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Abstract
Subsampling the data is used in this paper as a learning method about the in-

fluence of the data points for drawing inference on the parameters of a fitted logistic
regression model. The alternative, alternative regularized, alternative regularized
lasso, and alternative regularized ridge estimators are proposed for the parameter
estimation of logistic regression models and are then compared with the maximum
likelihood estimators. The proposed alternative regularized estimators are obtained
by using a tuning parameter but the proposed alternative estimators are not reg-
ularized. The proposed alternative regularized lasso estimators are the averaged
standard lasso estimators and the alternative regularized ridge estimators are also
the averaged standard ridge estimators over subsets of groups where the number of
subsets could be smaller than the number of parameters. The values of the tuning
parameters are obtained to make the alternative regularized estimators very close to
the maximum likelihood estimators and the process is explained with two real data
as well as a simulated study. The alternative and alternative regularized estimators
always have the closed form expressions in terms of observations that the maximum
likelihood estimators do not have. When the maximum likelihood estimators do
not have the closed form expressions, the alternative regularized estimators thus
obtained provide the approximate closed form expressions for them.

Key words and phrases: Item response, lasso, logistic regression, maximum like-
lihood, regularized, ridge, subsampling, tuning parameter.
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1. Introduction

Scientific investigations often involve fitting a logistic regression model to the binary response
data. Subsampling the data is implemented as a learning tool for enhancing the understand-
ing of the estimation process in fitting a logistic regression model by harnessing the strength of
information from some special subsampled data. The logistic regression model is popular for de-
scribing the binary response data (Agresti, 2012; Bishop, Fienberg, & Holland, 1975; Chaloner
& Larntz, 1989; Cox, 1958; Efron, 1975; Engelhardt, 1975; Khan & Shaw, 2011; Webb, Wilson
& Chong, 2004). In computer age statistical inference (Efron & Hastie, 2016), the computation-
ally intensive statistical methods play an important role in paving the pathways for statistical
learning and discoveries (James, Witten, Hastie, & Tibshirani, 2013).

The item response theory (IRT) refers to a family of mathematical models for describing
the relationship between latent traits (unobservable variables) and their realizations (observed
outcome variables). A link is established between the properties of items on an instrument, sub-
jects responding to these items and the underlying trait being measured. IRT assumes that the
latent construct and items of a measure are organized in an unobservable continuum. The main
goal is to establish the subject position on that continuum. Since the subjects are different,
the positions on the continuum are not identical and are determined by the subjects included
in the research study and item parameters. An item should discriminate the subjects on the
basis of their responses on the continuum. Item response theory psychometrics are frequently
based upon logistic regression model (Lord (1983a,b& c, 1986), Rasch (1960), Stone (1992),
Baker and Kim (2017)). The item response function of the two parameter logistic model for a
dichotomous item is defined as

Pij(θj, bi, ai) =
e[ai(θj−bi)]

1 + e[ai(θj−bi)]
,

where θj is the ability parameter of the individual j, bi is the difficulty parameter of the item i
or the item parameter, ai is the discrimination parameter and Pij(θj, bi, ai) is the probability of
correct response for the individual j on the item i.

For the convenience of presentation, the following abbreviations are used for the estimators
throughout the paper.

Abbreviation Estimator
AE Alternative Estimator
ARE Alternative Regularized Estimator
ARLE Alternative Regularized Lasso Estimator
ARRE Alternative Regularized Ridge Estimator
MLE Maximum Likelihood Estimator

Consider a response variable Y generated from a binary random variable taking two realized
values 1 (success) and 0 (failure). One of the most popular models for studying the dependence
of the response variable Y on q explanatory variables X1, ... , Xq in N groups, is the logistic
regression model. Denote the vector of q explanatory variables by (X1, ... ,Xq)

′. The response
variable Y for the ith group is denoted by Yi and the corresponding vector of explanatory
variables by Xi = (Xi1, ... ,Xiq)

′ for i = 1, ...,N. For the ith group, the probability that the binary
random variable taking the value 1 is pi and the value 0 is (1−pi). The total number of realized
values of the binary random variable is ni, i = 1, ...,N. The Yi takes the value yi as the number
of observed value 1 and (ni − yi) as the number of observed value 0. The random variables Y1,
... , YN are independent binomial random variables having

E(Yi) = nipi, Var(Yi) = nipi(1− pi), and Cov(Yi,Yi′) = 0, for i 6= i′.
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The realized value of the vector Xi is xi = (xi1, ... , xiq)
′, for i = 1, ...,N. In the logistic regression

model

loge

(
pi

1− pi

)
def
= α + β′xi, pi

def
=

eα+β
′xi

1 + eα+β′xi
, (1.1)

where α and β′ = (β1, ..., βq) are the unknown parameters. The likelihood function is denoted
by L(α,β). The score functions of the first derivatives of the log–likelihood function `(α,β)(=
logL(α,β)) with respect to α and the elements of β are denoted by U(α,β). The MLEs of α

and β, denoted by α̂ and β̂, satisfy the MLEEs U
(
α̂, β̂

)
= 0. The Newton–Raphson and Fisher

scoring iterative methods provide the fast numerical values of α̂ and β̂ using the computational

softwares, they do not provide any closed form expressions of α̂ and β̂. Consequently, the exact
statistical inferences about them are not possible with their numerical values particularly in
small samples.

