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ABSTRACT

We propose a lifetime distribution with flexible hazard rate called cubic
rank transmuted modified Burr 111 (CRTMBIII) distribution. We develop the
proposed distribution on the basis of the cubic ranking transmutation map. The
density function of CRTMBIII is symmetrical, right-skewed, left-skewed,
exponential, arc, J and bimodal shaped. The flexible hazard rate of the
proposed model can accommodate almost all types of shapes such as unimodal,
bimodal, arc, increasing, decreasing, decreasing-increasing-decreasing,
inverted bathtub and modified bathtub. To show the importance of proposed
model, we present mathematical properties such as moments, incomplete
moments, inequality measures, residual life function and stress strength
reliability measure. We characterize the CRTMBIII distribution via techniques.
We address the maximum likelihood method for the model parameters. We
evaluate the performance of the maximum likelihood estimates (MLES) via
simulation study. We establish empirically that the proposed model is suitable
for strengths of glass fibers. We apply goodness of fit statistics and the
graphical tools to examine the potentiality and utility of the CRTMBIII
distribution.

Keywords: Moments, Reliability, Characterizations, Maximum Likelihood
Estimation.
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1. INTRODUCTION

In recent decades, many continuous univariate distributions have been developed,
however, various data sets from reliability, insurance, finance, climatology, biomedical
sciences and other areas do not follow these distributions. Therefore, modified, extended and
generalized distributions and their applications to problems in these areas is a clear need of
day.

The modified, extended and generalized distributions are obtained by the introduction of
some transformation or addition of one or more parameters to the well-known baseline
distributions. These new developed distributions provide better fit to the data than the sub
and competing models.

Shaw and Buckley (2009) proposed ranking quadratic transmutation map to solve
financial problems.

1.1 Quadratic Ranking Transmutation Map

Theorem 1.1: Let X,and X, be independent and identically distributed (i.i.d.) random

variables with the common cumulative distribution function G(x). Then, the ranking
quadratic transmutation map is

F (x)=(1+1) G(x)-AG*(x), 2e[-11] M
Proof
Let X,and X, be i.i.d. random variables with the common cumulative distribution

functionG (x) Now, consider the following order statistics:
X, =min( X, X,) and X,, =max(X,,X,)

let Y = X, with probability 7, Y= X, , with probability 1—r, where 0< 7 <1.The
cumulative distribution function of Y is
R (X)=7P (X, <x)+(1-7)Pr(X,, <x),
or
2 2
F,(x)=7[1-[1-6()] [+@-m)[6 ()],
F, (x)=22G(x)+(1-27)[G(x)] - @
If we take A =2x-1, the distribution in equation (2) is known as ranking quadratic

transmutation map or transmuted distribution.
1.2 Cubic Ranking Transmutation Map

Theorem 1.1: Let X;, X,and X5 be i.i.d. random variables with the common cumulative
distribution functionG (z). Then, the cubic ranking transmutation map is

F(x)=A4G(X)+(4~4)C* (x)+(1-4)C(x) 4e[0] Le[-11] 3

)

Proof
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Consider the following order statistics:
X =min( X, X,, X;), X, and Xy, =max(X,, X,, X;).

d d d
Let Y= X, with probability 7, ,Y=X with probability 7, , Y= X with

2:3? 33 !

3
probability ,, where 0< 7, <1, 7, =1-7, -7, and » 7, =1.
i=1
The cumulative distribution function (cdf) of Y is

R (X) =7, P( Xy SX)+7, P( X, < X)+(1—7 =7, ) P X35 <X),
where P(X,, < x)=1—[1—G(x)]3,Pr(X2;3 <X)=3G*(x)-2G°(x) andP (X, < x)=[G(x)]".

Now, the cdf of Y becomes
2 3
F, (X):37r1G(X)+3(7z2—ﬁl)[G(X)] +(1—722)[G(X)] : @
If we take 4, =37, and A, =37, the distribution in equation (4) is known as cubic

ranking transmutation map or transmuted distribution of order 2.
Definition 1.1: The cdf and probability density function (pdf) for cubic rank transmuted
distribution are given, respectively, by
F(x)=AG(X)+(4 - 4)G*(x)+(1-£)&°(x) 4<[0] 4 e[-11] -
and
) =g()[A +2(A2 = 4)G(x) +3(1 — 22)G*(x)], x €R
(6)

Afify et al. (2017) proposed the beta transmuted-H family of distributions. Al-Kadim
and Mohammed (2017) presented the cubic transmuted Weibull distribution in terms of
basic mathematical properties. Nofal et al. (2017) studied a generalized transmuted-G family
of distributions. Alizadeh et al. (2017) developed generalized transmuted family of
distributions. Bakouch et al. (2017) also introduced a new family of transmuted distributions.
Granzotto et al. (2017) proposed a cubic ranking transmutation map and its studied different
properties. They studied properties of cubic rank transmuted Weibull distribution and cubic
rank transmuted log logistic distribution. Yilmaz (2018) proposed a new distribution family
developed with polynomial rank transmutation. Rahman et al. (2018) developed general
family of transmuted distributions. Riffi (2019) presented higher rank transmuted families of
distributions. Rahman et al. (2019) studied properties of cubic rank transmuted Weibull
distribution.

