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ABSTRACT 

We propose a lifetime distribution with flexible hazard rate called cubic 

rank transmuted modified Burr III (CRTMBIII) distribution. We develop the 

proposed distribution on the basis of the cubic ranking transmutation map. The 

density function of CRTMBIII is symmetrical, right-skewed, left-skewed, 

exponential, arc, J and bimodal shaped. The flexible hazard rate of the 

proposed model can accommodate almost all types of shapes such as unimodal, 

bimodal, arc, increasing, decreasing, decreasing-increasing-decreasing, 

inverted bathtub and modified bathtub.  To show the importance of proposed 

model, we present mathematical properties such as moments, incomplete 

moments, inequality measures, residual life function and stress strength 

reliability measure. We characterize the CRTMBIII distribution via techniques. 

We address the maximum likelihood method for the model parameters. We 

evaluate the performance of the maximum likelihood estimates (MLEs) via 

simulation study. We establish empirically that the proposed model is suitable 

for strengths of glass fibers. We apply goodness of fit statistics and the 

graphical tools to examine the potentiality and utility of the CRTMBIII 

distribution.   

 

Keywords: Moments, Reliability, Characterizations, Maximum Likelihood 

Estimation. 
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1. INTRODUCTION 

In recent decades, many continuous univariate distributions have been developed, 

however, various data sets from reliability, insurance, finance, climatology, biomedical 

sciences and other areas do not follow these distributions. Therefore, modified, extended and 

generalized distributions and their applications to problems in these areas is a clear need of 

day. 

The modified, extended and generalized distributions are obtained by the introduction of 

some transformation or addition of one or more parameters to the well-known baseline 

distributions. These new developed distributions provide better fit to the data than the sub 

and competing models. 

Shaw and Buckley (2009) proposed ranking quadratic transmutation map to solve 

financial problems. 

1.1 Quadratic Ranking Transmutation Map 

Theorem 1.1: Let 1X and 2X  be independent and identically distributed (𝑖. 𝑖. 𝑑.) random 

variables with the common cumulative distribution function  G x . Then, the ranking 

quadratic transmutation map is  

       21 ,YF x G x G x   
 

 1, 1 
.   (1) 

 
Proof  

Let 1X and 2X  be 𝑖. 𝑖. 𝑑.  random variables with the common cumulative distribution 

function  .G x  Now, consider the following order statistics: 

   1:2 1 2 2:2 1 2min , max ,X X X and X X X 
 

let  
1:2 ,

d

Y X  with probability  , 
2:2

d

Y X , with probability 1  , 0 1.where   The 

cumulative distribution function of  Y is   

       1:2 2:2P 1 Pr ,YF x X x X x     
 

or 

       
2 2

1 1 1 ,YF x G x G x             
 

       
2

2 1 2 .YF x G x G x                          (2) 
If we take 2 1,   the distribution in equation (2) is known as ranking quadratic 

transmutation map or transmuted distribution. 

1.2 Cubic Ranking Transmutation Map 

Theorem 1.1:  Let 𝑋1, 𝑋2and 𝑋3 be i.i.d. random variables with the common cumulative 

distribution function𝐺(𝑧). Then, the cubic ranking transmutation map is  

           2 3

1 2 1 21F x G x G x G x       
, 

 1 0,1 
, 

 2 1,1  
. (3) 

Proof  
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Consider the following order statistics: 

   1:3 1 2 3 2:3 3:3 1 2 3min , , , max , ,X X X X X and X X X X  . 

Let 
1:3,

d

Y X  with probability 1 ,
2:3,

d

Y X  with probability 2 ,
3:3

d

Y X , with 

probability 3 ,
3

3 1 2

1

0 1, 1 1i i

i

where and    


      . 

 The cumulative distribution function (cdf) of Y is   

         1 1:3 2 2:3 1 2 3:3P P 1 P ,YF x X x X x X x          
 

where    
3

1:3P 1 1X x G x      ,      2 3

2;3Pr 3 2X x G x G x    and    
3

3:3P X x G x     . 

Now, the cdf of Y becomes  

  
           

2 3

1 2 1 23 3 1 .YF x G x G x G x                (4) 

If we take 1 1 2 23 3and     the distribution in equation (4) is known as cubic 

ranking transmutation map or transmuted distribution of order 2. 

Definition 1.1: The cdf and probability density function (pdf) for cubic rank transmuted 

distribution are given, respectively, by 

       
           2 3

1 2 1 21F x G x G x G x       
, 

 1 0,1 
, 

 2 1,1  
,  (5) 

and  

𝑓(𝑥) = 𝑔(𝑥)[𝜆1 + 2(𝜆2 − 𝜆1)𝐺(𝑥) + 3(1 − 𝜆2)𝐺
2(𝑥)], 𝑥 ∈ 𝑅 

 (6) 
Afify et al. (2017) proposed the beta transmuted-H family of distributions. Al-Kadim 

and Mohammed (2017) presented the cubic transmuted Weibull distribution in terms of 

basic mathematical properties. Nofal et al. (2017) studied a generalized transmuted-G family 

of distributions. Alizadeh et al. (2017) developed generalized transmuted family of 

distributions. Bakouch et al. (2017) also introduced a new family of transmuted distributions. 