Section 2 considers two cases N = (q + 1) and N ≥ (q + 1). For the first case N = (q + 1),
the closed form expressions of MLEs are obtained when the observed values of yi are not equal
to 0 and ni, i = 1, ...,N. The AEs are then proposed for the second case N ≥ (q + 1) when
the closed form expressions of MLEs are not available. The AREs are introduced in Section
3 as an approximation for MLEs. The closed form expressions of AREs are available and are
dependent on a tuning parameter. Two real data examples are also presented in this section
to illustrate the proposed AREs. In Section 4, the ARLEs and the ARREs are introduced for
N ≥ or ≤ or = (q + 1) and compared for the second illustrative example. A simulation study
is given in Section 5. The closing Section 6 draws conclusions.

2. MLEs and AEs

Denote an (N× (q + 1)) matrix X and a (1× N) vector y by

X′ =

[
1 . . . 1 . . . 1
x1 . . . xi . . . xN

]
, y = (y1, . . . , yN)′.

Although the closed form expressions of MLEs α̂ and β̂ are not available for the general case
N ≥ (q + 1), they are available for the special situation N = (q + 1) = Rank (X) and yi 6= 0
and yi 6= ni for i = 1, ...,N . Alternative estimators (AEs) of α and β are proposed for the gen-
eral case N ≥ (q + 1) using the subsampled data and harnessing the learning from the situation
N = (q + 1) = Rank (X).

2.2. N = (q + 1) = Rank (X), yi 6= 0, ni, i = 1, ...,N

For the special situation N = q + 1, the MLEEs U
(
α̂, β̂

)
= 0 become

X′y = X′ŷ. (2.1)

When Rank (X) = N = (q + 1), it follows from (2.1) that y = ŷ. In addition, when yi 6= 0 and
yi 6= ni for i = 1, ..., (N = (q + 1)), it can be seen

yi = ŷi =
nie

α̂+β̂′xi

1 + eα̂+β̂′xi

, α̂ + β̂′xi = log
yi

ni − yi

. (2.2)
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Denote

β∗ = (α, β1, . . . , βq)
′, β̂∗ = (α̂, β̂1, . . . , β̂q)

′, y∗ =

(
log

ŷ1

n1 − ŷ1

, . . . , log
ŷN

nN − ŷN

)′
.

It can be seen from (2.3) that

Xβ̂∗ = y∗, β̂∗ = X−1y∗. (2.3)

The (2.4) provides the closed form expression of β̂∗, the MLE of β∗, for the special situation
N = q + 1 = Rank (X) and yi 6= 0 and yi 6= ni for i = 1, ..., (N = (q + 1)).

2.2. Subsampled data when N ≥ (q + 1)
Consider the general situation when N ≥ (q + 1). The class S of all possible v (=

(
N

q + 1

)
)

subsamples of (q + 1) groups are considered to use (2.3) to find the closed form estimators
of β∗. Suppose that the closed form estimators of β∗ can be found for the subclass S∗ of S,
consisting of v∗ subsamples out of v subsamples. The (v − v∗) subsamples in S but not in S∗

do not provide the closed form estimators because the rank condition Rank (X) = N = (q +
1) may not hold or the yi value could be ni or 0. For the jth subsample of S∗, the closed form

estimator of β∗ is denoted by β̂∗j . The proposed alternative estimator of β∗ is

β̂∗AE

def
=

1

v∗

∑
j∈S∗

β̂∗j . (2.4)

The proposed alternative estimator β̂∗AE in (2.4) is different from the MLE β̂∗ when N > (q + 1).

However, the proposed alternative estimator β̂∗AE is identical to the MLE β̂∗ in (3.9) when
N = (q + 1).

2.3. Example 1
The Heart Disease and Blood Pressure Data given on page 217 in Table 6.5 of Agresti (2013)
consist of a sample of male residents of Framingham, Massachusetts, aged 40 to 59, having the
binary response variable Y as whether the residents developed coronary heart disease (Yes = 1)
during a six year follow up period and the explanatory variable (the risk factor) as the systolic
blood pressure X1 obtained from the range. Thus, q = 1 for this example.

Table 1 summarizes the data in the format of the presentation of this paper. Note that
N = 8, q + 1 = 2, and N > (q + 1). Moreover, v =

(
8
2

)
= 28 = v∗. The MLE of β∗ = (α, β1)

′ is

β̂∗ = (α̂, β̂1)
′ = (−6.082, 0.024)′. The log–likelihood function `(α, β1) at α = α̂ and β1 = β̂1 is

−19.305. On the other hand, the proposed alternative estimate β̂∗AE in (2.4) is (−6.514, 0.028)′

and the log–likelihood function `(α, β1) at α = −6.514 and β1 = 0.028 is −19.558.

2.4. Example 2
Smoking, obesity, and snoring were investigated for hypertension in 433 men aged 40 or over
and the data are given in Altman (1991). Table 2 summarizes the data in the format of this
paper. Note that N = 8, q + 1 = 4, and N > (q + 1). The MLE of β∗ = (α, β1, β2, β3)

′ is

β̂∗ = (α̂, β̂1, β̂2, β̂3)
′ = (−2.378,−0.068, 0.695, 0.872)′

and the log–likelihood function is `(β̂∗) = −13.269.
The numerical value of v becomes v =

(
8

q + 1

)
=
(
8

4

)
= 70. Excluding the 35 sub–samples

including Group 4 having y4 = 0 and observing that the rank condition Rank (X) = 4 does not
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Table 1: The Heart Disease and Blood Pressure Data (Agresti(2013)))

Group (i) Range xi1 yi ni

1 < 117 111.5 3 156

2 117 − 126 121.5 17 252

3 127 − 136 131.5 12 284

4 137 − 146 141.5 16 271

5 147 − 156 151.5 12 139

6 157 − 166 161.5 8 85

7 167 − 186 176.5 16 99

8 > 186 191.5 8 43

hold for 6 subsamples out of the remaining (70 − 35) = 35 subsamples, the numerical value of

v∗ is (35 − 6) = 29. The proposed alternative estimate is β̂∗AE = (−2.399, 0.173, 0.665, 0.796)′

and the log–likelihood function is `(β̂∗AE) = −13.683.