Burr 111 (Burr; 1942) has wide range of applications in failure time modeling, reliability,
business failure data, modeling finance, insurance data and quality control plans. Burr 1lI
(BI11) model accommodates only decreasing and inverted bathtub hazard rate functions (hrf).
Transmuted Burr Il (TBIII) accommodates only inverted bathtub hazard rate functions
(Abdul-Moniem; 2015). The failure rate for modified Burr 1Il (MBIIl) can take only
increasing, decreasing, inverted bathtub and modified bathtub shapes (Bhatti et al. 2019).
Transmuted modified Burr Il (TMBIII) accommodates only decreasing and inverted
bathtub hazard rate functions (Ali and Ahmad; 2016).The hrf for the CRTMBIII distribution
accommodates almost all shapes such as bimodal, arc, increasing, decreasing, decreasing-
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increasing- decreasing, inverted bathtub (unimodal) and modified bathtub. Due to its flexible
failure rate, it can be applicable to lifetime applications.

The basic motivations for proposing the CRTMBIII distribution are: (i) to generate
distributions with symmetrical, right-skewed, left-skewed, exponential, arc, J and bimodal
shaped; (ii) to obtain unimodal, bimodal, arc, increasing, decreasing, decreasing-increasing-
decreasing, inverted bathtub and modified bathtub hazard rate function; (iii) to serve as the
best alternative model for the current models to explore and modeling real data in economics,
life testing, reliability, survival analysis manufacturing and other areas of research and (iv)
to provide better fits than other sub-models.

This paper is sketched into the following sections. In Section 2, we develop and study
the CRTMBIII distribution. We also present the basic structural properties and sub-models.
We also study some plots of density and hazard rate functions. In Section 3, we derive
mathematical properties such as moments, incomplete moments, inequality measures,
residual and reverse residual life function and stress-strength reliability measure. In Section
4, two characterizations of the CRTMBIII distribution are studied. In Section 5, we address
the parameters of the CRTMBIII distribution via maximum likelihood method. In Section 6,
we evaluate the performance of the maximum likelihood estimates (MLEs) of the modal
parameters via simulation study. In Section 7, we establish empirically that the proposed
model is suitable for strengths of glass fibers. We apply goodness of fit statistics and
graphical tools to examine the potentiality and utility of the CRTMBIII distribution. The
concluding remarks are given in Section 8.

2. THE CRTMBIII DISTRIBUTION

Ali et al. (2015) studied modified Burr 111 (MBIII) distribution with its properties. Ali
and Ahmad (2015) studied transmuted MBIII (TMBIII) distribution and its properties. The
cdf and pdf of MBIII distribution are given, respectively, by

(00
F(x)= 1+yx B} v, x>0,

and
f(x)=apx " (Lepx?) 7" x>0,a>0,>0,y>0. ®

Here, the CRTMBIII distribution is introduced with the help of (7) and (8). The cdf and
pdf of the CRTMBIII distribution are given, respectively, by

2a 3a

F (= AL} (Z=a)Le ) 7+ @-2)Len L

9)
and
f(x) = (L) 2 (- )L px ) 3 ) (L) T } x>0,
(10)

with & >0,8>0,7>0,4 €[0,1], 4, [-11].
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In future, the pdf in (11) is denoted by X~CRTMBIII (&2, 8,7, 4, 4, ).
2.1. Structural Properties

For X~CRTMBIII(a, B, y,ﬂ,l,ﬂ?),the survival, hazard, cumulative hazard, reverse hazard

functions and the Mills ratio are given, respectively, by
2a 3a

() =1-| A(Le ") 7+ (2= )47 7 (1= R) (L) | xz0

(11)
apx 2| A rx ) 2l a)ae k) T s 2@k )
h(x)= L _ _ _ . ]
1= A(1+7x7) 7 +(H =) (1+rx7) 7 +(@=2)(1+rx ") 7
(12)

2a

A A +2(4 - 4)(1+ ]/X_ﬁ)_% +3(1-A4)(1+yx7) 7

2a

A+ (4, —/11)(1+ yx‘/’)_% +(1—/lz)(1+ 7X_ﬂ)_ 4

r(x)=afx’* (1+ yx‘ﬂ)

(13)

() =—In {1{4 (L) 7 (=4 (Le )27& + (1=, (1+x” )3}}}
(14)
and
AR
m(x)=

apx [ﬂl (L) 7 e 2(A =) (L px ) 7312 (4 )S:l} |

(15)
- d InF(x) o
The elasticity e(x) = iy - xr (x) for the CRTMBIII distribution is
The elasticity of the CRTMBIII distribution shows the behavior of the accumulation of
probability in the domain of the random variable.
The quantile function of the CRTMBIII distribution is the solution of the following

/4

where A=(1-4,), B=(4,-4,), C=24 and

+
3A 3AM 322 A

q

_r
1[ B 2*(-B*+3AC) M ja_1

(17)

1/3
M = [—253 +9ABC +27A°q +\/A(—B? +3AC)® + (—2B° + 9ABC + 27 Aq)’ }
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The random number generator of the CRTMBIII distribution is the solution of the
following

_r
w |1 _5_2“3(—BZ+3AC)Jr M, }« 1
7 3A 3AM, 323 A 7
) (18)

1/3
where M, = [—233 +OABC +27A’Z +[4(—B? + 3AC)’ + (—2B° + 9ABC + 27 A’Z)’ } and the

random variable Z has the uniform distribution on (0,1).

