B times and obtain 𝑇
�̂�ℎ
∗
(1)
, 𝑇
�̂�ℎ
∗
(2)
, . . . , 𝑇

�̂�ℎ
∗
(𝐵)

. 

(5) Arrange 𝑇
�̂�ℎ
∗
(1)
, 𝑇
�̂�ℎ
∗
(2)
, . . . , 𝑇

�̂�ℎ
∗
(𝐵)

in ascending order to obtain 𝑇
�̂�ℎ
∗
[1]
, 𝑇
�̂�ℎ
∗
[2]
, . . . , 𝑇

�̂�ℎ
∗
[𝐵]

. 

(6) A two-sided 100(1 − 𝛼)% Boot-t confidence interval for 𝜆ℎsay  [�̂�ℎ,𝑡𝐿
∗ , �̂�ℎ,𝑡𝑈

∗ ], is given by 

(�̂�ℎ + 𝑇
�̂�ℎ
∗

([𝐵
𝛼
2])
�̂��̂�ℎ

, �̂�ℎ + 𝑇
�̂�ℎ
∗

([𝐵(1−
𝛼
2)])

�̂��̂�ℎ
) ,ℎ = 1,2, . . . , 𝑘 

 

5. Bayesian Inference 

Based on the likelihood function and the independent gamma prior distributions, viz. 

𝐺(𝑎ℎ, 𝑏ℎ) for 1 ≤ ℎ ≤ 𝑘, with pdf given by  

                𝜋ℎ(𝜆ℎ) =
𝑏ℎ

𝑎ℎ

𝛤(𝑎ℎ)
𝜆ℎ
𝑎ℎ−1𝑒−𝜆ℎ𝑏ℎ ,                      (4) 

where Γ(. )denotes the complete gamma function. Combining (2) and (4), the joint posterior 

density of 𝜆1, 𝜆2, . . . , 𝜆𝑘 given the data is 

                𝜋(𝜆1, 𝜆2, . . . , 𝜆𝑘\𝑑𝑎𝑡𝑎) = 𝐴∏ 𝜆ℎ

𝑎ℎ+𝑀𝑟(ℎ)−1 𝑒𝑥𝑝{−𝜆ℎ(𝑏ℎ + 𝑈ℎ)}
𝑘
ℎ=1  ,                      (5) 

where 𝐴 = ∏
(𝑏ℎ+𝑈ℎ)

𝑎ℎ+𝑀𝑟(ℎ)

Γ(𝑎ℎ+𝑀𝑟(ℎ))

𝑘
ℎ=1  and 𝑈ℎ = ∑ 𝑧𝑖(ℎ)𝑤𝑖

𝑟
𝑖=1 + ∑ 𝑠𝑗(ℎ)𝑇𝑗

𝛿
𝑗=1 . 

From (5) the joint posterior density function of 𝜆1, 𝜆2, . . . , 𝜆𝑘 is a product of k independent 

density functions, therefore the marginal posterior density functions of 𝜆1, 𝜆2, . . . , 𝜆𝑘, given 

the data, are 𝐺(𝑀𝑟(ℎ) + 𝑎ℎ, 𝑈ℎ + 𝑏ℎ).  To obtain the Bayesian estimation of 𝜆1, 𝜆2, . . . , 𝜆𝑘 we 

consider three loss functions. The first one, is the squared error (SE) loss function which is 

symmetric loss function. The second is the LINEX loss function introduced by Varian (1975) 

which is asymmetric loss function. The LINEX loss function with parameters 𝜏 and 𝜈is given 

by 

                          ℓ(�̃�, 𝜃) = 𝜈{𝑒𝜏(�̃�−𝜃) − 𝜏(�̃� − 𝜃) − 1}                                      (6) 

where 𝜏 and 𝜈 are constants. From (6) the Bayes estimator �̃� of 𝜃 is given by  

                               �̃�𝐵𝐿 = −
1

𝜏
𝑙𝑛 𝐸 (𝑒−𝜏𝜃), 𝜏 ≠ 0                                     (7) 