Table 2: The Hypertension Data (Altman (1991)))

Group Smoking Obesity Snoring Hypertensive Mean

i xi1 xi2 xi3 yi ni

1 0 0 0 5 60

2 1 0 0 2 17

3 0 1 0 1 8

4 1 1 0 0 2

5 0 0 1 35 187

6 1 0 1 13 85

7 0 1 1 15 51

8 1 1 1 8 23

3. AREs

The proposed alternative regularized estimators (AREs) depend on a non–negative integer
valued tuning (regularization) parameter λ where 0 ≤ λ ≤ (v∗−1). For a fixed λ, in the class S∗

of v∗ subsamples of (q + 1) groups, consider
(v∗
λ

)
possible subclasses, each consisting of (v∗−λ)

subsamples. For the jth subsample within the g(λ)th subclass S∗
g(λ), g(λ) = 1, ...,

(v∗
λ

)
, denote the

closed form estimator of β∗ by β̂∗
jg(λ) using (4) and obtain the alternative estimator following
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(2.4) as

β̂∗AE(λ)
def
=

1

(v∗ − λ)

∑
j∈S∗

g(λ)

β̂∗jg(λ), g(λ) = 1, ...,

(
v∗

λ

)
. (3.5)

Denote LL(λ) = `
(
β̂∗

AE(λ)

)
. Find a λ (= λM, say) maximizing the log−likelihood, LL(λ), for

λ = 1, ..., (v∗ − 1). In other words, λM is the value of λ satisfying

LL(λM)
def
= max

λ
[LL(λ)] . (3.6)

Define the alternative regularized estimator (ARE) of β∗ as

β̂∗ARE(λM)
def
= β̂∗AE(λM). (3.7)

Notice that β̂∗ARE(λM) depends on the tuning parameter λ through β̂∗
AE(λ), for all values of λ,

0 ≤ λ ≤ (v∗ − 1). The (2.4) and (3.5) become equal for λ = 0 or equivalently,

β̂∗AE(0) = β̂∗AE. (3.8)

The value λM is the choice for the tuning parameter λ to satisfy

β̂∗ARE(λM) ' β̂∗, LL(λM) = `
(
β̂∗ARE(λM)

)
' `

(
β̂∗
)
. (3.9)

Consequently, the MLE is approximately equal to the ARE for the choice of tuning parameter
λ = λM.

In Example 1 of Section 2.3, it can be seen that λM = 20. Define two Transformed Log-
Likelihood (TLL)s from LL(λ) as

TLL1(λ) = (LL(λ) + 19) ,TLL2(λ) = (LL(λ) + 19.305)×109.

Figure 1 displays the plot of TLL1(λ) against λ (= 0, 1, ... , 27). Figure 2 highlighting the
maximum (MAX) of Figure 1 presents the plot of TLL2(λ) against λ (= 8, 9, ... , 21). From
Table 3 and Figure 2,

β̂∗ = (−6.082, 0.024)′ and β̂∗ARE(20) = (−6.082, 0.024)′

are identical up to 4 (after truncation) decimal places for the first component and 6 decimal
places for the second component. Moreover,

`
(
β̂∗ARE(20)

)
= −19.30519373 and `

(
β̂∗
)

= −19.30519372

are identical up to 7 decimal places. Hence it follows from (3.9) that

β̂∗ARE(20) ' β̂∗, `
(
β̂∗ARE(20)

)
' `

(
β̂∗
)
.

Figure 3 displays the plot of LL(λ) against λ = 0, 1, ..., 28 for N = 8 and q = 3. On the
other hand, Figure 4 displays the plot of LL(λ) against λ = 0, 1, ..., 19 for N = 7 and q = 2.
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Figure 1: Plot of TLL1 against λ.

For N = 8 and q = 3, it can be seen that

β̂∗ = (−2.378,−0.068, 0.695, 0.872)′ and `
(
β̂∗
)

= −13.269.

For λ = 22,

β̂∗ARE(22) = (−2.377, 0.143, 0.651, 0.814)′

and `
(
β̂∗ARE(22)

)
= −13.277,

which is the maximum value of LL(λ) for λ = 0, 1, ..., 28. The λM = 22 is then approximating

β̂∗ by β̂∗ARE(22).

Some aspects of the fitting statistics for logistic regression model to the data in Table 2 are
given in Table 4. The explanatory variable “smoking” is not significant in having the P value
as 0.808. Deleting the explanatory variable smoking from the model, q + 1 becomes 3. The
numerical value of v becomes v =

(
7

q + 1

)
=
(
7

3

)
= 35. The rank condition, Rank (X) = 4, holds

for only 20 subsamples and does not hold for 15 out of 35 subsamples. Therefore, v∗ = 20.

For N = 7 and q = 2 excluding “smoking” as an explanatory variable, it can be seen from
Figure 4 that the maximum value -13.302061150 of LL(λ) for λ = 0, 1, ..., 19 is attained at

λM = 3 for approximating β̂∗ by β̂∗ARE(3).
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Figure 2: Plot of TLL2 against the partial values of λ[= 8, ..., 21].