2.2 Shapes of the CRTMBIII Density and Hazard Rate Functions

The following graphs show that shapes of CRTMBIII density are arc, exponential,
positively skewed, negatively skewed and symmetrical (Fig.1). The CRTMBIII distribution
has unimodal, bimodal, arc, increasing, decreasing, decreasing-increasing- decreasing,
inverted bathtub and modified bathtub hazard rate function (Fig. 2).

CRTMBIII Distribution
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Fig.1 Plots of pdf of the CRTMBIII distribution for the selected parameter values
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Fig:2 Plots of hrf of the CRTMBIII distribution for the selected parameter values
2.3 Sub-Models

The CRTMBIII distribution has the following sub models (Table 1).
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Table 1: Sub-Models of the CRTMBIII Distribution

Sr.No. | X a B v A A, | Name of Distribution
1 X a B Ve A A, | CRTMBIII distribution
2 X a i} 1 21 A, CRTBIII distribution
3 X 1 B 1 A A, | CRTLL distribution

4 X o B Ve ,11 1 TMBIII distribution
5 X a B 1 11 1 TBIII distribution

6 X 1 o} 1 A 1 TLL distribution

7 X a B Y —>®© A A, CRTGIW distribution
8 X a B Y —>© ﬂq 1 TGIW distribution

9 X a B y—>© |1 1 GIW distribution

10 X a B V4 1 1 MBIII distribution
11 X a B 1 1 1 BIII distribution

12 X 1 B 1 1 1 LL distribution

3. MATHEMATICAL PROPERTIES

We derive theoretically some mathematical properties such as the r™" ordinary moments,
s incomplete moments, and inequality measures, residual and reverse residual life function
and reliability measures in this section.
3.1 Ordinary Moments

The moments are significant tools for statistical analysis in pragmatic sciences. The
descriptive measures such as central tendency (py), dispersion (o), skewness (1) and

kurtosis (v, ) can be calculated from the moments.
For X~CRTMBIII(a, B, v, A1, A,),the rth ordinary moment is

c(x")= (90
0
[ a 2a
up=E(X7) = J X" apxF l/h(l +yxBY T 42— A1 +yxF) Y
0

3,
+3(1— Az)(l + yx‘ﬁ) 14 ldx.

1

Letting yx” =y,x= [lj ! ,7Bx " dx =—dy, then
Y
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a T ra r a T r2a r
Mr:E(X):[/‘{1;]/133<1—E,?+E>+2(12—Al);yﬁB(l—E,7+E>
+3(1—A)EV%B(1—13—0{+1>]
2y By B ,
a T r
o\ LA 2t ) UM w2 .
w.=EX") =yPr(1 3|, T M) ——5=
(?) F(T)
e
+(1-21,) 2 r=1234,..,

(19)

where I'(.,.) is a gamma function.
Mean and Variance of the CRTMBIII distribution are

RN Do I o5 I 25

o) %)

Var(X)
(2| r(E+5) r($+3) r(F+5)] )
3 yﬂF(l—E) AIT%)+(AZ—11)T%+(1—AZ)T% -
sy rEeg) o r(@ag) ()
Lyﬁ(r(1—5)) ,11#%)“,12—/11)#%)“1—,12)?%) |

14
The Mellin transformation is applied to get the moments of a probability distribution.

For X~CRTMBIll (e, 8,7, 4, 4, ), the Mellin transform is
M (x)is} = 17(5) =B,

1 a s-1 r 20

M{f(x)sl=y P T (1 S;J Mr[y P (-2 v (?’O‘j
Y

e

The " central moment (u,), coefficients of skewness (y,) and kurtosis (y,) for the

T
CRTMBIII model are attained from u, = Z (-1?¢ (r) Wl ., V1= £ _and B, =
=1 (n2)2

o )2 —=£ The numerical values for the mean (y', ), median (f), standard deviation (o), skewness

(v,) and kurtosis (y,) for the CRTMBIII distribution for selected values of a, 8,y, 14, 4, are
listed in Table 2. We also depict that the CRTMBIII model can be effective to model data
sets in terms of the descriptive measures.

ks I e |
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Table 2: u1, {1, o, y1 and yo of the CRTMBIII Distribution