Granzotto et al. (2017) proposed a cubic ranking transmutation map and its studied different 

properties. They studied properties of cubic rank transmuted Weibull distribution and cubic 

rank transmuted log logistic distribution. Yilmaz (2018) proposed a new distribution family 

developed with polynomial rank transmutation. Rahman et al. (2018) developed general 

family of transmuted distributions. Riffi (2019) presented higher rank transmuted families of 

distributions. Rahman et al. (2019) studied properties of cubic rank transmuted Weibull 

distribution. 

Burr III (Burr; 1942) has wide range of applications in failure time modeling, reliability, 

business failure data, modeling finance, insurance data and quality control plans. Burr III 

(BIII) model accommodates only decreasing and inverted bathtub hazard rate functions (hrf). 

Transmuted Burr III (TBIII) accommodates only inverted bathtub hazard rate functions 

(Abdul-Moniem; 2015). The failure rate for modified Burr III (MBIII) can take only 

increasing, decreasing, inverted bathtub and modified bathtub shapes (Bhatti et al. 2019). 

Transmuted modified Burr III (TMBIII) accommodates only decreasing and inverted 

bathtub hazard rate functions (Ali and Ahmad; 2016).The hrf for the CRTMBIII distribution 

accommodates almost all shapes such as bimodal, arc, increasing, decreasing, decreasing-
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increasing- decreasing, inverted bathtub (unimodal) and modified bathtub. Due to its flexible 

failure rate, it can be applicable to lifetime applications. 

 The basic motivations for proposing the CRTMBIII distribution are: (i) to generate 

distributions with symmetrical, right-skewed, left-skewed, exponential, arc, J and bimodal 

shaped; (ii) to obtain unimodal, bimodal, arc, increasing, decreasing, decreasing-increasing- 

decreasing, inverted bathtub and modified bathtub hazard rate function; (iii) to serve as the 

best alternative model for the current models to explore and modeling real data in economics, 

life testing, reliability, survival analysis manufacturing and other areas of research and (iv) 

to provide better fits than other sub-models. 

This paper is sketched into the following sections. In Section 2, we develop and study 

the CRTMBIII distribution. We also present the basic structural properties and sub-models. 

We also study some plots of density and hazard rate functions. In Section 3, we derive 

mathematical properties such as moments, incomplete moments, inequality measures, 

residual and reverse residual life function and stress-strength reliability measure. In Section 

4, two characterizations of the CRTMBIII distribution are studied. In Section 5, we address 

the parameters of the CRTMBIII distribution via maximum likelihood method. In Section 6, 

we evaluate the performance of the maximum likelihood estimates (MLEs) of the modal 

parameters via simulation study. In Section 7, we establish empirically that the proposed 

model is suitable for strengths of glass fibers. We apply goodness of fit statistics and 

graphical tools to examine the potentiality and utility of the CRTMBIII distribution.  The 

concluding remarks are given in Section 8. 

 

2. THE CRTMBIII DISTRIBUTION 

Ali et al. (2015) studied modified Burr III (MBIII) distribution with its properties. Ali 

and Ahmad (2015) studied transmuted MBIII (TMBIII) distribution and its properties. The 

cdf and pdf of MBIII distribution are given, respectively, by  

   1 , 0,F x x x




    
    (7) 

and 

   
1

1 1 0, 0, 0, 0.f x x x x
 

       


      
  (8) 

Here, the CRTMBIII distribution is introduced with the help of (7) and (8). The cdf and 

pdf of the CRTMBIII distribution are given, respectively, by  

         
2 3

1 2 1 21 1 1 1 ,F x x x x
  

          
  

         
 0,x    

 (9) 
and 

         
2 3

1 1 1
1

1 2 1 21 2 1 3 1 1 , 0,f x x x x x x
  

            
     

     
         

 

(10) 

with 0, 0, 0     ,  1 0,1  ,  2 1,1   .  
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In future, the pdf in (11) is denoted by X~CRTMBIII  1 2, , , , .      

2.1. Structural Properties 

For X~CRTMBIII  1 2, , , , ,     the survival, hazard, cumulative hazard, reverse hazard 

functions and the Mills ratio are given, respectively, by   

         
2 3

1 2 1 21 1 1 1 1 , 0,S x x x x x
  

          
  

   
          

           
(11) 

                         

 
       

       

2 3
1 1 1

1

1 2 1 2

2 3

1 2 1 2

1 2 1 3 1 1

,

1 1 1 1 1

x x x x

h x

x x x

  
     

  
    

       

      

     
    

  
  

 
       

 
 

        
   

(12)

   

 

   
     

     

2

1 1 2 1 21

2

1 2 1 2

2 1 3 1 1
1

1 1 1

x x
r x x x

x x

 
  

 

 
  

     
 

     

 
 


  

 
 

 
      

   
      
  ,           

     (13) 

                      
2 3

1 2 1 2( ) ln 1 1 1 1 1 ,H x x x x
  

          
  

  
   

           
   

  

   

         (14) 
and

 

 

 
       

       

2 3

1 2 1 2

2 3
1 1 1

1

1 2 1 2

1 1 1 1 1

.

