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Abstract  

The so-called Kumaraswamy distribution is a special probability 

distribution developed to model doubled bounded random processes for which 

the mode do not necessarily have to be within the bounds. In this article, a 

generalization of the Kumaraswamy distribution called the T-Kumaraswamy 

family is defined using the T-R {Y} family of distributions framework. The 

resulting T-Kumaraswamy family is obtained using the quantile functions of 

some standardized distributions. Some general mathematical properties of the 

new family are studied. Five new generalized Kumaraswamy distributions are 

proposed using the T-Kumaraswamy method. Real data sets are further used to 

test the applicability of the new family.  

 

Keywords:  T − R {Y}  family; Quantile function; Hazard function; 

Kumaraswamy distribution.   
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1. Introduction 

Kumaraswamy (1980) developed a double-bounded probability distribution to model 

random processes which are limited to interval of finite length for which the mode doesn’t 

necessarily have to be within the Interval. A special case of the interval being (0,1) has been 

studied extensively and called the Kumaraswamy distribution. The Kumaraswamy 

distribution which closely mimics the beta distribution has been thought of as a good 

alternative to the beta distribution due to the circumstance that it has both closed form 

cumulative distribution function (cdf), and probability density function (pdf), a characteristic 

which the beta distribution do not possess (For details on some important properties of the 

Kumaraswamy distribution, see Jones, 2009; Mitnik, 2013). Many probability distributions 

have been generated in the literature using the Kumaraswamy distribution as the generator 

(see. Cordeiro and Castro, 2011; Marcelino et al.  2011; Paranaiba et al. 2013; Cordeiro et al. 

2014; Behairy et al. 2016). Many generalized families of distributions have appeared in the 

literature within the last two decades (see. Cordeiro et al. 2013; Bourguignon et al. 2014). 

Furthermore, the development of generalized distributions with support on the interval 

(0,1) seems very rare in the literature, although the importance of such generalized 

distributions cannot be over-emphasized. Examples of such few generalized distribution on 

(0,1)  include the generalized beta distribution of the first kind (McDonald, 1984), the 

generalized Kumaraswamy distribution (Carrasco et al. 2010), the Kumaraswamy – 

Kumaraswamy distribution (El Sherpieny and Ahmad 2014), and the exponentiated 

generalized Kumaraswamy distribution (Elgarhy et al. 2018). For random processes that 

assume values on the interval (0,1), there is a great need to develop flexible and highly 

adaptive distributions to model such processes. Areas of application of distributions defined 

on (0,1) include but not limited to serving as conjugate prior to some of the classical 

discrete distribution in Bayesian inference and modeling of the random behavior of 

percentages and proportions. 

The 𝑇 − 𝑋  family of distributions was developed by Alzaatreh et al. (2013a). They 

utilized a random variable 𝑇 defined on the interval [𝑎, 𝑏], −∞ ≤ 𝑎 < 𝑏 ≤ ∞ with cdf and 

pdf 𝑅(𝑡) and 𝑟(𝑡) respectively, and another random variable 𝑋 with pdf and cdf 𝑓(𝑥) and 

 𝐹(𝑥) respectively. Using a transformation 𝑊(𝐹(𝑥)) of the cdf of  𝑋, they defined a new 

class of distributions by the cdf of the form 

            𝐺(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡
𝑊(𝐹(𝑥))

𝑎

,                                                               (1) 

where 𝑊(. ) satisfies the conditions  

 

i. 𝑊(𝐹(𝑥)) ∈ [𝑎, 𝑏], 

ii. 𝑊 is differentiable and monotonically non-decreasing, 

iii. 𝑊(𝐹(𝑥))
 

→  𝑎 𝑎𝑠 𝑥
 

→ − ∞ and  𝑊(𝐹(𝑥))
 

→  𝑏 𝑎𝑠 𝑥
 

→ ∞.  

Examples of some probability distributions developed using the 𝑇 − 𝑋  frame work 

include the Weibull-Pareto distribution (Alzaatreh et al., 2013b), Gumbel-Weibull 

Distribution (Al-Aqtash et al., 2014) and the Gumbel-Burr XII distribution (Osatohanmwen 
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et al., 2017). Aljarrah et al. (2014) later took 𝑊(𝐹(𝑥)) to be the quantile function of a 

random variable 𝑌 and defined the 𝑇 − 𝑋 {𝑌} family as 

      𝐺(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡
𝑄𝑌(𝐹(𝑥))

𝑎

 = 𝑅 (𝑄𝑌(𝐹(𝑥))),                                    (2) 

where 𝑄𝑌(𝑝) is the quantile function of the random variable 𝑌. Observe that in (2), 𝑋 is used 

as a random variable having cdf 𝐹(𝑥) and at the same time having cdf 𝐺(𝑥) which may be 

confusing. This made Alzaatreh et al. (2014) to re-define the 𝑇 − 𝑋 {𝑌} as 𝑇 − 𝑅 {𝑌}and 

proposed several generalizations of the normal distribution using the 𝑇 − 𝑅 {𝑌} framework. 