@ g |7 A | A& | |R °© n Y2

1.5 1.5 1 0.1 -0.1 7.0946 | 3.2782 | 80.9775 521.808 374033
0.5 3 15 0.1 -0.1 1.3711 | 1.1392 1.114 9.149 341.352
0.5 5 15 0.1 -0.1 1.1488 | 1.0813 0.4703 2.2561 22.8658
0.1 5 15 0.1 0.1 0.5778 | 0.5102 0.4486 1.937 35.0744
0.1 5 1.5 0.5 0.5 0.4518 | 0.3437 0.4419 1.9544 28.7892
0.1 5 1.5 0.5 -0.5 0.5822 0.525 0.4629 1.4152 11.7208
0.1 5 1.5 0.9 -0.5 0.508 | 0.4299 0.4702 1.4098 10.0304
0.1 5 1.5 0.9 0.5 0.3785 | 0.2292 0.4267 1.7812 11.2591
0.1 5 1.5 0.9 0.9 0.326 | 0.1683 0.397 2.3369 2.3369
0.5 10 1 0.5 0.5 0.9873 | 0.9859 0.2186 0.3888 5.8513
0.05 | 10 1 0.5 0.5 0.4815 | 0.4646 0.3378 0.3436 2.397
0.05 | 10 3 0.5 0.5 0.2712 | 0.1121 0.3353 1.3062 3.9946
0.05 | 10 3 0.1 0.1 0.3586 | 0.2449 0.3523 0.9644 3.1294

0.05 | 10 0.5 0.1 0.1 0.7113 | 0.7306 | 0.2515 -0.0875 3.7189
0.05 | 10 0.8 0.1 0.1 0.6368 | 0.6537 0.293 0.0204 2.933
0.05 | 10 0.5 0.1 0.1 0.7131 | 0.7306 | 0.2515 -0.0875 3.7189
005 | 8 0.5 0.5 0.5 0.5508 | 0.5562 | 0.3175 0.3224 3.4354

005 | 8 0.5 0.6 0.6 0.5334 | 0.5354 | 0.3209 0.3535 3.3438
3 5 15 0.5 0.5 1.5862 | 1.4800 | 0.5797 44762 | 167.305
5 5 5 0.1 0.6 1.8104 | 1.6882 | 0.6583 4.5965 | 183.073
5 5 5 0.5 0.5 1.7102 | 1.6066 | 0.6749 4.2527 | 177.0605
5 5 5 0.9 -0.9 | 1.8399 | 1.7654 | 0.7528 2.1844 | 26.3308
0.1 15 1 0.9 0.9 0.6335 | 0.6611 0.279 -0.198 2.3025
0.1 15 0.5 0.9 0.9 0.7519 | 0.7787 | 0.2092 | 521.808 374033

3.2 Order Statistics and their moments

Order statistics (OS) have wide applications in climatology, life testing and reliability.
Moments of OS are also designed for replacement policy with the prediction of failure of
future items determined from few early failures.

Let X,,..., X, be a random sample from the CRTMBIII model and let X,,,..., X, be

the corresponding order statistics. The pdf of the i order statistic, say X,

fi:n(x)=B(i,f(xl+1)Z( 1)[ ]F”'-l(x)

where B(.,.) is the beta function.

is given by

i’

n—i r+i-1 s

(s+r+2/+|)l
fi:n(x)_ B(l n_|+1 Zzzars/ (Zﬂx p l(1+}/X )

{xﬁz(ﬂ? —/11)(1+7/X’ﬂ)7 +3(1—/1?)(1+7X’ﬁ)_7a
(21)



308 Fiaz Ahmad Bhatti, G.G. Hamedani, Seyed Morteza Najibi and Munir Ahmad

were 2, =4+ (-4 =) ([ )

The g" ordinary moment of X, say u, = E(xi‘f'n) is determined from (21) as

3.3 Incomplete Moments

Mean inactivity life; mean waiting time and inequality measures can be obtained from
incomplete moments. For X~CRTMBIII (e, 8,7, 4,, 4, ), the incomplete lower moments are

M (2) = Byey(X) = [227 afx P [ (14 7x70) 7 420, - 20(1 +
2a

3a
yx=F) Y4301 - (1 + yx‘ﬁ)_7_1] dx.

(22)
1
Letting yx” :y'X:Gj ,78x P dx = —dy, then
[, st )
EXSZ“T):%VE{Z“Z‘“[ (15545 B (53
Lsaaols(i55005) s 155003 )
Exes(X") ! r
gl el el ) - )
14 ra r r2a r r3a r
k/hByz—B (1 — E,; + E) -2(1;, — /11)BYZ—B <1 - E,7 + E) —-3(1 - AZ)ByZ—B (1 - E'T —Zzﬁgi

where r<fg and B, (...)is the incomplete beta function.

For X~CRTMBIII(«a, B, 7,4, 4,), the incomplete upper moments are
0 a 2a
Exoa(X7) = f A" apxt [’11(1 +yxB) T 4200, - A (1 +yxB) T

EL
+3(1 - Az)(l + yx'ﬁ) 14 ]dx,

Letting yx”/ =y, x= [lj ’ , 78X 7 'dx = —dy, we arrive at
v

B R e o 1
X2z = l

r 3a nr\\/|
3(1—1,)B,,-s (1 I 7+—)

where r<f and B , (.,.)is the incomplete beta function.
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The mean deviation about the mean (s, =E|X - |) and about the median (s, =E|X - i) can be
written as &, =2uF (u)-2uM/(u) and &, =pu—2M/(i) respectively, where x=E(X) and
1= X,5.The quantities M,(x)and M, (/)can be obtained from (23). For specific probability p,

Lorenz and Bonferroni curves are computed as L(p):#, B(p)=L(p)|p and, where
y7i

a=Q(p).