1 2 1 3 1 1

x x x

m x

x x x x

  
    

  
     

      

       

  
  

     
    

 
        
 


 

       
 

     (15) 

The elasticity    
lnF( )

ln

d x
e x xr x

d x
   for the CRTMBIII distribution is  

The elasticity of the CRTMBIII distribution shows the behavior of the accumulation of 

probability in the domain of the random variable. 

The quantile function of the CRTMBIII distribution is the solution of the following  
1

1/3 2

1/3

1 2 ( 3 ) 1
,

3 3 32
q

B B AC M

A AM A
x

 


 


 

         
  



       (17) 

where    2 2 1 1,1 ,A B C    
 
 and 

1/3
3 2 2 3 3 2 22 9 27 4( 3 ) ( 2 9 27 )M B ABC A q B AC B ABC A q           

   . 
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The random number generator of the CRTMBIII distribution is the solution of the 

following  
1

1/3 2

1/3

1 2 ( 3 ) 1

3 3 32

Z

Z

B B AC
X

A A A

 


 


 

          
   ,     (18) 

where 
1/3

3 2 2 3 3 2 22 9 27 4( 3 ) ( 2 9 27 )Z B ABC A Z B AC B ABC A Z            
 

and the 

random variable Z has the uniform distribution on  0,1 .  

2.2 Shapes of the CRTMBIII Density and Hazard Rate Functions 

The following graphs show that shapes of CRTMBIII density are arc, exponential, 

positively skewed, negatively skewed and symmetrical (Fig.1). The CRTMBIII distribution 

has unimodal, bimodal, arc, increasing, decreasing, decreasing-increasing- decreasing, 

inverted bathtub and modified bathtub hazard rate function (Fig. 2). 

             
     Fig.1 Plots of pdf of the CRTMBIII distribution for the selected parameter values 

                                 
        Fig:2 Plots of hrf of the CRTMBIII distribution for the selected parameter values 

 

 2.3 Sub-Models 

The CRTMBIII distribution has the following sub models (Table 1). 

 

 

 

0.5 1.0 1.5 2.0 2.5
x

0.5

1.0

1.5

2.0

f x

CRTMBIII Distribution

0.50, 5.00, 1.20, 1 0.95, 2 0.95

0.05, 2.00, 0.10, 1 0.05, 2 0.90

5.00, 7.00, 8.00, 1 0.90, 2 0.05

0.10, 8.00, 0.85, 1 0.85, 2 0.90

0.95, 8.00, 0.90, 1 0.50, 2 0.40

0.16, 2.50, 0.10, 1 0.95, 2 0.60

25.0, 4.30, 0.03, 1 0.10, 2 0.50

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

h x

CRTMBIII Distribution

1.00, 0.50, 0.50, 1 0.40, 2 0.60

11.0, 4.35, 1.50, 1 0.04, 2 0.70

0.50, 0.80, 0.40, 1 0.50, 2 0.90

0.50, 1.75, 0.40, 1 0.90, 2 0.95

0.40, 2.35, 0.90, 1 0.10, 2 0.90

3.10, 3.25, 1.80, 1 0.95, 2 0.95

0.20, 1.90, 0.10, 1 0.80, 2 0.90

0.27, 2.90, 0.85, 1 0.40, 2 0.95
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Table 1: Sub-Models of the CRTMBIII Distribution 

Sr.No. X       
1  2  Name of Distribution 

1 X       
1  2  CRTMBIII  distribution 

2 X     1  
1  2  CRTBIII  distribution 

3 X 1    1  
1  2  CRTLL distribution 

4 X       
1  1  TMBIII  distribution 

5 X     1  
1  1  TBIII  distribution 

6 X 1    1  
1  1  TLL  distribution 

7 X        
1  2  CRTGIW  distribution 

8 X        
1  1  TGIW  distribution 

9 X        1  1  GIW  distribution 

10 X       1  1  MBIII  distribution 

11 X     1 1  1  BIII  distribution 

12 X 1   1 1  1  LL  distribution 

 

3. MATHEMATICAL PROPERTIES 

We derive theoretically some mathematical properties such as the rth ordinary moments, 

sth incomplete moments, and inequality measures, residual and reverse residual life function 

and reliability measures in this section. 

3.1 Ordinary Moments 

The moments are significant tools for statistical analysis in pragmatic sciences. The 

descriptive measures such as central tendency  1 , dispersion   , skewness ( 1 ) and 

kurtosis ( 2 ) can be calculated from the moments.  

For X~CRTMBIII(𝛼, 𝛽, 𝛾, 𝜆1, 𝜆2),the 𝑟th ordinary moment is 

   
0

,r rE X x f x dx



 
 

𝜇𝑟
/
= 𝐸(𝑋𝑟) = ∫ 𝑥𝑟

∞

0

𝛼𝛽𝑥−𝛽−1 [𝜆1(1 + 𝛾𝑥
−𝛽)

−
𝛼
𝛾
−1
+ 2(𝜆2 − 𝜆1)(1 + 𝛾𝑥

−𝛽)
−  
2𝛼
𝛾
−1

+ 3(1 − 𝜆2)(1 + 𝛾𝑥
−𝛽)

− 
3𝛼
𝛾
−1
] 𝑑𝑥. 