4. ARLE and ARRE for N > or < or = (q+1)

In this section, N can be equal to, greater or even less than (q + 1). Groups having yi = 0
(Group 4 in Example 2) or ni = yi are ignored to reduce the value of N. Choose a number γ,
0 < γ < N, when N ≥ (q + 1) or a number γ, 0 < γ ≤ N, when N < (q + 1). For the lasso and
ridge estimations, the tuning parameters are denoted by δL and δR respectively. The optimum
values of δL and δR are determined by minimizing the Generalized Cross Validations (GCVs)
(Eq. (7.46), p. 217, Hastie et al. (2001)) for all possible

(
N

γ

)
subsamples of groups. Then the

Lasso estimates β̂∗L(δL) and the Ridge estimates β̂∗R(δR) are then calculated for
(
N

γ

)
subsamples

of groups. The average of
(
N

γ

)
both Lasso and Ridge estimates provide β̂∗ARLE and β̂∗ARRE similar

to β̂∗AE in (5). In Example 2 excluding Group 4, N = 7 and (q + 1) = 4. Taking γ = 4, the

Lasso estimates β̂∗L(δL) and `
(
β̂∗L(δL)

)
for 35 subsamples of groups are displayed in Table 5 for

γ = 4. It can be seen from Table 5 that

β̂∗ARLE = (−1.977, 0.074, 0.362, 0.370)′ and therefore `
(
β̂∗ARLE

)
= −15.221.

Again taking γ = 4, the Ridge estimates β̂∗R(δR) and `
(
β̂∗R(δR)

)
for 35 subsamples of groups

are displayed in Table 6. Moreover, it can be seen from Table 6 that

β̂∗ARRE = (−2.013, 0.094, 0.365, 0.428)′ and therefore `
(
β̂∗ARRE

)
= −14.948.

Taking γ = 3, the Lasso estimates β̂∗L(δL) and `
(
β̂∗L(δL)

)
for 35 subsamples of groups are dis-

played in Table 7. It can be seen from Table 7 that

β̂∗ARLE = (−1.751, 0.067, 0.191, 0.124)′ and therefore `
(
β̂∗ARLE

)
= −17.506.
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Table 3: Comparison among MLE, AE, and ARE for λ = 20

MLE AE ARE for λ = 20

≡ (ARE for λ = 0)

β∗ : β̂∗ β̂∗AE β̂∗ARE(20)

α̂ − 6.082 − 6.514 − 6.082

β̂1 0.024 0.028 0.024

`(β∗) `(β̂∗) `(β̂∗AE) `(β̂∗ARE(20))

− 19.305 − 19.558 − 19.305

Table 4: Fitting statistics for logistic regression model to the Hypertension Data (Altman

(1991))

Explanatory

Variable Parameter MLE Std. Error z value P value

Intercept α - 2.378 0.381 - 6.254 4 e−10

Smoking β1 - 0.068 0.278 - 0.244 0.808

Obesity β2 0.695 0.285 2.439 0.015

Snoring β3 0.872 0.398 2.193 0.028
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Figure 3: Plot of LL(λ) against λ for N = 8 and q = 3.
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Figure 4: Plot of LL(λ) against λ for N = 8 and q = 2.

Again taking γ = 3, the Ridge estimates β̂∗R(δR) and `
(
β̂∗R(δR)

)
for 35 subsamples of groups

are displayed in Table 6. Moreover, it can be seen from Table 8 that

β̂∗ARRE = (−1.600, 0.005, 0.020, 0.021)′ and therefore `
(
β̂∗ARRE

)
= −19.382.

The results in Table 9 demonstrate that ARE (λ = 22) is closest to MLE. Lasso(1,5,7),
Lasso(1,5,6,7), AE, and Ridge(1,5,6,7) are also closer to MLE but behind ARE (λ = 22).
ARLE(γ = 4), ARLE(γ = 3), ARRE(γ = 4), and ARRE(γ = 3) are a bit away from MLE.

5. A Simulation Study

The 1,000 data sets are generated on yi, i = 1, ..., 8 under the logistic regression model in (1)
for q = 1 having the assumed values of α = −6.08 and β1 = 0.025 and keeping the (xi1, ni) values

the same as in Table 1. For the ith data set the numerical values of MLE β̂∗, AE β̂∗AE, and ARE

β̂∗ARE(λ), 0 ≤ λ ≤ 27 are obtained and denote them by β̂∗(i) = (α̂(i), β̂
(i)
1 )′, β̂

∗(i)
AE = (α̂

(i)
AE, β̂

(i)
1AE)′,

and β̂
∗(i)
ARE(λ) = (α̂

(i)
ARE(λ), β̂

(i)
1ARE(λ))′. Define

α̂ =
1

1000

1000∑
i=1

α̂(i), α̂AE =
1

1000

1000∑
i=1

α̂
(i)
AE, α̂ARE(λ) =

1

1000

1000∑
i=1

α̂
(i)
ARE(λ),

β̂1 =
1

1000

1000∑
i=1

β̂(i)
1 , β̂1AE =

1

1000

1000∑
i=1

β̂
(i)
1AE, β̂1ARE(λ) =

1

1000

1000∑
i=1

β̂
(i)
1ARE(λ).