3.4 Residual Life functions

For X~CRTMBII (a,B,y,44,4;), the n™ moment of the residual life, m,(z) =
E[(X —2)"X > z],is

f (x)dx,

Sz>!
)= SN )

S=

n-s& _sa, s -
ma(2) = S(Z)ZSO(S ~2) yyﬁ[leyz-ﬁ(l £ 212) 4202,

s 2a s 3a
A)B,,s (1- 22 /3) +3(1 - 2By, (1 - =2 )] (25)
The average remaining lifetime of a component at time z, sayml(z), or life expectancy

is known as mean residual life (MRL) function is given by

1
1 1 a3 s a s
mq(z) = m; (S) (—2)! S;Vﬁ [AlBVZ—B (1 ~3y + E)
2y — 108 (1= 2% 4 Y 31— 4 (1-5,3%4 S
+200 = 1By, (1= 5.+ 5) +30 =28, (1 -5+ 7).
(26)
For X1~CRTMBIII(a,ﬁ,y,ﬂi,ﬂ?),the nth moment of the reverse residual life, M,,(z) =
E[(z—X)"|X < z]is

>

3

1 z
N30 ! )" f (x)dx
Mn<z>=$§<—l>5(z)z"SExgz(xs)
n AB[l_i,&i)n(L_%)B[l_iﬁ_‘ﬁi)+3(1_;H)B[1_L 3 z)_
OB e me) g S ey Y e
M =)= &t (*f s(z),,o( )= {AB, (1_% %%]_z(xn-;ﬁ)aﬂ,,[1—%,27"+—]—3(1—L)B (1—%,37" %]
(27)

The waiting time z for failure of a component has passed with condition that this failure
had happened in the interval [0, z] is called mean waiting time (MWT) or mean inactivity
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time. The waiting time z for failure of a component of X with CRTMBIII distribution is
defined by

ﬁ 43[1—3,&3}2(@—4)5[1 5,27“ ;]+3(l 2)B [ ;37”%;]

g [1.5¢ ijz _ Bfﬂ(l_iga 3j31_ Bﬂ[l_i?ﬂ 3]
4”[ 5y p) A A g g AR (g e

3.5 Stress-strength Reliability for CRTMBIII Distribution

. (28)

Let X;~CRTMBII (e, 8,7, 4, 4,) and X;~CRTMBII (a,, B,7,4,4,), such that X, represents
strength and X, represents stress. Then reliability of the component is:

o X

R=Pr(X,<X,) JI X, xz)dxzdxiszXl(x)FXZ (x)dx,

—00 —00

R:Talﬂx’ﬁ’l 21(1+yx*ﬁ)’%'1+2(z?—41)(1+yx*ﬂ)’z%l' +3(1-4,)(1+x )3:1'1}

Talﬂxf’”*l ﬂlz(lJr;/x"”) 7 +2/11(2”Z /11)(1+7x )77 2 +3(ﬂ1 /?12,2)(1+;/x ) y 7 l}+

o 2a, 1 20y 2a, 1 3oy 24y 1
. o+

R= ]:al,b’x’ﬁ’l (Ady =AY 1+ px?) 7 7 4 2(h = A) (T4px?) 7

o 3a, 20 3a,

Tal,b’x’”’l (Ah=Ad)1+yx?) 7 7 +2(2 - A) (1= A)(1+px7) 7 7 +3(1—12)2(1+yxﬁ)flj21}

Koy 206(Ah=A) Ba(h-Ad)
(o +ay) (20, + ) (B, +a,)

no) @l =) 20k &) Ba(L-)(-4) | (29)
(y+2a,) (204 +2a,) (3, +2a,)

o (h=aty) 200y~ 2) (1= %)  3en(1-4)’
(o, +3a,) (20, +3a,) (3, +3a,)
Therefore the stress-strength reliability parameter R is independent of parameters

By, Aand 4,.

4. CHARACTERIZATIONS

In order to develop a stochastic function in a certain problem, it is necessary to know
whether the selected function fulfills the requirements of the specific underlying probability
distribution. To this end, it is required to study characterizations of the specific probability
distribution. Here, we present two characterizations of the CRTMBIII distribution (i) ratio of
the truncated moments and (ii) double truncated moments.

4.1 Ratio of Truncated Moments

We characterize the CRTMBIII distribution on the basis of a simple relationship
between two truncated moments of functions of X [Theorem G (Glanzel; 1987)].
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Proportion 4.1.1: Let X :QQ — (0, OO) be a continuous random variable and let

r&(x)=ﬂﬂl(1+yxﬂ)’f'l+2(ﬂ,2—zl)(1+yxﬂ)'f‘1+3(1—27)(1+yxﬂ) f'l}
and
hz(x)zgx"{ﬂi(lﬂ/x")jl+2(iz—ﬂl)(1+7xﬂ)2;1+3(1—17)(1+7xﬂ)3:l} x> 0.