Letting  

1

1, ,
y

x y x x dx dy



   
    

 


  


, then 
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𝜇𝑟
′ = 𝐸(𝑋𝑟) = [𝜆1

𝛼

𝛾
𝛾
𝑟
𝛽𝐵 (1 −

𝑟

𝛽
,
𝛼

𝛾
+
𝑟

𝛽
) + 2(𝜆2 − 𝜆1)

𝛼

𝛾
𝛾
𝑟
𝛽𝐵 (1 −

𝑟

𝛽
,
2𝛼

𝛾
+
𝑟

𝛽
)

+ 3(1 − 𝜆2)
𝛼

𝛾
𝛾
𝑟
𝛽𝐵 (1 −

𝑟

𝛽
,
3𝛼

𝛾
+
𝑟

𝛽
)] 

𝜇𝑟
/
= 𝐸(𝑋𝑟) = 𝛾

𝑟
𝛽𝛤 (1 −

𝑟

𝛽
) [𝜆1

𝛤 (
𝛼
𝛾 +

𝑟
𝛽
)

𝛤 (
𝛼
𝛾)

+ (𝜆2 − 𝜆1)
𝛤 (
2𝛼
𝛾 +

𝑟
𝛽
)

𝛤 (
2𝛼
𝛾 )

+ (1 − 𝜆2)
𝛤 (
3𝛼
𝛾 +

𝑟
𝛽
)

𝛤 (
3𝛼
𝛾 )

] , 𝑟 = 1,2,3,4, . . ., 

(19) 
where 𝛤(. , . ) is a gamma function. 

Mean and Variance of the CRTMBIII distribution are 

     
1

1 2 1 2

1 2 1 3 1

1
1 1 ,

2 3
E X 

  

     
    

   

  

      
           

               
                

        
𝑉𝑎𝑟(𝑋)

=

{
 
 
 

 
 
 
𝛾
2
𝛽𝛤 (1 −

2

𝛽
) [𝜆1

𝛤 (
𝛼
𝛾 +

2
𝛽
)

𝛤 (
𝛼
𝛾)

+ (𝜆2 − 𝜆1)
𝛤 (
2𝛼
𝛾 +

2
𝛽
)

𝛤 (
2𝛼
𝛾
)

+ (1 − 𝜆2)
𝛤 (
3𝛼
𝛾 +

2
𝛽
)

𝛤 (
3𝛼
𝛾
)

] −

𝛾
2
𝛽 (𝛤 (1 −

1

𝛽
))

2

[𝜆1

𝛤 (
𝛼
𝛾 +

1
𝛽
)

𝛤 (
𝛼
𝛾)

+ (𝜆2 − 𝜆1)
𝛤 (
2𝛼
𝛾 +

1
𝛽
)

𝛤 (
2𝛼
𝛾 )

+ (1 − 𝜆2)
𝛤 (
3𝛼
𝛾 +

1
𝛽
)

𝛤 (
3𝛼
𝛾 )

]

2

}
 
 
 

 
 
 

 

The Mellin transformation is applied to get the moments of a probability distribution. 

For X~CRTMBIII  1 2, , , , ,     the Mellin transform is  

    * 1;s ( ),sM f x f s E X  
             

      

1

1 2 1 2

1 2 1 3 1

1
;s 1 1 .

2 3

s
s s s

s
f x





           
           

                          
                             

 (20) 

The rth central moment (𝜇𝑟 ), coefficients of skewness (𝛾1 ) and kurtosis (𝛾2 ) for the 

CRTMBIII model are attained from 𝜇𝑟 =∑ (−1)ℓ (
𝑟
𝑙
)  𝜇′

ℓ
 𝜇′

𝑟−ℓ

𝑟

ℓ=1
, 𝛾1 =

𝜇3

(𝜇2)
3
2

 and 𝛽2 =

𝜇4

(𝜇2)2
.The numerical values for the mean (𝜇′

1
), median (�̃�), standard deviation (𝜎), skewness 

(𝛾1) and kurtosis (𝛾2) for the CRTMBIII distribution for selected values of 𝛼, 𝛽, 𝛾, 𝜆1, 𝜆2 are 

listed in Table 2. We also depict that the CRTMBIII model can be effective to model data 

sets in terms of the descriptive measures. 
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Table 2: 1 ,  ,  , 1  and 2 of the CRTMBIII Distribution 