The third is the GE asymmetric loss function 𝜃𝐵𝐸  proposed by Calabria and Pulcini (1994) 

and given by  

                                                 𝐿(�̃�∗ , 𝜃) ∝ (
�̃�∗

𝜃
)𝑐 − 𝑐 𝑙𝑛(

�̃�∗

𝜃
) − 1  ,                                 (8) 

where c is a shape parameter whose minimum occurs at (�̃�∗ = 𝜃). The Bayes estimate  �̃�∗  

of θ  under GE loss function in (8) is given by 

                                                           �̃�∗ = (𝐸𝜃[𝜃
−𝑐])

−1

𝑐  .                                             (9) 

Under SE loss function, the Bayes estimators of 𝜆1, 𝜆2, . . . , 𝜆𝑘 is the posterior mean which 

can be obtained from (5) as 
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                                            �̂�ℎ𝐵𝑆 =
𝑀𝑟(ℎ)+𝑎ℎ

𝑈ℎ+𝑏ℎ
,  1 ≤ ℎ ≤ 𝑘.                                     (10) 

It is to be noted that when 𝑎ℎ = 𝑏ℎ = 0, for1 ≤ ℎ ≤ 𝑘 , the Bayes estimators in (10) 

coincide with the corresponding  MLEs in  (3). Let 𝑄ℎ = 2𝜆ℎ(𝑈ℎ + 𝑏ℎ) evidently, the pivots 

𝑄ℎ follow 𝜒2(𝑀𝑟(ℎ)+𝑎ℎ)
2  distributions, provided that 2𝜆ℎ(𝑀𝑟(ℎ) + 𝑎ℎ) is positive integers. In 

this case, the 100(1 − 𝛼)% Bayes credible intervals for 𝜆1, 𝜆2, . . . , 𝜆𝑘under JPC-I scheme are 
 

   (
𝜒
2(𝑀𝑟(ℎ)+𝑎ℎ),1−

𝛼
2

2

2(𝑈ℎ+𝑏ℎ)
,
𝜒
2(𝑀𝑟(ℎ)+𝑎ℎ),

𝛼
2

2

2(𝑈ℎ+𝑏ℎ)
), ℎ = 1,2, . . . , 𝑘 

where 𝜒𝜐,𝛼
2  is the 𝛼percentage point of the 𝜒𝜐

2distribution with 𝜐degrees of freedom. 

Under LINEX loss function in (6), the Bayes estimators of 𝜆1, 𝜆2, . . . , 𝜆𝑘 are given by  

�̂�ℎ𝐵𝐿 =
𝑀𝑟(ℎ)+𝑎ℎ

𝜏
𝑙𝑛 (1 +

𝜏

𝑈ℎ+𝑏ℎ
), ℎ = 1,2, . . . , 𝑘 

where 𝜏 ≠ 0. Under the GE loss function in (9), the Bayes estimators of 𝜆1, 𝜆2, . . . , 𝜆𝑘  are 

given by  

�̂�ℎ𝐵𝐸 = (
𝛤(𝑀𝑟(ℎ)+𝑎ℎ−𝑐)

𝛤(𝑀𝑟(ℎ)+𝑎ℎ)
)
−
1

𝑐 1

𝑈ℎ+𝑏ℎ
, ℎ = 1,2, . . . , 𝑘. 

6. Numerical Illustration 

This section is devoted to illustrate the theoretical result obtained in the previous sections 

numerically by analyzing a simulated and real data sets. 

Example (1): Real data-set 

To illustrate the usefulness of the proposed estimators obtained in sections 3, 4 and 5 with 

real situations, we consider Nelson’s data (1982, Ch. 10, Table 4.1) which correspond to 

breakdown in minutes of an insulating fluid subjected to high voltage stress. These failure 

times were observed in the form of groups with each group reporting data on 10 insulating 

fluids. Let us consider the following three groups of samples of failure time data presented in 

Table (1). 