The pdf of X is (10), if and only if q(x) (in Theorem G) has the form q(x)=x’, x>0.
Proof. If X has pdf (10), then
(1-F(x))E(h(x)| X =x)=x", x>0,

(1=F(x))E(h (X)X 2x)=x?, x>0,
and
Efh,(X)X=2x] =
E[hz(x)\XZX]_q(X)_X '

a’h(x)  _ 28
qh()-he(x)  x
Therefore according to theorem G, X has pdf (11).

Corollary 4.1.1: Let X:Q —>(O,oo) be a continuous random variable and let

The differential equation s'(x) = has solution (x) = Inx?#.

-1
h,(x)= %x‘ﬂ |:2.1(1+ yx? )_%_1 +2(4 = 4)(1+yx”) T 3(1-4,)(1+ yx'ﬁ)_?_l} x>0,
The pdf of X is (10) if and only if functions g(x) and h;(x) satisfy the equation
a)h(x) _28
A (x)-h(x)  x
Remark 4.1.1: The general solution of the above differential equation is
q(x)=x* [—jZﬁx’(zﬂﬂ) (h, (x))f1 h,(x)dx+D J

where D is a constant.
4.2 Doubly Truncated Moment

Here, we characterize the CRTMBIII distribution via doubly truncated moment.

Proposition 4.2.1: Let X:2 — (0, +0) be a continuous random variable. Then X has pdf
(10) if and only if

a 2a9~1
E “Al +2(4, — Al)(l + yx‘ﬁ)_ ¥ +3(1— /12)(1 + yx‘ﬁ) V] x<X<y

_a _a
_ (1+yy=B) Y—(14+yx~B) v
B [F()-F()]

, x>0,y >0. (30)

Proof:
For random variable X with pdf (10), we have
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E Hﬂj +2(4, —21)(1+ yx )7% +3(1—/12)(1+ yx”? )2:}1

x<X<y}

2a

|:ﬂ,l+2(ﬂz —4)(1+pu”) %+3(1—17)(1+yu-ﬂ)’ v } f (u)du
[F(x)-F(y)]
Hzﬁz(,@—@)(uyu-/’)j+3(1—/12)(1+yu-/’)ﬂ aﬂu'”‘l(ﬂyu'ﬂ)j{ﬂl+2(ﬂz—ﬂl)(l+yu"’)L;+3(1—/12)(1+;/u'/’)zqdu
[F(x)-F(y)]

gaﬂu_ﬂ{(l”“_ﬁ)y au _(1+7y_ﬂ)_j—(1+7x‘ﬁ) ¥
[F(y)-F(x)] [F(X)-F(y)]

Conversely, if (30) holds, then

< C— <

2a

Hﬂﬁz(@ —ﬂl)(lwu-ﬁ)’% +3(1—z,2)(1+yu-ﬁ)y]1 f (u)du (
[F(9-F(v)] — [FR-F)]

2a

j[zﬁz(@ ~4)(1+ yu_ﬁ)_% +3(1-4,)(1+ yu-/”)‘rr f(u)du=(1+yy”) 7 —(1+ }/X"ﬁ)_%

X

y

Differentiating with respect to y, we have

2a

{ﬂi +2( =)y ) T 302y ) T f(y)=aBy " (1ery?) 7

or
ey 2a

f(xX)=afx”*(1+yx?) 7 {214-2(12 —,21)(1+yx-ﬂ)'% +3(1-4,)(1+7x7) 7 |, x>0,
which is pdf of the CRTMBIII distribution.

5. MAXIMUM LIKELIHOOD ESTIMATION

Here, we adopt maximum likelihood estimation technique for the CRTMBIII parameters.

Let @ :(a,ﬂ,y,ﬂl,ﬂ?) be unknown parameter vector. The log likelihood function K(CD)for
the CRTMBIII distribution is

We can compute the maximum likelihood estimators (MLEs) of «,,7,4,4, by

solving equations 32-36 either directly or using quasi-Newton procedure, computer
packages/ softwares such as R, SAS, Ox, MATLAB, MAPLE and MATHEMATICA,.
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(149 P) v in(1+ yxi_ﬁ)|:(7u2 — 1) +3(1-2p)(1+ v ") v}
0 n 1 _ 2
a—(InL(xi;d))):——fZIn(l+yxi '3)—72 5 =0, (32)
o a e _2a
! ! |:7\,1+2(7\.2—7»1)(1+’\{Xiﬁ) 7 3(1-2p) (1 v P) v:|
o)
- ’ﬁ Y
P n o Pinx 5 AL oy =2y ) +3a(1=2, )| L+y% ") 7
—(InL(x%;@))===>Inx +| =+1 [ —"—2+23x PInx (1+yx ") 7 =0(33
gL (0))= 5 -X .[Y jz(l+yxi_ﬁ) 2 P (Lep ) : < 1=0(3)

hy+2(2 —7\1)(1+ YXi_B)_ ¥ +3(1—}»2)(1+ yXi_B) 1

M;In 1+yxP)- Xi?B % 3(1-74) {gln 14yx P _L_
49 (1+yxiﬁ):L (1+97) (1+vxi‘ﬁ) ( %2 (o) (1+Yxi-ﬁ)