In section 2 the 𝑇 − Kumaraswamy family of distributions is defined. General 

mathematical properties of the proposed family are presented in section 3. Some members of 

the new family are specified in section 4 alongside their properties. In section 5 some 

applications to real data sets is carried out and the paper closes in section 6 with summary 

and conclusions. 

 

2. The 𝑻 − 𝐊𝐮𝐦𝐚𝐫𝐚𝐬𝐰𝐚𝐦𝐲 Family of Distributions 

Suppose 𝑇 ， 𝑅 and  𝑌  are random variables with respective cdfs 

 𝐹𝑇(𝑥),  𝐹𝑅(𝑥) and 𝐹𝑌(𝑥). Let the corresponding quantile functions be 𝑄𝑇(𝑝), 𝑄𝑅(𝑝) and 

𝑄𝑌(𝑝), where the quantile function is defined as 𝑄𝑊(𝑝) = inf{𝑤: 𝐹𝑊(𝑤) ≥ 𝑝 }, 0 < 𝑝 < 1. 

Suppose the corresponding densities of 𝑇, 𝑅 and Y  exist and denote them by 

𝑓𝑇(𝑥), 𝑓𝑅(𝑥) and 𝑓𝑌(𝑥) . Assume that 𝑇𝜖(𝑎, 𝑏)  and 𝑌𝜖(𝑐, 𝑑) for −∞ ≤ 𝑎 < 𝑏 ≤ ∞ 

and −∞ ≤ 𝑐 < 𝑑 ≤ ∞. Take 𝑅 to be a Kumaraswamy random variable defined on (0,1)with 

cdf and pdf given by  𝐹𝑅(𝑥) = 1 − (1 − 𝑥𝛼)𝛽  and 𝑓𝑅(𝑥) = 𝛼𝛽𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1, 𝛼, 𝛽 > 0. Following 

Aljarrah (2014), the cdf of the random variable  𝑋 following the 𝑇 − Kumaraswamy family 

of distributions is defined as 

 
 𝐹𝑋(𝑥) = ∫ 𝑓𝑇(𝑡)𝑑𝑡

𝑄𝑌(1−(1−𝑥𝛼)𝛽)

𝑎

   

                     = 𝑃[𝑇 ≤ 𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽)] 

                    = 𝐹𝑇 (𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽)).   

 

 
 

 

(3) 
The corresponding pdf associated with (3) is  

 𝑓𝑋(𝑥) = 𝛼𝛽𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1 × 𝑄𝑌
′ (1 − (1 − 𝑥𝛼)𝛽) × 𝑓𝑇 (𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽))  

             = 𝛼𝛽𝑥𝛼−1(1 − 𝑥𝛼)𝛽−1 ×
𝑓𝑇 (𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽))

𝑓𝑌(𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽))
   0 < 𝑥 < 1, 

 

 

(4) 

where 𝑄𝑌
′ (𝑥) =

d

d𝑥
𝑄𝑌(𝑥). 

Remark 1. If 𝑋 follows the 𝑇 − Kumaraswamy family of distributions then  

 

(i) 𝑋
𝑑
→ (1 − (1 −  𝐹𝑌(𝑇))

1/𝛽)
1

𝛼⁄

, 
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(ii) 𝑄𝑋(𝑝) = (1 − (1 −  𝐹𝑌(𝑄𝑇(𝑝)))
1/𝛽

)

1
𝛼⁄

, 

(iii) If 𝑇
𝑑
→ 𝑌 then 𝑋

𝑑
→ Kumaraswamy distribution with parameters 𝛼 and 𝛽, 

(iv) If 𝑇
𝑑
→ Kumaraswamy distribution with parameters 𝛼 and 𝛽, then 𝑋

𝑑
→ T. 