(5.10)

The log likelihoods `(β̂∗), `(β̂∗AE), and `(β̂∗ARE(λ)), 0 ≤ λ ≤ 27 are also obtained. Then their
averages are found over 1,000 data sets.
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¯̀(β̂∗) =
1

1000

1000∑
i=1

`(β̂∗(i)), ¯̀(β̂∗AE) =
1

1000

1000∑
i=1

`(β̂
∗(i)
AE ), ¯̀(β̂∗ARE(λ)) =

1

1000

1000∑
i=1

`(β̂
∗(i)
ARE(λ)).

(5.11)

Table 10 presents the averages in (5.10) and (5.11) with the exceptions on β̂1ARE(λ) and
¯̀(β̂∗ARE(λ)) only for the λ values: 6, 21, and 25 to save the space.

The value of λM satisfying (3.9) is determined from Table 10 as λM = 21 giving β̂
∗

ARE(21) =

(−6.083899, 0.025019)′ and ¯̀(β̂∗ARE(21)) = −19.714012 in contrast to β̂
∗

= (−6.083941, 0.025019))′

and `(β̂∗) = −19.714009. The true value of β∗ = (α, β1)
′ = (−6.08, 0.025)′. The value of λT

satisfying

β̂∗ARE(λT) ' β∗, (5.12)

is also obtained from Table 10. A choice for λT is 25 having β̂
∗

ARE(25) = (−6.083519, 0.025016)′

closest to β∗ = (−6.080, 0.025)′ but giving `(β̂∗
ARE

(25)) = − 19.716031. Denote the mean
square error by MSE and the mean absolute difference by MAD. Define

MSE(α̂) =
1

1000

1000∑
i=1

(
α̂(i) + 6.080

)2
, MAD(α̂) =

1

1000

1000∑
i=1

∣∣α̂(i) + 6.080
∣∣ ,

MSE(β̂1) =
1

1000

1000∑
i=1

(
β̂(i)

1 − 0.025
)2
, MAD(β̂1) =

1

1000

1000∑
i=1

∣∣∣β̂(i)
1 − 0.025

∣∣∣ . (5.13)

Table 11 presents the numerical values of MSE(α̂), MSE(β̂1), MAD(α̂), and MAD(β̂1) for

β̂∗, β̂∗AE, β̂∗ARE(λ) when λ = 6, 21, and 25. It is clear from Table 11 that the best choice for λT

is 21 with respect to the criterion functions MSE and MAD. Note that

−6.080000 < α̂ = −6.083941 < −6.083899 = α̂ARE(21),

0.025000 < 0.025019 = β̂1 = β̂1ARE(21),

¯̀(β̂∗ARE(21)) = −19.714012 < −19.714009 = ¯̀(β̂∗),

1

1000

1000∑
i=1

∣∣∣α̂(i)
ARE(21)− α̂(i)

∣∣∣ = 0.000812,

1

1000

1000∑
i=1

∣∣∣β̂(i)
1ARE(21)− β̂(i)

1

∣∣∣ = 0.000005,

(5.14)

demonstrating the closeness of the true value of β∗ = (α, β1)
′ = (−6.08, 0.025)′ to the av-

eraged MLEs β̂
∗

= (−6.083941, 0.025019)′ as well as to the averaged AREs β̂
∗

ARE(21) =
(−6.083899, 0.025019)′ from the 1000 simulated data sets. In other words, the performance
of ARE for the choice of the tuning parameter λ = 21 is almost equivalent to MLE.
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6. Conclusions

Subsampling methods are implemented to obtain the AE, AREs, ARLEs, ARREs. By using
these estimators, new insights are gained for fitting the logistic models to the data. The pro-
posed AREs depend on the tuning parameter λ and AEs. The tuning parameter value can be
obtained to make the ARE and its likelihood approximately equal to the corresponding values
of MLE. Two real data one with an explanatory variable and the other with three explanatory
variables are presented to illustrate the proposed methods. Example 2 demonstrates the close-
ness of ARE for a choice of the tuning parameter λ relative to AE, ARLE, ARRE, Lasso and
Ridge for specific sub-sampled data. A simulated data example is also presented to demonstrate
the almost equivalent performance of ARE and MLE for a choice of tuning parameter. The
AREs have closed form expressions helpful to study their statistical properties even for small
samples and are good closed form approximate representations for MLEs particularly when they
do not exist.

The future investigation of this work will include the detailed theoretical properties of the
AE, AREs, ARLEs and ARREs in comparison with the MLEs. More detailed simulation studies
will be beneficial. The investigation for the high dimensional data will be another important
direction. For the longitudinal data (Chan, 2014; Ghosh & Chakravartty, 2009), the investiga-
tion remains to be performed. In the area of quantitatively estimate the accuracy of artificial
intelligence in machine learning (Hastie, T. et al., 2001; James, G. et al., 2013), IRT could be
very useful and our proposed average estimators could be applicable.
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Table 5: Lasso estimates β̂∗L(δL) and `
(
β̂∗L(δL)

)
for 35 subsamples of groups

Subset δL β̂∗L(δL) `
(
β̂∗L(δL)