AL ]
%(InL(Xi;d))):%Zln(hyxi’ﬁ){h%]in’ﬁ(hyxi’ﬁ) +72 L+y% )

¢ 2% =0,(34)
{mz(kz‘“)(“”fﬁ)_" +3(1—7»z)(1+YXi_B)_J

200

a%l(lnl_(xi @)= 2{1— 2(1+p47P) ?MM +2(hg =) (1+147P) i +3(1-2p)(1+ yxiﬁ)v] -0, (35)

200

a—i(lnL(Xi;Q))) :z[z(n yxifﬁ)*% _3(1+ P )zya“xl +2(%, —xl)(1+ P )’% +3(1—x2)(1+ P )’ Y 1 =0. (36)

6. SIMULATION STUDY

In this section, we survey the performance of the MLEs of the parameters of the
CRTMBIII distribution with respect to sample size n. This performance is done based on the
following simulation study:

Step 1: Generate 1000 samples of size n from the CRTMBIII distribution based on the
inverse cdf method.

Step 2: Compute the MLEs for 1000 samples, say (&, B, %A],){(Z) for i=1,2,...,1000 based

on non-linear optimization algorithm with constraint matching to range of parameters.

Step 3: Compute the biases, mean squared errors and coverage probability of MLEs.

For this purpose, we have selected different arbitrarily parameter values and
n=50,100,150,200 sample sizes. All codes are written in R and the results are summarized in
Table 3. The result clearly shows that when the sample size increases, the mean square
errors (MSESs) decrease. This shows the consistency of MLE estimators.

Table 3: Bias, MSEs and coverage probability (CP) of the CRTMBIII (1,8,1,0.5,0.5) ,
(2,3,1,0.5,0.5) (0.5,5,1.2,0.9,0.9) distribution.

Sample Statistics a=1 ﬁ =8 v = 1 )\1 = 0.5 )\2 =05

Bias 0.472 1.638 0.761 0.104 0.180
n=50 MSE 0.992 3.507 1.329 0.867 0.772
CP 94.90 95.12 94.11 95.23 94.97
Bias 0.289 1.419 0.434 0.091 0.094
n=100 MSE 0.718 1.127 1.071 0.530 0.423
CP 95.30 94.89 95.04 95.01 94.99
Bias 0.117 0.912 0.210 0.070 0.087
n=200 MSE 0.482 1.067 0.975 0.313 0.189
CP 95.00 94.98 94.99 94.95 95.04
Bias 0.073 0.150 0.097 0.003 0.050
n=300 MSE 0.210 0.829 0.151 0.113 0.093

CpP 95.07 95.01 94.95 94.99 95.02
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Sample Statistics a=3 ﬁ =9 v = 1 )\1 =05 )\2 =0.5

Bias 0.846 0.721 0.779 0.112 0.177
n=50 MSE 1.232 1.221 1.211 0.921 0.646
CP 95.10 94.97 94.64 95.09 94.98
Bias 0.789 0.544 0.452 0.095 0.820
n=100 MSE 0.921 0.988 1.010 0.621 0.524
CP 95.03 95.09 94.93 94.96 95.04
Bias 0.327 0.477 0.188 0.087 0.066
n=200 MSE 0.768 0.661 0.923 0.320 0.168
CP 95.09 95.04 95.03 95.05 95.02
Bias 0.112 0.187 0.078 0.005 0.032
n=300 MSE 0.395 0.522 0.130 0.121 0.104
CP 94.99 95.03 95.01 95.03 94.99

Sample Statistics a=0.5 ﬁ =5 v = 1.2 /\1 = 0.9 )\2 =09

Bias 0.112 1.822 0.323 0.298 0.310
n=50 MSE 0.315 2.301 0.748 0.664 0.734
CP 95.08 95.61 96.06 94.78 95.22
Bias 0.099 0.921 0.214 0.166 0.201
n=100 MSE 0.277 1.321 0.432 0.422 0.512
CP 95.10 94.93 95.08 94.97 95.09
Bias 0.046 0.733 0.181 0.084 0.092
n=200 MSE 0.121 0.887 0.312 0.128 0.196
Cp 95.04 95.31 95.09 95.05 94.89
Bias 0.010 0.171 0.084 0.055 0.069
n=300 MSE 0.111 0.634 0.139 0.105 0.113
CpP 95.03 94.98 95.12 95.00 95.06

7. APPLICATIONS

We consider an application to data set such as strengths of 1.5 cm glass fibers for
authentication of the flexibility, utility and potentiality of the CRTMBIII distribution. We
compare the CRTMBIII distribution with TMBIII, MBIII, BIIl, LL distributions. For
selection of the optimum distribution, we compute the estimate of likelihood ratio statistics

(-21), Akaike information criterion (AIC), corrected Akaike information criterion (CAIC),

Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-
von Mises (W*), Anderson Darling (A*), and Kolmogorov- Smirnov [K-S] statistics with p-
values for all competing and sub distributions. We compute the MLEs and their standard
errors (in parentheses). We also compute goodness of fit statistics (GOFs) values for the
CRTMBIII, TMBIII, MBI, BIII, LL models.