The hazard function of the random variable 𝑋 can be written as 

 
               ℎ𝑋(𝑥) =

 𝑓𝑋(𝑥)

1 −  𝐹𝑋(𝑥)
 

                     =
𝛼𝛽𝑥𝛼−1

1 − 𝑥𝛼 ×
ℎ𝑇 (𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽))

ℎ𝑌(𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽))
 ,      

 

 

 

 

 

(5) 

 

where  ℎ𝑇(. )  and  ℎ𝑌(. )  are the hazard functions of the random variable 𝑇  and 𝑌 

respectively. 

 

2.1 The 𝑻 − Kumaraswamy {exponential} distribution 

If 𝑌  follows the standard exponential distribution with quantile function  𝑄𝑌(𝑝) =

− log(1 − 𝑝), then  𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽) =  log(1 − 𝑥𝛼)−𝛽 . Using (3), the cdf of the 𝑇 − 

Kumaraswamy {exponential} distribution is given by 

            𝐹𝑋(𝑥) = 𝐹𝑇(log(1 − 𝑥𝛼)−𝛽).      (6) 

The corresponding pdf is 

 
   𝑓𝑋(𝑥) =

𝛼𝛽𝑥𝛼−1

1 − 𝑥𝛼 𝑓𝑇(log(1 − 𝑥𝛼)−𝛽).    
(7) 

 

2.2 The 𝑻 − Kumaraswamy {logistic} distribution 

If 𝑌  follows the standard logistic distribution with quantile function  𝑄𝑌(𝑝) =

log(𝑝 (1 − 𝑝)⁄ ), then 𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽) =  log((1 − 𝑥𝛼)−𝛽 − 1). Using (3), the cdf of the 

𝑇 − Kumaraswamy {logistic} distribution is given by 

    𝐹𝑋(𝑥) = 𝐹𝑇 (log((1 − 𝑥𝛼)−𝛽 − 1)).    (8) 

The corresponding pdf is 

 
𝑓𝑋(𝑥) =

𝛼𝛽𝑥𝛼−1

(1 − 𝑥𝛼)(1 − (1 − 𝑥𝛼)𝛽) 
𝑓𝑇 (log((1 − 𝑥𝛼)−𝛽 − 1)).    

(9) 

 

2.3 The 𝑻 −Kumaraswamy {extreme value} distribution 
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If 𝑌 follows the standard extreme value distribution with quantile function     𝑄𝑌(𝑝) =

log(−log(1 − 𝑝)), then 𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽) =  log(log(1 − 𝑥𝛼)−𝛽). Using (3), the cdf of 

the 𝑇 − Kumaraswamy {extreme value} distribution is given by 

                                      𝐹𝑋(𝑥) = 𝐹𝑇 (log(log(1 − 𝑥𝛼)−𝛽)).                                                (10) 

The corresponding pdf is 

                        𝑓𝑋(𝑥) =
𝛼𝛽𝑥𝛼−1

(1 − 𝑥𝛼)(log(1 − 𝑥𝛼)−𝛽) 
𝑓𝑇 (log(log(1 − 𝑥𝛼)−𝛽)).            (11) 

2.4 The 𝑻 −Kumaraswamy {log-logistic} distribution 

If 𝑌  follows the standard log-logistic distribution with quantile function  𝑄𝑌(𝑝) =

𝑝 (1 − 𝑝)⁄ , then  𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽) =  (1 − 𝑥𝛼)−𝛽 − 1 . Using (3), the cdf of the 𝑇 − 

Kumaraswamy {log-logistic} distribution is given by 

                                                    𝐹𝑋(𝑥) = 𝐹𝑇((1 − 𝑥𝛼)−𝛽 − 1).                                        (12) 

The corresponding pdf is  

                                           𝑓𝑋(𝑥) =
𝛼𝛽𝑥𝛼−1

(1 − 𝑥𝛼)𝛽+1
𝑓𝑇((1 − 𝑥𝛼)−𝛽 − 1).                           (13) 

 

3. General Mathematical Properties of the 𝑻 − Kumaraswamy family of 

Distributions 

Some mathematical properties of the 𝑇 −Kumaraswamy family are presented in this 

section. 

Lemma 1. For any random variable 𝑇 with density 𝑓𝑇(𝑥), then the random variable  

(i) 𝑋 = (1 − (e−𝑇)1/𝛽)
1

𝛼⁄
 follows the 𝑇 −Kumaraswamy {exponential} distribution in 

(6). 

(ii) 𝑋 = (1 − (1 (1 + e𝑇)⁄ )1/𝛽)
1

𝛼⁄
 follows the 𝑇 − Kumaraswamy {logistic} 

distribution in (8). 