      
1  2  1      

1  2  

1.5 1.5 1 0.1 -0.1 7.0946 3.2782 80.9775 521.808 374033 

0.5 3 1.5 0.1 -0.1 1.3711 1.1392 1.114 9.149 341.352 

0.5 5 1.5 0.1 -0.1 1.1488 1.0813 0.4703 2.2561 22.8658 

0.1 5 1.5 0.1 0.1 0.5778 0.5102 0.4486 1.937 35.0744 

0.1 5 1.5 0.5 0.5 0.4518 0.3437 0.4419 1.9544 28.7892 

0.1 5 1.5 0.5 -0.5 0.5822 0.525 0.4629 1.4152 11.7208 

0.1 5 1.5 0.9 -0.5 0.508 0.4299 0.4702 1.4098 10.0304 

0.1 5 1.5 0.9 0.5 0.3785 0.2292 0.4267 1.7812 11.2591 

0.1 5 1.5 0.9 0.9 0.326 0.1683 0.397 2.3369 2.3369 

0.5 10 1 0.5 0.5 0.9873 0.9859 0.2186 0.3888 5.8513 

0.05 10 1 0.5 0.5 0.4815 0.4646 0.3378 0.3436 2.397 

0.05 10 3 0.5 0.5 0.2712 0.1121 0.3353 1.3062 3.9946 

0.05 10 3 0.1 0.1 0.3586 0.2449 0.3523 0.9644 3.1294 

0.05 10 0.5 0.1 0.1 0.7113 0.7306 0.2515 -0.0875 3.7189 

0.05 10 0.8 0.1 0.1 0.6368 0.6537 0.293 0.0204 2.933 

0.05 10 0.5 0.1 0.1 0.7131 0.7306 0.2515 -0.0875 3.7189 

0.05 8 0.5 0.5 0.5 0.5508 0.5562 0.3175 0.3224 3.4354 

0.05 8 0.5 0.6 0.6 0.5334 0.5354 0.3209 0.3535 3.3438 

3 5 1.5 0.5 0.5 1.5862 1.4800 0.5797 4.4762 167.305 

5 5 5 0.1 0.6 1.8104 1.6882 0.6583 4.5965 183.073 

5 5 5 0.5 0.5 1.7102 1.6066 0.6749 4.2527 177.0605 

5 5 5 0.9 -0.9 1.8399 1.7654 0.7528 2.1844 26.3308 

0.1 15 1 0.9 0.9 0.6335 0.6611 0.279 -0.198 2.3025 

0.1 15 0.5 0.9 0.9 0.7519 0.7787 0.2092 521.808 374033 

 

3.2 Order Statistics and their moments 

Order statistics (OS) have wide applications in climatology, life testing and reliability. 

Moments of OS are also designed for replacement policy with the prediction of failure of 

future items determined from few early failures.  

Let 1,..., nX X  be a random sample from the CRTMBIII model and let 1: :,...,n n nX X   be 

the corresponding order statistics. The pdf of the ith order statistic, say :i nX , is given by 

 

 
  1

:

0

( ) 1 ( ),
, 1

n i
r r i

i n

r

n if x
f x F x

rB i n i


 



 
   

   


          
where  .,.B  is the beta function. 

 
 

 

     

1
2 1

1

: , ,

0 0 0

2

1 2 1 2

1
( ) 1

, 1

2 1 3 1 1 ,

n i r i s
s r i

i n r s

r s

f x a x x
B i n i

x x


  

 
  

 

     

  
    

  

  

 
 

 
 

 
       
 



 
 (21) 
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where      1

, , 1 2 1 2

1
1 1

s rr i s

r s

n i r i s
a

r s
   

  
     

       
   

. 

The qth ordinary moment of :i nX  say  '

:

q

q i nE X  is determined from (21) as 

 

3.3 Incomplete Moments 

Mean inactivity life; mean waiting time and inequality measures can be obtained from 

incomplete moments. For X~CRTMBIII  1 2, , , , ,     the incomplete lower moments are 

𝑀′
𝑟(𝑧) = 𝐸𝑋≤𝑧(𝑋

𝑟) = ∫ 𝑥𝑟
𝑧

0
𝛼𝛽𝑥−𝛽−1 [𝜆1(1 + 𝛾𝑥

−𝛽)
−
𝛼

𝛾
−1
+ 2(𝜆2 − 𝜆1)(1 +

𝛾𝑥−𝛽)
−  

2𝛼

𝛾
−1
+ 3(1 − 𝜆2)(1 + 𝛾𝑥

−𝛽)
− 
3𝛼

𝛾
−1
] 𝑑𝑥.                                                     

(22) 

Letting  

1

1, ,
y

x y x x dx dy



   
    

 


  


, then 

𝐸𝑋≤𝑧(𝑋
𝑟) =

𝛼

𝛾
𝛾
𝑟
𝛽

{
  
 

  
 𝜆1 [𝐵 (1 −

𝑟

𝛽
,
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𝛾
+
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𝛽
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𝑟

𝛽
,
2𝛼

𝛾
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𝑟

𝛽
)] +
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𝛾
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𝛽
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𝑟

𝛽
,
3𝛼

𝛾
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𝑟

𝛽
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}
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𝛼
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}
 

 

,    

(23) 

where r   and  .,.
z

B   is the incomplete beta function.   

For X~CRTMBIII  1 2, , , , ,     the incomplete upper moments are 

𝐸𝑋>𝑧(𝑋
𝑟) = ∫ 𝑥𝑟

∞

𝑧

𝛼𝛽𝑥−𝛽−1 [𝜆1(1 + 𝛾𝑥
−𝛽)

−
𝛼
𝛾
−1
+ 2(𝜆2 − 𝜆1)(1 + 𝛾𝑥

−𝛽)
−  
2𝛼
𝛾
−1

+ 3(1 − 𝜆2)(1 + 𝛾𝑥
−𝛽)

− 
3𝛼
𝛾
−1
] 𝑑𝑥, 

Letting  

1

1, ,
y

x y x x dx dy



   
    

 


  


, we arrive at 
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𝑟) =
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,   

(24) 

where r   and  .,.
z

B   is the incomplete beta function.   
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The mean deviation about the mean  1 E X    and about the median  2 E X   can be 

written as    1 12 2F M      and  2 12M     respectively, where  E X   and 

0.5x  .The quantities  1M  and  1M  can be obtained from (23). For specific probability p, 

Lorenz and Bonferroni curves are computed as  1
( )

M q
L p







, B( ) ( )p L p p  and, where

 q Q p . 