7.1 Strengths of Glass Fibers: The values of data about strengths of 1.5 cm glass fibers
(Smith and Naylor; 1987 and Arifa et al.;2017) are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04,
1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.50,
1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62,
1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78,
1.81,1.82,1.84,1.84,1.89, 2.00, 2.01, 2.24.

A descriptive summary for the strengths of 1.5 cm glass fibers data set provides the
following values: 63 (sample size), 0.55 (minimum), 2.24 (maximum), 1.59 (median),
1.506825 (mean), 0.3241257 (standard deviation), 21.5105 (coefficient of variation), -
0.89993 (coefficient of skewness) and 3.92376 (coefficient of kurtosis). The boxplot (Fig.
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3(a)) for strengths of glass fibers data is negatively skewed. The TTT (total time on test) plot
(Fig. 3(b)) for strengths of glass fibers data is concave, which infers increasing failure rate.

So, the BIII-ME distribution is suitable to model these data.

stengh of 15cm glass fbers

(@)

(b)

Figure 3 Boxplot (a) and TTT plot (b) for glass fiber data

Table 4 reports the MLEs (standard errors) and measures W*, A*, KS (p-values). Table
5 displays the values—2 ¢, AIC, CAIC, BIC and HQIC.

Table 4. MLEs, (standard errors) and W*, A*, KS (p-values) for Strengths of Glass Fibers

K-S
Model a B Y A A, w A (p-value )
CRT | 3343164 | 18.4436 16264.06 0.6463 | 1.000000-10 | o oo ™ [ = | 0.0782
MBI | (4457.274) | (2.302738) | (23802.86) | (0.3772) | (0.8656) : : (0.8359)
TMBI | 1506242 | 20.0016 82081.20 04698 |1 00807 L oaszs | 0-1077
I (3881.1386) | (0.7276) | (8543.3265) | (0.3181) : : (0.4574)
MBIIl | 383533724 | 20.70762 | 1726774910 | 1 1 0.1292
(4604.0351) | (0.7271) | (6315.7470) 0.1135 1 06271 | 9434
BII | 3.4417 4.0886 1 1 1 0.2462
(0.4505) (0.3357) 0.9854 1 5.1997 1 o1)
L |1 1 1 1 0.5346
3.4506
o aan 0.8045 | 4.4035 (1%)441e-

Table 5: —2(, AIC, CAIC, BIC and HQIC for Strengths of Glass Fibers

Model e,y AIC CAIC BIC HQIC

CRTMBIII 1917072 | 2917072 | 30.22335 | 39.88639 | 33.38525
TMBIII 22.18592 | 30.18503 | 30.87558 | 38.75846 | 3355755
MBIl 23.82574 | 29.82573 | 30.23251 | 36.25514 | 32.35445
BilI 73.76724 | 77.76725 | 77.96725 | 82.05352 | 79.45306
LL 136.9448 | 138.9448 | 139.0104 | 141.088 | 139.7877

From the tables 4 and 5, it is clear that our proposed model is best fitted, with smallest
values for all GOFs and maximum p-value.
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Otsened Protaies

(a) (b) (c) (d)
Figure 4: Fitted (a) pdf, (b) cdf, (c) survival and (d) PP plots for the CRTMBIII distribution to
Strengths.

Figure 4 infers that the proposed model is closely fitted to strengths of glass fibers.
8. CONCLUDING REMARKS

We propose a very flexible distribution on the basis of the cubic transmuted mapping
that is suitable for applications in survival analysis, reliability and actuarial science. The
density function of CRTMBIII is symmetrical, right-skewed, left-skewed, exponential, arc, J
and bimodal shaped. The flexible hazard rate of the proposed model can accommodate
almost all types of shapes such as unimodal, bimodal, arc, increasing, decreasing,
decreasing-increasing-decreasing, inverted bathtub and modified bathtub. We derive the
important mathematical properties of the proposed distribution such as survival function,
hazard function, reverse hazard function, cumulative hazard function, mills ratio, elasticity,
quantile function, moments about the origin, and moments of order statistics, incomplete
moments, inequality measures and stress-strength reliability measures. We characterize the
proposed distribution via ratio of truncated moments and doubly truncated moment. We
address the maximum likelihood estimation for the model parameters. We evaluate the
precision of the maximum likelihood estimators via simulation study. We consider an
application to real data set to illustrate the flexibility, utility and potentiality of the proposed
model. We compute goodness of fit tests for examining the adequacy and competency of the
proposed model. We ascertain empirically that the proposed model is suitable for strengths
of glass fibers analysis.
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