Table 1: The failure time data as three groups of insulating fluids 

Group Data 

1 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 9.99 

2 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 10.60 

3 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75 

 

Table (2) presents the JPC-I sample data that have been obtained from the three samples 

in Table (1) with  𝑇1 = 1, 𝑇2 = 2 and 𝑇3 = 3 (in minutes). The generated JPC-I sample size 

is 23 and presented in Table (2) along with the realized values of other pertinent variables. We 

obtain the MLEs and Bayes estimates of 𝜆1, 𝜆2  and 𝜆3  (with the choice of 

(𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) = (1.1,1.4,1.6,1,1,1)  as hyper-parameters values, these results are 

presented in Table (3). Table (4) shows the asymptotic variance covariance matrix of the 

MLEs. Table (5) presents the 95% approximate, Boot-p, Boot-t (with          B =1000 bootstrap 

samples) and Bayes credible intervals for 𝜆1, 𝜆2 and 𝜆3. 
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Table 2: The JPC-I sample data from Nelson’s data (1982, Ch. 10, Table 4.1) 

j 𝑁𝑗 Failure 

Times 

 𝑤𝑖 

𝑧𝑖(ℎ) 𝑠𝑗(ℎ) 𝑅𝑗 𝑟𝑖 

 

 𝑧𝑖(1) 𝑧𝑖(2) 𝑧𝑖(3) 𝑠𝑗(1) 𝑠𝑗(2) 𝑠𝑗(3) 

1 30 0.00 

0.18 

0.31 

0.49 

0.55 

0.64 

0.66 

0.66 

0.71 

0.82 

0.93 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

1 

1 

 

 

 

 

1 

 

 

 

 

0 

 

 

 

 

1 

 

 

 

 

 

 

 

 

2 

 

 

 

 

 

 

11 

2 17 1.08 

1.30 

1.54 

1.63 

1.70 

1.82 

1.89 

1.99 

0 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

 

 

 

0 

 

 

 

1 

 

 

 

2 

 

 

 

3 

 

 

 

8 

3 6 2.06 

2.17 

2.24 

2.75 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

 

1 

 

1 

 

0 

 

2 

 

4 

Total 2 2 3 7 23 
 

 

Table 3: The MLE and Bayesian estimates of𝜆1, 𝜆2 and 𝜆3 

 MLEs Bayesian estimates 

Squared 

error 

LINEX General entropy 

𝜏 = 0.1 𝜏 = 0.5 𝜏 = 1 𝑐 = 0.5 𝑐 = 0.1 𝑐 = 0.5 

�̂�1 0.49 0.525 0.524 0.518 0.511 0.511 0.494 0.482 

�̂�2 0.626 0.682 0.68 0.67 0.659 0.664 0.643 0.628 

�̂�3 0.538 0.614 0.612 0.603 0.593 0.596 0.575 0.561 

 

Table 4: Estimates of the asymptotic variance covariance matrix of the MLEs based on JPC-I 

sample. 

Asymptotic variance covariance matrix 



 
O.E. Abo-Kasem and Mazen Nassar              380 

 

 380 

(
0.03 0 0
0 0.049 0
0 0 0.0414

) 

 

Table 5: The 95% approximate, Boot-p, Boot-t and Bayes credible intervals for 𝜆1, 𝜆2 and 𝜆3. 

Method 𝜆1 𝜆2 𝜆3 

Approximate (0.15, 0.829) (0.192, 1.06) (0.139, 0.937) 

Boot-p (0.398, 0.684) (0.436, 0.974) (0.33, 0.731) 

Boot-t (0.394, 0.649) (0.377, 0.89) (0.309, 0.781) 

Bayes credible (0.241, 0.917) (0.318, 1.182) (0.275, 1.087) 

 

From the results in Tables 3 and 4, we can observe that the estimates to be quite stable. 

From Tables 5, we also observed that the Boot-t intervals for 𝜆1 and 𝜆2 perform better than 

those based on approximate, Boot-p and Bayes credible intervals. We also observed that the 

Boot-p interval for 𝜆3 performing better than other methods. 