 

3.4 Residual Life functions 

For X~CRTMBIII (𝛼, 𝛽, 𝛾, 𝜆1, 𝜆2), the nth moment of the residual life, 𝑚𝑛(𝑧) =
𝐸[(𝑋 − 𝑧)𝑛|𝑋 > 𝑧], is  
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𝛾
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𝑠

𝛽
) + 3(1 − 𝜆2)𝐵𝛾𝑧−𝛽 (1 −

𝑠

𝛽
,
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𝛾
+

𝑠

𝛽
)] .   (25) 

The average remaining lifetime of a component at time z, say  1m z , or life expectancy 

is known as mean residual life (MRL) function is given by  

𝑚1(𝑧) =
1

𝑆(𝑧)
∑(

1
𝑠
)

1

𝑠=0

(−𝑧)1−𝑠
𝛼
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)
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𝛽
,
2𝛼

𝛾
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,
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𝛾
+
𝑠

𝛽
)] .   

(26) 

For X1~CRTMBIII  1 2, , , , ,     the nth moment of the reverse residual life, 𝑀𝑛(𝑧) =

𝐸[(𝑧 − 𝑋)𝑛|𝑋 ≤ 𝑧] is  
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z
n

nM z z x f x dx
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  , 

(27) 
 

The waiting time z for failure of a component has passed with condition that this failure 

had happened in the interval [0, z] is called mean waiting time (MWT) or mean inactivity 
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time. The waiting time z for failure of a component of X with CRTMBIII distribution is 

defined by  
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3.5 Stress-strength Reliability for CRTMBIII Distribution  

Let X1~CRTMBII  1 1 2, , , ,     and X2~CRTMBII  2 1 2, , , , ,      such that 
1X  represents 

strength and 
2X represents stress.  Then reliability of the component is:  
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  (29) 

Therefore the stress-strength reliability parameter R is independent of parameters

1 2, , and    .  

 

4. CHARACTERIZATIONS 

In order to develop a stochastic function in a certain problem, it is necessary to know 

whether the selected function fulfills the requirements of the specific underlying probability 

distribution. To this end, it is required to study characterizations of the specific probability 

distribution. Here, we present two characterizations of the CRTMBIII distribution (i) ratio of 

the truncated moments and (ii) double truncated moments.  

4.1 Ratio of Truncated Moments 

We characterize the CRTMBIII distribution on the basis of a simple relationship 

between two truncated moments of functions of X [Theorem G (Glänzel; 1987)]. 
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Proportion 4.1.1: Let  : 0,X   be a continuous random variable and let   
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1 1 1
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1
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and  
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The pdf of X is (10), if and only if  q x (in Theorem G) has the form
 
  , 0q x x x  . 

Proof. If X has pdf (10), then   

     11 , 0,F x E h x X x x x     

      2

21 , 0F x E h x X x x x    , 

and  

 

 
 

1

2

[h X x]

[h X x]

E X
q x x

E X




 


. 

The differential equation   𝑠′(𝑥) =
𝑞′(𝑥)ℎ2(𝑥)

𝑞(𝑥)ℎ2(𝑥)−ℎ1(𝑥)
=

2𝛽

𝑥
  has solution (𝑥) =  ln𝑥2𝛽. 

Therefore according to theorem G, X has pdf (11). 

Corollary 4.1.1: Let  : 0,X   be a continuous random variable and let 

         
1

2 3
1 1 1

2 1 2 1 2

2
1 2 1 3 1 1 , 0.h x x x x x x

  
           




     

    
         

 

The pdf of X is (10) if and only if functions 𝑞(𝑥)  and  ℎ1(𝑥) satisfy the equation 

   

     
2

2 1

2q x h x

q x h x h x x





. 

Remark 4.1.1: The general solution of the above differential equation is 

        
12 12

2 12 ,q x x x h x h x dx D
 

    
   

where D is a constant. 

4.2 Doubly Truncated Moment 

Here, we characterize the CRTMBIII distribution via doubly truncated moment.  

Proposition 4.2.1: Let X:𝛺 → (0,+∞) be a continuous random variable. Then X has pdf 

(10) if and only if 

 𝐸 [[𝜆1 + 2(𝜆2 − 𝜆1)(1 + 𝛾𝑥
−𝛽)

−  
𝛼

𝛾 + 3(1 − 𝜆2)(1 + 𝛾𝑥
−𝛽)

− 
2𝛼

𝛾 ]
−1

| 𝑥 < X < 𝑦] 

=
(1+𝛾𝑦−𝛽)

−
𝛼
𝛾−(1+𝛾𝑥−𝛽)

−
𝛼
𝛾

[𝐹(𝑥)−�̅�(𝑦)]
, 𝑥 > 0, 𝑦 > 0.  (30) 

Proof:  

For random variable X with pdf (10), we have 
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Conversely, if (30) holds, then  
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. 
Differentiating with respect to y, we have  
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2
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or 
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1
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which is pdf of the CRTMBIII distribution. 