(iii) 𝑋 = (1 − (e−e𝑇
)

1/𝛽
)

1
𝛼⁄

 follows the 𝑇 − Kumaraswamy {extreme value} 

distribution in (10). 

(iv) 𝑋 = (1 − (1 (1 + T)⁄ )1/𝛽)
1

𝛼⁄
 follows the 𝑇 − Kumaraswamy {log-logistic} 

distribution in (12). 

Proof. The proof follows from Remark 1(i). 

The results obtained in Lemma 1 enable one to establish a relationship between the 

random variable 𝑋 following the 𝑇 −Kumaraswamy distribution and the random variable 𝑇. 
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Consequently, random samples from the 𝑇 −Kumaraswamy distribution can be simulated by 

first simulating random samples from the distribution of the random variable  𝑇 and applying 

the transformation accordingly. 

Lemma 2. The quantile functions for the 𝑇 − Kumaraswamy {exponential}, 

𝑇 −Kumaraswamy {logistic}, 𝑇 −Kumaraswamy {extreme value} and 𝑇 −Kumaraswamy 

{log-logistic} distributions are given respectively as 

(i) 𝑄𝑋(𝑝) = (1 − (e−𝑄𝑇(𝑝))
1/𝛽

)
1

𝛼⁄

 , 

(ii) 𝑄𝑋(𝑝) = (1 − (1 (1 + e𝑄𝑇(𝑝))⁄ )
1/𝛽

)
1

𝛼⁄

 , 

(iii) 𝑄𝑋(𝑝) = (1 − (e−e𝑄𝑇(𝑝)
)

1/𝛽

)

1
𝛼⁄

 , 

(iv) 𝑄𝑋(𝑝) = (1 − (1 (1 + 𝑄𝑇(𝑝))⁄ )
1/𝛽

)
1

𝛼⁄

 . 

Proof. The proof readily follows from Remark 1(ii). 

Theorem 1. The mode(s) of the 𝑇 −Kumaraswamy family of distributions is/are the 

solution(s) of the equation 

 1−𝛼(1−𝛽𝑥𝛼+𝑥𝛼(1−𝑥𝛼)−1)

𝛼𝛽𝑥𝛼−1(1−𝑥𝛼)𝛽−1 =
𝑄𝑌

′′(1−(1−𝑥𝛼)𝛽)

𝑄𝑌
′ (1−(1−𝑥𝛼)𝛽)

+
𝑓𝑇

′(𝑄𝑌(1−(1−𝑥𝛼)𝛽))

𝑓𝑇(𝑄𝑌(1−(1−𝑥𝛼)𝛽))
𝑄𝑌

′ (1 − (1 − 𝑥𝛼)𝛽)   

 

 

（14） 

for 𝑥. 

Proof. The proof follows from setting the derivative of the pdf given in (4) to zero. 

Corollary 1. The mode (s) of the 𝑇 −Kumaraswamy {exponential}, 𝑇 −Kumaraswamy 

{logistic}, 𝑇 − Kumaraswamy {extreme value} and 𝑇 − Kumaraswamy {log-logistic} 

distributions, respectively, are the solution of the equations 

(i) 1 − 𝛼(1 − 𝛽𝑥𝛼 + 𝑥𝛼(1 − 𝑥𝛼)−1) =
𝛼𝛽𝑥𝛼−1

1−𝑥𝛼 {1 +
𝑓𝑇

′(log(1−𝑥𝛼)−𝛽)

𝑓𝑇(log(1−𝑥𝛼)−𝛽)
},  

(ii) 
(1−𝛼(1−𝛽𝑥𝛼+𝑥𝛼(1−𝑥𝛼)−1))((1−𝑥𝛼)(1−(1−𝑥𝛼)𝛽)

 
)

𝛼𝛽𝑥𝛼−1 = 2(1 − (1 − 𝑥𝛼)𝛽) − 1 +
𝑓𝑇

′(log((1−𝑥𝛼)−𝛽−1))

𝑓𝑇(log((1−𝑥𝛼)−𝛽−1))
, 

(iii) 
(1−𝛼(1−𝛽𝑥𝛼+𝑥𝛼(1−𝑥𝛼)−1))((1−𝑥𝛼)(log(1−𝑥𝛼)−𝛽)

 
)

𝛼𝛽𝑥𝛼−1 = log(1 − 𝑥𝛼)−𝛽 − 1 +
𝑓𝑇

′(log(log(1−𝑥𝛼)−𝛽))

𝑓𝑇(log(log(1−𝑥𝛼)−𝛽))
, 

(iv) 1 − 𝛼(1 − 𝛽𝑥𝛼 + 𝑥𝛼(1 − 𝑥𝛼)−1) =
𝛼𝛽𝑥𝛼−1

1−𝑥𝛼 {2 +
𝑓𝑇

′((1−𝑥𝛼)−𝛽−1)

(1−𝑥𝛼)𝛽𝑓𝑇((1−𝑥𝛼)−𝛽−1)
}.  