)
1, 2, 3, 5 0.058 -2.042, 0.000, 0.000, 0.342 -19.524

1, 2, 3, 6 0.077 -2.018, 0.000, 0.000, 0.000 -27.259

1, 2, 3, 7 0.213 -1.836, 0.000, 0.000, 0.111 -20.588

1, 2, 3, 8 0.010 -2.359, 0.344, 0.413, 0.934 -15.479

1, 2, 5, 6 0.128 -1.951, 0.000, 0.000, 0.105 -22.763

1, 2, 5, 7 0.044 -2.118, 0.000, 0.417, 0.650 -13.976

1, 2, 5, 8 0.010 -2.357, 0.342, 0.457, 0.888 -15.096

1, 2, 6, 7 0.228 -1.750, 0.000, 0.000, 0.000 -21.437

1, 2, 6, 8 0.010 -2.357, 0.342, 1.042, 0.303 -17.707

1, 2, 7, 8 0.011 -2.322, 0.273, 1.412, 0.000 -23.117

1, 3, 5, 6 0.121 -1.930, 0.000. 0.000, 0.099 -22.485

1, 3, 5, 7 0.008 -2.401, 0.000, 0.491, 0.968 -13.600

1, 3, 5, 8 0.010 -2.358, 0.389, 0.412, 0.890 -15.549

1, 3, 6, 7 0.008 -2.398,-0.260, 0.483, 0.978 -13.833

1, 3, 6, 8 0.010 -2.517, 0.963, 0.729, 0.000 -29.954

1, 3, 7, 8 0.010 -2.357, 0.206, 0.411, 1.070 -15.822

1, 5, 6, 7 0.008 -2.365,-0.177, 0.593, 0.863 -13.500

1, 5, 6, 8 0.231 -1.552, 0.000, 0.000, 0.000 -19.608

1, 5, 7, 8 0.010 -2.356, 0.205, 0.593, 0.888 -14.107

1, 6, 7, 8 0.010 -2.356, 0.206, 1.042, 0.439 -15.864

2, 3, 5, 6 0.003 -1.809,-0.206, 0.124, 0.316 -19.400

2, 3, 5, 7 0.202 -1.576, 0.000, 0.000, 0.000 -19.708

2, 3, 5, 8 0.233 -1.515, 0.000, 0.000, 0.000 -19.529

2, 3, 6, 7 0.172 -1.637, 0.000, 0.000, 0.000 -20.112

2, 3, 6, 8 0.203 -1.575, 0.000, 0.000, 0.000 -19.703

2, 3, 7, 8 0.008 -2.132, 0.149, 0.186, 1.103 -20.541

2, 5, 6, 7 0.006 -1.747,-0.243, 0.569, 0.279 -15.019

2, 5, 6, 8 0.008 -1.804,-0.179, 1.019, 0.303 -15.727

2, 5, 7, 8 0.081 -1.691, 0.000, 0.555, 0.222 -15.420

2, 6, 7, 8 0.027 -1.906, 0.000, 0.905, 0.195 -15.128

3, 5, 6, 7 0.111 -1.500, 0.000, 0.000, 0.000 -19.522

3, 5, 6, 8 0.134 -1.439, 0.000, 0.000, 0.000 -19.645

3, 5, 7, 8 0.008 -2.448, 0.247, 0.532, 1.010 -14.537

3, 6, 7, 8 0.164 -1.290, 0.000, 0.000, 0.000 -21.002

5, 6, 7, 8 0.075 -1.440, 0.000, 0.537, 0.000 -17.480
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Table 6: Ridge estimates β̂∗R(δR) and `
(
β̂∗R(δR)

)
for 35 subsamples of groups

Subset δR β̂∗R(δR) `
(
β̂∗R(δR)