 

5. MAXIMUM LIKELIHOOD ESTIMATION  

Here, we adopt maximum likelihood estimation technique for the CRTMBIII parameters. 

Let  1 2, , , ,       be unknown parameter vector. The log likelihood function   for 

the CRTMBIII distribution is    

 We can compute the maximum likelihood estimators (MLEs) of 
1 2, , , ,      by 

solving equations 32-36 either directly or using quasi-Newton procedure, computer 

packages/ softwares such as R, SAS, Ox, MATLAB, MAPLE and MATHEMATICA,. 
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6.  SIMULATION STUDY

 
In this section, we survey the performance of the MLEs of the parameters of the 

CRTMBIII distribution with respect to sample size n. This performance is done based on the 

following simulation study:  

Step 1: Generate 1000 samples of size n from the CRTMBIII distribution based on the 

inverse cdf method.  

Step 2: Compute the MLEs for 1000 samples, say 
1 2

? ??( , , , , )   for i=1,2,...,1000 based 

on non-linear optimization algorithm with constraint matching to range of parameters.  

Step 3: Compute the biases, mean squared errors and coverage probability of MLEs.  

For this purpose, we have selected different arbitrarily parameter values and 

n=50,100,150,200 sample sizes. All codes are written in R and the results are summarized in 

Table 3. The result clearly shows that when the sample size increases, the mean square 

errors (MSEs) decrease. This shows the consistency of MLE estimators.  

 

Table 3: Bias, MSEs and coverage probability (CP) of the CRTMBIII (1,8,1,0.5,0.5) , 

(2,3,1,0.5,0.5) (0.5,5,1.2,0.9,0.9) distribution.  

Sample Statistics 1
 

8
 

1
  

1
0.5

 

2
0.5

 

n=50 

Bias 0.472 1.638 0.761 0.104 0.180 

MSE 0.992 3.507 1.329 0.867 0.772 

CP 94.90 95.12 94.11 95.23 94.97 

n=100 

Bias 0.289 1.419 0.434 0.091 0.094 
MSE 0.718 1.127 1.071 0.530 0.423 

CP 95.30 94.89 95.04 95.01 94.99 

n=200 

Bias 0.117 0.912 0.210 0.070 0.087 

MSE 0.482 1.067 0.975 0.313 0.189 
CP 95.00 94.98 94.99 94.95 95.04 

n=300 

Bias 0.073 0.150 0.097 0.003 0.050 

MSE 0.210 0.829 0.151 0.113 0.093 
CP 95.07 95.01 94.95 94.99 95.02 
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Sample Statistics 3
 

2
 

1
  

1
0.5

 

2
0.5

 

n=50 

Bias 0.846 0.721 0.779 0.112 0.177 

MSE 1.232 1.221 1.211 0.921 0.646 
CP 95.10 94.97 94.64 95.09 94.98 

n=100 

Bias 0.789 0.544 0.452 0.095 0.820 

MSE 0.921 0.988 1.010 0.621 0.524 

CP 95.03 95.09 94.93 94.96 95.04 

n=200 

Bias 0.327 0.477 0.188 0.087 0.066 

MSE 0.768 0.661 0.923 0.320 0.168 

CP 95.09 95.04 95.03 95.05 95.02 

n=300 

Bias 0.112 0.187 0.078 0.005 0.032 
MSE 0.395 0.522 0.130 0.121 0.104 

CP 94.99 95.03 95.01 95.03 94.99 

Sample Statistics 0.5
 

5
 

1.2
  

1
0.9

 

2
0.9

 

n=50 

Bias 0.112 1.822 0.323 0.298 0.310 
MSE 0.315 2.301 0.748 0.664 0.734 

CP 95.08 95.61 96.06 94.78 95.22 

n=100 

Bias 0.099 0.921 0.214 0.166 0.201 

MSE 0.277 1.321 0.432 0.422 0.512 
CP 95.10 94.93 95.08 94.97 95.09 

n=200 

Bias 0.046 0.733 0.181 0.084 0.092 

MSE 0.121 0.887 0.312 0.128 0.196 

CP 95.04 95.31 95.09 95.05 94.89 

n=300 

Bias 0.010 0.171 0.084 0.055 0.069 

MSE 0.111 0.634 0.139 0.105 0.113 

CP 95.03 94.98 95.12 95.00 95.06 

 

 

7. APPLICATIONS 

We consider an application to data set such as strengths of 1.5 cm glass fibers for 

authentication of the flexibility, utility and potentiality of the CRTMBIII distribution. We 

compare the CRTMBIII distribution with TMBIII, MBIII, BIII, LL distributions. For 

selection of the optimum distribution, we compute the estimate of likelihood ratio statistics 

( 2 ), Akaike information criterion (AIC), corrected Akaike information criterion (CAIC), 

Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-

von Mises (W*), Anderson Darling (A*), and Kolmogorov- Smirnov [K-S] statistics with p-

values for all competing and sub distributions. We compute the MLEs and their standard 

errors (in parentheses). We also compute goodness of fit statistics (GOFs) values for the 

CRTMBIII, TMBIII, MBIII, BIII, LL models.  