Remark 2. The mode obtained using the result in Theorem 1 may not be unique. It is 

possible for there to exist more than one value satisfying (14). 

Shannon (1948) defined the entropy of a random variable  𝑋 as 𝐸{−log(𝑔(𝑋))}, where 

𝑔(𝑋) is the pdf of the random variable. The entropy of the random variable 𝑋 measures variation of 

uncertainty (Rényi, 1961). 

Theorem 2. The Shannon entropy of the 𝑇 −Kumaraswamy family of distributions is 

given by 
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  𝜂𝑋 = 𝜂𝑇 + 𝐸 (log𝑓
𝑌
(𝑇)) − log𝛼 − log𝛽 − (𝛼 − 1)𝐸(log𝑋)

− (𝛽 − 1)𝐸(log(1 − 𝑋𝛼)), 

 

(15) 

where 𝜂𝑇 is the Shannon entropy of the distribution of the random variable 𝑇. 

Proof. From Remark 1(i), it follows that  𝑇 = 𝑄𝑌(1 − (1 − 𝑋𝛼)𝛽) and hence the pdf in 

(4) can be written as 𝑓𝑋(𝑋) =
𝑓𝑇(𝑇)

𝑓𝑌(𝑇)
× 𝛼𝛽𝑋𝛼−1(1 − 𝑋𝛼)𝛽−1.Taking the expectation of the 

negative logarithm of the pdf gives the required result. 

Corollary 2.  The Shannon entropy of the 𝑇 − Kumaraswamy {exponential}, 

𝑇 −Kumaraswamy {logistic}, 𝑇 −Kumaraswamy {extreme value} and 𝑇 −Kumaraswamy 

{log-logistic} distributions are given respectively by  

(i)  𝜂𝑋 = 𝜂𝑇 − 𝜇𝑇 − log𝛼 − log𝛽 − (𝛼 − 1)𝐸(log𝑋) − (𝛽 − 1)𝐸(log(1 − 𝑋𝛼)), 

(ii)  𝜂𝑋 = 𝜂𝑇 + 𝜇𝑇 − log𝛼 − log𝛽 − 2𝐸(log(1 + e𝑇)) − (𝛼 − 1)𝐸(log𝑋) − (𝛽 − 1)𝐸(log(1 − 𝑋𝛼)), 

(iii)  𝜂𝑋 = 𝜂𝑇 + 𝜇𝑇 − log𝛼 − log𝛽 − 𝐸(e𝑇) − (𝛼 − 1)𝐸(log𝑋) − (𝛽 − 1)𝐸(log(1 − 𝑋𝛼)), 

(iv)  𝜂𝑋 = 𝜂𝑇 − log𝛼 − log𝛽 − 2𝐸(log(1 + T)) − (𝛼 − 1)𝐸(log𝑋) − (𝛽 − 1)𝐸(log(1 − 𝑋𝛼)), 

where 𝜇𝑇 is the mean of the random variable 𝑇. Observe that the results in Corollary 2 (i-iv) 

follow from the fact that 𝑓𝑌(𝑇) = e−𝑇 , e𝑇(1 + e𝑇)−2, e𝑇e−e𝑇
 and (1 + T)−2 for the 

exponential, logistic, extreme value and log-logistic distribution respectively.  

Theorem 3. The r𝑡ℎ  non-central moments of the 𝑇 − Kumaraswamy {exponential}, 

𝑇 −Kumaraswamy {logistic}, 𝑇 −Kumaraswamy {extreme value} and 𝑇 −Kumaraswamy 

{log-logistic} distributions are given respectively by  

 

      (i)      𝐸(𝑋𝑟) = ∑ ∑ (
𝑟 𝛼⁄

𝑘1

)
(−1)𝑘1+𝑘2𝑘1

𝑘2𝛽−𝑘2

𝑘2!