)
1, 2, 3, 5 57.993 -1.957,-0.000, 0.000, 0.001 -25.615

1, 2, 3, 6 53.175 -2.018, 0.000, 0.000, 0.0004 -27.253

1, 2, 3, 7 0.031 -2.265, 0.0205, 0.406, 0.807 -14.427

1, 2, 3, 8 0.037 -2.360, 0.409, 0.466, 0.701 -15.248

1, 2, 5, 6 0.131 -2.035, 0.028, 0.000, 0.246 -21.131

1, 2, 5, 7 0.031 -2.211, 0.161, 0.520, 0.703 -13.951

1, 2, 5, 8 0.038 -2.270, 0.299, 0.488, 0.743 -14.574

1, 2, 6, 7 0.256 -1.941,-0.031, 0.280, 0.273 -16.687

1, 2, 6, 8 0.038 -2.323, 0.322, 0.800, 0.385 -16.406

1, 2, 7, 8 0.040 -2.266, 0.259, 0.657, 0.656 -14.114

1, 3, 5, 6 0.163 -1.991, 0.028, 0.016, 0.198 -21.121

1, 3, 5, 7 0.030 -2.300, 0.000, 0.431, 0.824 -13.742

1, 3, 5, 8 0.037 -2.259, 0.458, 0.340, 0.729 -16.143

1, 3, 6, 7 0.029 -2.327,-0.139, 0.475, 0.783 -13.984

1, 3, 6, 8 0.036 -2.435, 0.451, 0.627, 0.450 -17.850

1, 3, 7, 8 0.039 -2.303, 0.302, 0.446, 0.863 -15.020

1, 5, 6, 7 0.029 -2.249,-0.147, 0.545, 0.714 -13.714

1, 5, 6, 8 0.085 -2.136, 0.155, 0.562, 0.488 -14.302

1, 5, 7, 8 0.039 -2.232, 0.258, 0.561, 0.726 -14.363

1, 6, 7, 8 0.039 -2.290, 0.185, 0.868, 0.480 -14.789

2, 3, 5, 6 0.012 -1.805,-0.176,-0.116, 0.273 -19.670

2, 3, 5, 7 0.074 -1.874,-0.085, 0.175, 0.464 -15.649

2, 3, 5, 8 232.959 -1.515, 0.000, 0.000, 0.001 -19.523

2, 3, 6, 7 0.337 -1.724,-0.091, 0.091, 0.173 -17.873

2, 3, 6, 8 0.362 -1.847, 0.105, 0.175, 0.211 -17.256

2, 3, 7, 8 0.031 -2.161, 0.211, 0.326, 0.889 -16.289

2, 5, 6, 7 0.023 -1.683,-0.277, 0.455, 0.253 -15.577

2, 5, 6, 8 0.030 -1.837,-0.097, 0.779, 0.346 -14.604

2, 5, 7, 8 0.030 -1.993, 0.0970, 0.591, 0.537 -14.313

2, 6, 7, 8 0.031 -1.998, 0.054, 0.801, 0.332 -14.393

3, 5, 6, 7 111.376 -1.501,-0.000, 0.000, 0.000 -19.518

3, 5, 6, 8 134.265 -1.439, 0.001, 0.000, 0.001 -19.638

3, 5, 7, 8 0.029 -2.131, 0.338, 0.349, 0.740 -16.132

3, 6, 7, 8 163.871 -1.291, 0.000, 0.000, 0.001 -20.991

5, 6, 7, 8 0.030 -1.500, 0.001, 0.656, 0.000 -16.912
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Table 7: Lasso estimates β̂∗L(δL) and `
(
β̂∗L(δL)

)
for 35 subsamples of groups

Subset δL β̂∗L(δL) `
(
β̂∗L(δL)

)
1, 2, 3 0.058 -2.120, 0.000, 0.000, 0.000 -30.360

1, 2, 5 0.164 -1.960, 0.000, 0.000, 0.000 -25.723

1, 2, 6 0.006 -2.382, 0.367, 0.000, 0.287 -26.833

1, 2, 7 0.296 -1.763, 0.000, 0.000, 0.000 -21.632

1, 2, 8 0.014 -2.357, 0.343, 1.346, 0.000 -23.613

1, 3, 5 0.156 -1.938, 0.000, 0.000, 0.000 -25.148

1, 3, 6 0.103 -2.019, 0.000, 0.000, 0.000 -27.285

1, 3, 7 0.012 -2.361, 0.000, 0.416, 1.034 -14.215

1, 3, 8 0.015 -2.354, 1.274, 0.409, 0.000 -31.109

1, 5, 6 0.180 -1.859, 0.000, 0.000, 0.000 -23.385

1, 5, 7 0.013 -2.360, 0.0000, 0.555, 0.891 -13.429

1, 5, 8 0.014 -2.356, 0.798, 0.000, 0.888 -22.293

1, 6, 7 0.262 -1.662, 0.000, 0.000, 0.000 -20.340

1, 6, 8 0.015 -2.354, 0.642, 1.039, 0.000 -23.747

1, 7, 8 0.333 -1.398, 0.000, 0.146, 0.000 -18.935

2, 3, 5 0.114 -1.810, 0.000, 0.000, 0.000 -22.424

2, 3, 6 0.060 -1.891, 0.000, 0.000, 0.000 -24.059

2, 3, 7 0.246 -1.612, 0.000, 0.000, 0.000 -19.920

2, 3, 8 0.300 -1.530, 0.000, 0.000, 0.000 -19.551

2, 5, 6 0.004 -1.772,-0.230, 0.0000, 0.290 -18.225

2, 5, 7 0.009 -1.469,-0.520, 0.566, 0.000 -17.955

2, 5, 8 0.247 -1.371, 0.000, 0.000, 0.000 -20.076

2, 6, 7 0.009 -1.179,-0.808, 0.000, 0.275 -25.545

2, 6, 8 0.012 -1.980, 0.000, 1.048, 0.268 -15.196

2, 7, 8 0.281 -1.173, 0.000, 0.000, 0.000 -23.213

3, 5, 6 0.079 -1.709, 0.000, 0.000, 0.000 -20.870

3, 5, 7 0.172 -1.430, 0.000, 0.000, 0.000 -19.682

3, 5, 8 0.125 -1.571, 0.465, 0.000, 0.103 -21.271

3, 6, 7 0.145 -1.511, 0.000, 0.000, 0.000 -19.526

3, 6, 8 0.173 -1.429, 0.000, 0.000, 0.000 -19.688

3, 7, 8 0.201 -1.344, 0.000, 0.000, 0.291 -23.039

5, 6, 7 0.007 -1.469,-0.223, 0.573, 0.000 -16.908

5, 6, 8 0.214 -1.270, 0.000, 0.000, 0.000 -21.318

5, 7, 8 0.007 -1.448, 0.227, 0.573, 0.000 -18.803

6, 7, 8 0.213 -1.072, 0.000, 0.000, 0.000 -25.977
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Table 8: Ridge estimates β̂∗R(δR) and `
(
β̂∗R(δR)

)
for 35 subsamples of groups

Subset δL β̂∗L(δL) `
(
β̂∗L(δL)