7.1 Strengths of Glass Fibers: The values of data about strengths of 1.5 cm glass fibers 

(Smith and Naylor; 1987 and Arifa et al.;2017) are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 

1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 

1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 

1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73,  1.76, 1.76, 1.77, 1.78, 

1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. 

A descriptive summary for the strengths of 1.5 cm glass fibers data set provides the 

following values: 63 (sample size), 0.55 (minimum), 2.24 (maximum), 1.59 (median), 

1.506825 (mean), 0.3241257 (standard deviation), 21.5105 (coefficient of variation), -

0.89993 (coefficient of skewness) and 3.92376 (coefficient of kurtosis). The boxplot (Fig. 
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3(a)) for strengths of glass fibers data is negatively skewed. The TTT (total time on test) plot 

(Fig. 3(b)) for strengths of glass fibers data is concave, which infers increasing failure rate. 

So, the BIII-ME distribution is suitable to model these data.     

                                     

                                     (a)                                        (b) 

Figure 3 Boxplot (a) and TTT plot (b) for glass fiber data 

 

Table 4 reports the MLEs (standard errors) and measures W*, A*, KS (p-values). Table 

5 displays the values 2 , AIC, CAIC, BIC and HQIC. 

 

Table 4: MLEs, (standard errors) and W*, A*, KS (p-values) for Strengths of Glass Fibers 

Model       1  2  W A 
K-S 

(p-value ) 

CRT

MBIII 

3343.164 

(4457.274)  

18.4436 

(2.302738)  

16264.06 

(23802.86)  

0.6463 

(0.3772) 
 

1.000000e-10 

(0.8656) 
0.0390  0.2318  

0.0782 

(0.8359) 

TMBI

II 

15062.42 

(3881.1386) 

20.0016 

(0.7276)
 

82081.20  

(8543.3265) 

0.4698 

(0.3181)
 

1 
0.0807  0.4523   

0.1077 

(0.4574) 

MBIII 38353.3724 

(4604.0351)      

20.70762 

(0.7271) 

172677.4910 

(6315.7470) 

1 1 
0.1135  0.6271 

0.1292 

(0.2434) 

BIII 3.4417  

(0.4505)  

4.0886 

(0.3357) 

1 1 1 
0.9554 5.1997  

0.2462 

(0.001) 

LL 1 
3.4506 

(0.3414) 

1 1 1 

0.8045 4.4035 

0.5346    

(4.441e-

16) 

 

Table 5:  2 , AIC, CAIC, BIC and HQIC for Strengths of Glass Fibers 

Model 
2  AIC CAIC BIC HQIC 

CRTMBIII 19.17072 29.17072 30.22335 39.88639 33.38525 

TMBIII 22.18592 30.18593  30.87558  38.75846  33.55755   

MBIII 23.82574 29.82573  30.23251  36.25514  32.35445  

BIII 73.76724 77.76725 77.96725 82.05352 79.45306 

LL 136.9448 138.9448 139.0104 141.088 139.7877 

 

From the tables 4 and 5, it is clear that our proposed model is best fitted, with smallest 

values for all GOFs and maximum p-value.  
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(a)                          (b)                                    (c)                                       (d) 

Figure 4: Fitted (a) pdf, (b) cdf, (c) survival and (d) PP plots for the CRTMBIII distribution to 

Strengths.  

 

Figure 4 infers that the proposed model is closely fitted to strengths of glass fibers.  

 

8. CONCLUDING REMARKS   

We propose a very flexible distribution on the basis of the cubic transmuted mapping 

that is suitable for applications in survival analysis, reliability and actuarial science. The 

density function of CRTMBIII is symmetrical, right-skewed, left-skewed, exponential, arc, J 

and bimodal shaped. The flexible hazard rate of the proposed model can accommodate 

almost all types of shapes such as unimodal, bimodal, arc, increasing, decreasing, 

decreasing-increasing-decreasing, inverted bathtub and modified bathtub. We derive the 

important mathematical properties of the proposed distribution such as survival function, 

hazard function, reverse hazard function, cumulative hazard function, mills ratio, elasticity, 

quantile function, moments about the origin, and moments of order statistics, incomplete 

moments, inequality measures and stress-strength reliability measures. We characterize the 

proposed distribution via ratio of truncated moments and doubly truncated moment. We 

address the maximum likelihood estimation for the model parameters. We evaluate the 

precision of the maximum likelihood estimators via simulation study. We consider an 

application to real data set to illustrate the flexibility, utility and potentiality of the proposed 

model. We compute goodness of fit tests for examining the adequacy and competency of the 

proposed model. We ascertain empirically that the proposed model is suitable for strengths 

of glass fibers analysis.  

 

 

 

 

 

 

 

 

 

 

Estimated Density of CRTMBIII distribution for Strengths of Glass Fibers
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Estimated cdf of CRTMBIII Distribution for Strengths of Glass Fibers

x

F
(
x
)

0.5 1.0 1.5 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

x

F
(
x
)

0.0 0.5 1.0 1.5 2.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Kaplan-Meier Survival Plot for CRTMBIII Distribution for Strengths of Glass Fibers
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