∞

𝑘2=0

∞

𝑘1=0

𝐸(𝑇𝑘2),                                                                        (16) 

      (ii)      𝐸(𝑋𝑟) = ∑ ∑ (
𝑟 𝛼⁄

𝑘1

) (
𝑘1 𝛽⁄

𝑘2

) (−1)𝑘1+𝑘2

∞

𝑘2=0

∞

𝑘1=0

𝐸 {
e𝑇

1 + e𝑇
}

𝑘2

,                                                           (17) 

      (iii)      𝐸(𝑋𝑟) = ∑ ∑ ∑ (
𝑟 𝛼⁄

𝑘1

)
(−1)𝑘1+𝑘2𝛽−𝑘2𝑘1

𝑘2𝑘2
𝑘3

𝑘2! 𝑘3!

∞

𝑘3=0

∞

𝑘2=0

∞

𝑘1=0

𝐸(𝑇𝑘3),                                                       (18) 

      (iv)      𝐸(𝑋𝑟) = ∑ ∑ (
𝑟 𝛼⁄

𝑘1

) (
𝑘1 𝛽⁄

𝑘2

) (−1)𝑘1+𝑘2

∞

𝑘2=0

∞

𝑘1=0

𝐸 {
T

1 + T
}

𝑘2

,                                                             (19) 

where (𝑠
𝑘

) =
𝑠(𝑠−1)(𝑠−2)…(𝑠−𝑘+1)

𝑘!
 is the Pochhammer falling factorial. 

Proof. We shall first prove (16). Considering Lemma 1, the r𝑡ℎ non-central moments of 

the 𝑇 − Kumaraswamy {exponential} distribution can be written as  𝐸(𝑋𝑟) = 𝐸(1 −

e−𝑇 𝛽⁄ )
𝑟

𝛼⁄
 . Using the generalized binomial expansion formula and taking the expectation, 

the result in (16) is obtained. The results of (17) – (19) can be obtained by applying the same 

technique. 
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Remark 3. The results in (16) and (19) hold if the support of the random variable T is on 

the positive real line, while (17) and (18) hold if T is on the entire real line. These fully 

validate the choice of 𝑊(𝐹(𝑥))  as opined by Alzaatreh et al. (2013a), for a given 

distribution T. 

The dispersion and the spread in a population from the center are often measured by the 

deviation from the mean, and the deviation from the median. Denote the mean deviation 

from the mean (𝜇) by 𝐷(𝜇) and the mean deviation from the median (𝑀) by 𝐷(𝑀). 

Theorem 4. The  𝐷(𝜇)  and  𝐷(𝑀)  for the 𝑇 − Kumaraswamy {exponential}, 

𝑇 −Kumaraswamy {logistic}, 𝑇 −Kumaraswamy {extreme value} and 𝑇 −Kumaraswamy 

{log-logistic} distributions are given respectively by  

 

     (i)   𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2 ∑ ∑ (
1 𝛼⁄

𝑘1

)
(−1)𝑘1+𝑘2𝑘1

𝑘2𝛽−𝑘2

𝑘2!

∞

𝑘2=0

∞

𝑘1=0

𝑍𝑢(𝜇, 0, 𝑘2),                        (20) 

                 𝐷(𝑀) = 𝜇 − 2 ∑ ∑ (
1 𝛼⁄

𝑘1
)

(−1)𝑘1+𝑘2𝑘1
𝑘2𝛽−𝑘2

𝑘2!

∞

𝑘2=0

∞

𝑘1=0

𝑍𝑢(𝑀, 0, 𝑘2),                                  (21) 

    (ii)      𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2 ∑ ∑ (
1 𝛼⁄

𝑘1
) (

𝑘1 𝛽⁄

𝑘2
) (−1)𝑘1+𝑘2𝑍 e𝑢

1+e𝑢

(𝜇, −∞, 𝑘2)

∞

𝑘2=0

∞

𝑘1=0

,               (22) 

                  𝐷(𝑀) = 𝜇 − 2 ∑ ∑ (
1 𝛼⁄

𝑘1
) (

𝑘1 𝛽⁄

𝑘2
) (−1)𝑘1+𝑘2𝑍 e𝑢

1+e𝑢

(𝑀, −∞, 𝑘2),                        (23)

∞

𝑘2=0

∞

𝑘1=0

 

      (iii)      𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2 ∑ ∑ ∑ (
1 𝛼⁄

𝑘1
)

(−1)𝑘1+𝑘2𝛽−𝑘2𝑘1
𝑘2𝑘2

𝑘3

𝑘2! 𝑘3!