 
Example (2) Simulated example 

To illustrate the use of the estimation method proposed in this article, a JPC-I sample are 

generated from three exponential populations with parameters (𝜆1 = 2, 𝜆2 = 3 and𝜆3 = 5), 

𝑛ℎ = 15 and we consider the following schemes: 

Scheme (1): 𝛿 = 3, (𝑇1 = 0.1, 𝑇2 = 0.2, 𝑇3 = 0.4)𝑎𝑛𝑑(𝑅1 = 7, 𝑅2 = 7, 𝑅3 = 2) 

Scheme (2): 𝛿 = 5, (𝑇1 = 0.1, 𝑇2 = 0.15, 𝑇3 = 0.2, 𝑇4 = 0.35, 𝑇5 = 0.6) and 

                     (𝑅1 = 6, 𝑅2 = 5, 𝑅3 = 5, 𝑅4 = 2, 𝑅5 = 1) 

The JPC-I sample of size 29 from scheme (1) and 26 from scheme (2) are generated and 

presented in Tables (6) and (7) along with the realized values of other pertinent variables. We 

compute the MLEs, mean squared errors (MSE) and Bayesian estimates (with the choice of 

((𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) = (1.5,1.5,6,1.1,1.2,1). These results are displayed in Table (8). Table 

(9) presents the 95% approximate, Boot-p, Boot-t (with B =1000 bootstrap samples) and 

Bayes credible intervals for 𝜆1, 𝜆2 and 𝜆3. 
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Table 6: The JPC-I censored data from scheme (1)  

j 𝑁𝑗 Failure 

Times  

𝑤𝑖 

𝑧𝑖(ℎ) 𝑠𝑗(ℎ) 𝑅𝑗 𝑟𝑖 

 

 
𝑧𝑖(1) 𝑧𝑖(2) 𝑧𝑖(3) 𝑠𝑗(1) 𝑠𝑗(2) 𝑠𝑗(3) 

1 45 0.009 

0.009 

0.010 

0.067 

0.073 

0.095 

0.097 

0 

0 

1 

1 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

 

 

 

4 

 

 

 

1 

 

 

 

2 

 

 

 

7 

 

 

 

7 

2 31 0.102 

0.103 

0.105 

0.113 

0.113 

0.126 

0.138 

0.144 

0.164 

0.172 

0.175 

0.184 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

 

 

 

 

 

 

3 

 

 

 

 

 

 

2 

 

 

 

 

 

 

2 

 

 

 

 

 

 

7 

 

 

 

 

 

 

12 

3 12 0.205 

0.216 

0.231 

0.241 

0.276 

0.303 

0.304 

0.332 

0.347 

0.382 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

 

 

 

 

 

2 

 

 

 

 

 

0 

 

 

 

 

 

 

 

 

 

0 

 

 

 

 

 

2 

 

 

 

 

 

10 

Total 9 3 4 16 29 
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 Table 7: The JPC-I censored data from scheme (2) 

j 𝑁𝑗 Failure 

Times  

𝑤𝑖 

𝑧𝑖(ℎ) 𝑠𝑗(ℎ) 𝑅𝑗 𝑟𝑖 

 

 
𝑧𝑖(1) 𝑧𝑖(2) 𝑧𝑖(3) 𝑠𝑗(1) 𝑠𝑗(2) 𝑠𝑗(3) 

1 45 0.009 

0.009 

0.010 

0.067 

0.095 

0.097 

0 

0 

1 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

1 

 

 

1 

 

 

2 

 

 

3 

 

 

6 

 

 

6 

2 33 0.102 

0.103 

0.105 

0.113 

0.113 

0.144 

0 

0 

0 

1 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

1 

0 

1 

0 

 

 

1 

 

 

1 

 

 

3 

 

 

 

 

 

5 

 

 

6 

3 22 0.164 

0.172 

0.175 

0.184 

0.196 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

1 

0 

1 

1 

0 

 

2 

 

3 

 

0 

 

5 

 

5 

4 12 0.216 

0.231 

0.303 

0.304 

0.332 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

 

 

1 

 

 

1 

 

 

0 

 

 

2 

 

 

5 

5 5 0.382 

0.411 

0.416 

0.572 

0 

1 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

 

1 

 

0 

 

0 

 

1 

 

4 

Total 6 7 6 19 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



383 Statistical 

Inference For K Exponential Populations Under Joint Progressive Type-I Censored Scheme        

 
Table 8: The MLEs and Bayes estimates of 𝜆1, 𝜆2 and 𝜆3 and MSE's in parentheses using 

different schemes 

Scheme (1) 

 MLEs Bayes estimates 

Squared 

 error 

LINEX General entropy 

𝜏 = 0.1 𝜏 = 0.5 𝜏 = 1 𝑐 = −0.5 𝑐 = 0.1 𝑐 = 0.5 

�̂�1 2.434 

(0.188) 