)
1, 2, 3 57.886 -2.120, 0.000, 0.000, 0.000 -30.359

1, 2, 5 102.978 -1.961,-0.000, 0.000, 0.001 -25.711

1, 2, 6 1.806 -2.059, 0.018, 0.000, 0.016 -27.794

1, 2, 7 4.096 -1.788,-0.011, 0.043, 0.043 -20.707

1, 2, 8 4.424 -1.742, 0.038, 0.055, 0.055 -19.624

1, 3, 5 118.239 -1.938, 0.000,-0.000, 0.001 -25.138

1, 3, 6 102.264 -2.019, 0.000, 0.000, 0.000 -27.279

1, 3, 7 3.990 -1.777, 0.000, 0.033, 0.044 -20.601

1, 3, 8 4.750 -1.715, 0.050, 0.036, 0.050 -19.596

1, 5, 6 2.486 -1.880, 0.007, 0.000, 0.027 -23.106

1, 5, 7 4.141 -1.618, 0.000, 0.034, 0.039 -19.139

1, 5, 8 4.558 -1.556, 0.042, 0.042, 0.045 -18.848

1, 6, 7 3.983 -1.698,-0.003, 0.039, 0.037 -19.734

1, 6, 8 4.817 -1.645, 0.038, 0.045, 0.038 -19.153

1, 7, 8 4.615 -1.388, 0.035, 0.057, 0.057 -19.703

2, 3, 5 113.750 -1.810,-0.000,-0.000, 0.000 -22.421

2, 3, 6 59.709 -1.891, 0.000,-0.000, 0.000 -24.058

2, 3, 7 3.098 -1.632,-0.020, 0.020, 0.039 -19.380

2, 3, 8 300.400 -1.531, 0.000, 0.000, 0.001 -19.543

2, 5, 6 1.435 -1.732,-0.013, 0.000, 0.014 -20.972

2, 5, 7 2.926 -1.472,-0.027, 0.029, 0.027 -19.141

2, 5, 8 3.760 -1.406, 0.005, 0.036, 0.031 -19.514

2, 6, 7 3.040 -1.539,-0.032, 0.032, 0.024 -19.086

2, 6, 8 3.800 -1.484, 0.000, 0.041, 0.028 -19.031

2, 7, 8 3.541 -1.222,-0.015, 0.044, 0.044 -22.287

3, 5, 6 79.064 -1.709, 0.000,-0.000, 0.000 -20.869

3, 5, 7 171.980 -1.430, 0.000, 0.000, 0.000 -19.679

3, 5, 8 3.320 -1.385, 0.037, 0.006, 0.031 -20.016

3, 6, 7 144.959 -1.511,-0.000, 0.000, 0.001 -19.521

3, 6, 8 172.388 -1.430, 0.001, 0.000, 0.001 -19.680

3, 7, 8 3.348 -1.188, 0.028, 0.000, 0.043 -23.572

5, 6, 7 2.199 -1.354,-0.018, 0.024, 0.000 -20.018

5, 6, 8 2.959 -1.287, 0.010, 0.032, 0.000 -20.921

5, 7, 8 2.205 -1.013, 0.018, 0.024, 0.000 -28.138

6, 7, 8 2.953 -1.087,-0.009, 0.032, 0.000 -25.341
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Table 9: Comparison of MLE, AE, ARE, ARLE (γ = 4), ARRE (γ = 4), ARLE (γ = 3) and

ARRE (γ = 3) for Example 2

Method (u) β̂∗u `
(
β̂∗u

)
MLE -2.378, -0.068, 0.695, 0.872 -13.269

AE -2.399, 0.173, 0.665, 0.796 -13.683

ARE(λ = 22) -2.377, 0.143, 0.651, 0.814 -13.277

ARLE(γ = 4) -1.977, 0.074, 0.362, 0.370 -15.221

ARRE(γ = 4) -2.013, 0.094, 0.365, 0.428 -14.948

ARLE(γ = 3) -1.751, 0.067, 0.191, 0.124 -17.506

ARRE(γ = 3) -1.600, 0.005, 0.020, 0.021 -19.382

Lasso(1, 5, 6, 7) -2.364, -0.177, 0.593, 0.863 -13.500

δL = 0.00830

Ridge(1, 5, 6, 7) -2.249, -0.147, 0.545, 0.714 -13.714

δR = 0.02845

Lasso(1, 5, 7) -2.360, 0.000, 0.555, 0.891 -13.429

δL = 0.01264

Ridge(1, 5, 7) -1.618, 0.000, 0.034, 0.039 -19.139

δR = 4.14056

Ridge (1,5,8) -1.556, 0.042, 0.042, 0.045 -18.848

δR = 4.55745

Table 10: The average values β̂∗, β̂∗AE, β̂∗ARE(λ), ¯̀(β̂∗), ¯̀(β̂∗AE), and ¯̀(β̂∗ARE(λ)) calculated

over 1,000 simulated data for λ = 6, 21, and 25

β∗ : β̂
∗

β̂
∗

AE β̂
∗

ARE(6) β̂
∗

ARE(21) β̂
∗

ARE(25)

α − 6.084 − 6.183 − 6.084 − 6.084 − 6.084

β1 0.025 0.026 0.025 0.025 0.025

l(β∗) l̄(β̂∗) ¯̀(β̂∗AE) l̄(β̂∗ARE(6)) ¯̀(β̂∗ARE(21)) ¯̀(β̂∗ARE(25))

− 19.714 − 20.458 − 19.725 − 19.714 − 19.716
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Table 11: The MSE(α̂), MSE(β̂1), MAD(α̂), and MAD(β̂1) for β̂∗, β̂∗AE, β̂∗ARE(λ) when

λ = 6, 21, and 25

MSE(α̂) MSE(β̂1) MAD(α̂) MAD(β̂1)

β̂∗ 0.444 0.000 0.530 0.004

β̂∗AE 0.712 0.000 0.654 0.005

β̂∗ARE(6) 0.447 0.000 0.532 0.004

β̂∗ARE(21) 0.444 0.000 0.530 0.004

β̂∗ARE(25) 0.446 0.000 0.531 0.004
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