∞

𝑘3=0

∞

𝑘2=0

∞

𝑘1=0

𝑍𝑢(𝜇, −∞, 𝑘3), (24) 

                   𝐷(𝑀) = 𝜇 − 2 ∑ ∑ ∑ (
1 𝛼⁄

𝑘1
)

(−1)𝑘1+𝑘2𝛽−𝑘2𝑘1
𝑘2𝑘2

𝑘3

𝑘2! 𝑘3!

∞

𝑘3=0

∞

𝑘2=0

∞

𝑘1=0

𝑍𝑢(𝑀, −∞, 𝑘3),        (25) 

      (iv)      𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2 ∑ ∑ (
1 𝛼⁄

𝑘1
) (

𝑘1 𝛽⁄

𝑘2
) (−1)𝑘1+𝑘2𝑍 u

1+u
(𝜇, 0, 𝑘2)

∞

𝑘2=0

∞

𝑘1=0

,                   (26) 

                     𝐷(𝑀) = 𝜇 − 2 ∑ ∑ (
1 𝛼⁄

𝑘1
) (

𝑘1 𝛽⁄

𝑘2
) (−1)𝑘1+𝑘2𝑍 u

1+u
(𝑀, 0, 𝑘2)

∞

𝑘2=0

∞

𝑘1=0

,              (27) 

where 𝑍𝑘(𝑐, 𝑎, 𝑛) = ∫ 𝑘𝑛𝑓𝑇
 𝑄𝑌(1−(1−𝑥𝛼)𝛽)

𝑎
(𝑢)𝑑𝑢. 
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Proof. By definition  

𝐷(𝜇) = ∫ (𝜇 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥 + ∫ (𝑥 − 𝜇)𝑓𝑋(𝑥)𝑑𝑥 = 2
1

𝜇

𝜇

0

∫ (𝜇 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
𝜇

0

 

                          = 2𝜇𝐹𝑋(𝜇) − 2 ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥.
𝜇

0

                                                                        (28) 

𝐷(𝑀) = ∫ (𝑀 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥 + ∫ (𝑥 − 𝑀)𝑓𝑋(𝑥)𝑑𝑥 = 2
1

𝑀

𝑀

0

∫ (𝑀 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥 + 𝜇 − 𝑀
𝑀

0

 

               = 𝜇 − 2 ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥.
𝑀

0

                                                                                                (29) 

To prove (20) for the 𝑇 −Kumaraswamy {exponential} distribution, define the integral 

                   𝐼𝑐 = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥 = 𝛼𝛽 ∫
𝑥𝛼

1 − 𝑥𝛼 𝑓𝑇(log(1 − 𝑥𝛼)−𝛽)𝑑𝑥,                      (30)
𝑐

0

𝑐

0

 

and using the substitution 𝑢 = log(1 − 𝑥𝛼)−𝛽, (30) can be written as 

                                               𝐼𝑐 = ∫ (1 − e−𝑢 𝛽⁄ )
1 𝛼⁄

𝑓𝑇(𝑢)𝑑𝑢.                       (31)
log(1−𝑐𝛼)−𝛽

0

 

Using the result of the generalized binomial expansion in Theorem 3, (31) can be written 

as  

            𝐼𝑐 = ∑ ∑ (
1 𝛼⁄

𝑘1
)

(−1)𝑘1+𝑘2𝑘1
𝑘2𝛽−𝑘2

𝑘2!

∞

𝑘2=0

∞

𝑘1=0

𝑍𝑢 (𝑐, 0, 𝑘2),                                    (32) 

where  𝑍𝑘(𝑐, 𝑎, 𝑛) = ∫ 𝑘𝑛𝑓𝑇
𝑄𝑌(1−(1−𝑐𝛼)𝛽) 

𝑎
(𝑢)𝑑𝑢  and 𝑄𝑌(1 − (1 − 𝑥𝛼)𝛽) = log(1 − 𝑥𝛼)−𝛽 . 

Putting (32) into (28) and (29) and replacing 𝑐 with 𝜇 and 𝑀 gives (20) and (21). Applying 

the same techniques of proving (20) and (21), the results of (22) and (23) for (ii), (24) and 

(25) for (iii) and (26) and (27) for (iv) follow. 