2.104 

(0.011) 

2.075 

(0.006) 

1.969 

(0.001) 

1.854 

(0.021) 

2.035 

(0.001) 

1.951 

(0.002) 

1.895 

(0.011) 

�̂�2 3.94 

(0.884) 

3.179 

(0.032) 

3.143 

(0.020) 

3.006 

(3.6E-05) 

 

2.855 

(0.021) 

 

3.121 

(0.015) 

3.051 

(0.003) 

3.003 

(9E-06) 

 �̂�3 4.944 

(0.003) 

5.271 

(0.073) 

5.191 

(0.036) 

4.901 

(0.010) 

4.591 

(0.167) 

5.194 

(0.038) 

5.102 

(0.010) 

5.039 

(0.006) 

Scheme (2) 

�̂�1 2.303 

(0.092) 

 

2.097 

(0.009) 

2.076 

(0.006) 

1.998 

(4E-06) 

 

1.912 

(0.008) 

2.047 

(0.002) 

1.988 

(0.0001) 

1.948 

(0.003) 

�̂�2 3.009 

(8.1E-05) 

 

2.462 

(0.289) 

2.43 

(0.325) 

2.315 

(0.469) 

2.189 

(0.658) 

2.398 

(0.362) 

2.32 

(0.462) 

2.268 

(0.536) 

�̂�3 4.269 

(0.534) 

 

4.826 

(0.030) 

4.75 

(0.063) 

4.475 

(0.276) 

4.184 

(0.666) 

4.746 

(0.065) 

4.65 

(0.123) 

4.586 

(0.171) 

 

Table 9: The 95% approximate, Boot-p, Boot-t and Bayes credible confidence intervals for𝜆1, 𝜆2 

and 𝜆3. 

Method Scheme 1 

𝜆1 
𝜆2 𝜆3 

Approximate (0.486, 4.382) (1.711, 6.169) (2.022, 7.865) 

Boot-p (0.975, 3.794) (2.261, 5.294) (3.631, 6.301) 

Boot-t (1.031, 3.687) ( 2.678, 5.156) (3.782, 6.335) 

Bayes credible (0.878, 3.855) (1.716, 5.086) (3.071, 8.057) 

 Scheme 2 

Approximate (0.798, 3.808) (0.924, 5.094) (1.48, 7.059) 

Boot-p (1.579, 3.164) (2.021, 4.521) (3.12, 6.623) 

Boot-t (1.599, 3.142) (2.852, 5.178) (3.488, 6.6) 

Bayes credible (1.027, 3.542) (1.154, 4.257) (2.701, 7.558) 

 
From Table 8 and 9, it is observed that the Bayes estimates perform better than MLEs in 

terms of minimum MSE in most of the cases. Comparing the two schemes, we can see that 

the estimates 𝜆1 and 𝜆2 under scheme (2) perform better than those based on scheme (1), while 

the estimate of  𝜆3  is better in scheme (1) than scheme (2). Also, it is noted that the 

approximate and Bayes credible confidence intervals are not satisfactory compared to the 

Boot-p and Boot-t confidence intervals for both two schemes. Finally, it can be seen that the 

Boot-p and Boot-t intervals for 𝜆1 and 𝜆2 perform better than those based on approximate and 

Bayes credible intervals in scheme (2) than scheme (1), while Boot-p and Boot-t intervals for 

𝜆3 performing better in scheme (1) than scheme (2). 

 

7. Conclusions 

In this paper, for k exponential distributions based on the JPC-I scheme the maximum 
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likelihood estimators and the Bayes estimators based on squared error, LINEX and general 

entropy loss functions are investigated. Also, the approximate, Boot-t, Boot-p confidence and 

Bayes credible intervals are discussed. We apply a set of real data set by Nelson (1982) and a 

simulated example for illustration purpose.  It is observed that the Bayes estimates perform 

better than the maximum likelihood estimates in terms of minimum MSE. Also, the Boot-p 

and Boot-t confidence intervals perform better than other methods. We propose as a future 

work to investigate the estimation problems of the k Weibull distributions as a very popular 

life time distribution based on the JPC-I scheme 
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