 

4. Some Members of the 𝑻 − 𝐊𝐮𝐦𝐚𝐫𝐚𝐬𝐰𝐚𝐦𝐲 Family of Distributions 

In this section, five generalizations of the Kumaraswamy distribution are presented by 

making use of different 𝑇  distributions for some standard 𝑌  distributions. These 

generalizations include the Weibull-Kumaraswamy {exponential}, log-logistic-

Kumaraswamy {exponential}, exponential-Kumaraswamy {log-logistic}, normal-

Kumaraswamy {logistic} and logistic-Kumaraswamy {extreme value} distributions. Some 

properties of the Weibull-Kumaraswamy {exponential} are examined. To conserve space, 

properties of the other distributions are not given. One can follow the same pattern to study 

the properties of the other generalized Kumaraswamy distributions. 

 

4.1 The Weibull-Kumaraswamy {exponential} (WKUM) distribution 
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A random variable 𝑇 is said to follow the Weibull distribution with parameters 𝑐 and 𝛾  

if it has the cdf 𝐹𝑇(x) = 1 − e−(𝑥
𝛾⁄ )

𝑐 

, 𝑥 > 0, 𝑐, 𝛾 > 0. Using (6) and (7), the cdf and pdf of 

the WKUM distribution are given respectively by  

                           𝐹𝑋(x) = 1 − exp {− [
log(1 − 𝑥𝛼)−𝛽

𝛾
]

𝑐

} ,                                                  (33) 

      𝑓𝑋(x) =
𝛼𝛽𝑐𝑥𝛼−1[𝛾−1log(1 − 𝑥𝛼)−𝛽]

𝑐−1

𝛾(1 − 𝑥𝛼)
exp {− [

log(1 − 𝑥𝛼)−𝛽

𝛾
]

𝑐

},                    (34)  

                            𝛼, 𝛽, 𝑐, 𝛾 > 0,        0 < 𝑥 < 1. 
Remark 4. 

(i) When  𝑐 = 1 , the WKUM distribution reduces to the exponential-Kumaraswamy 

{exponential} distribution. 

(ii) When 𝑐 = 𝛾 = 1, the WKUM distribution reduces to the Kumaraswamy distribution. 

(iii) When  𝛽 =  𝑐 = 𝛾 = 1 , the WKUM distribution reduces to the power function 

distribution. 

(iv) When  𝛼 = 𝛽 =  𝑐 = 𝛾 = 1 , the WKUM distribution reduces to the uniform 

distribution 

(v) When  𝑐 = 1 and 𝛾−1 = 𝑛 ∈ 𝑁 , the pdf in (34) reduces to the distribution of the 

minimum order statistics,𝑥(1), from a Kumaraswamy random sample of size 𝑛.  

The graphs of the various shape of the WKUM distribution are provided in Figure 1. 

 
Figure 1.  The pdf of the WKUM distribution. 

Figure 1 clearly shows that the WKUM distribution can be right-skewed, left-skewed, 

symmetric, unimodal, uniantimodal.  

The following are some of the properties of WKUM distribution using the general 

properties discussed in section 3. 
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（1） Quantile Function: Using Lemma 2, the quantile function of the WKUM 

distribution is given by  

𝑄𝑋(p) = (1 − (exp (−𝛾(−log(1 − 𝑝))
1/𝑐

))
1/𝛽

)

1/𝛼

. 

（2） Mode: Using Corollary 1, the mode of the WKUM distribution is the solution 

of the equation  

1 − 𝛼(1 − 𝛽𝑥𝛼 + 𝑥𝛼(1 − 𝑥𝛼)−1) =
𝛼𝛽𝑥𝛼−1

1 − 𝑥𝛼 {1 +
𝑐 − 1

log(1 − 𝑥𝛼)−𝛽
− 𝑐𝛾−𝑐(log(1 − 𝑥𝛼)−𝛽)

𝑐−1
}  for 𝑥.  

（3） Shannon entropy: Using the result in Corollary 2 and given that 𝜇𝑇 =

𝛾Γ(1 + 1/𝑐)  and 𝜂𝑇 = 𝜉(1 − 1/𝑐) + log(𝛾/𝑐) + 1  (see Song, 2001), the 

Shannon entropy of the WKUM distribution can be expressed as  

 

 

𝜂𝑋 = 1 + 𝜉 (1 −
1

𝑐
) + log (

𝛾

𝑐
) − 𝛾Γ (1 +

1

𝑐
) − log𝛼 − log𝛽 − (𝛼 − 1)𝐸(log𝑋) 

−(𝛽 − 1)𝐸(log(1 − 𝑋𝛼)), 

 

where 𝜉 is the Euler-Mascheroni constant and Γ(. ) is the complete gamma function. 

（4） Moments: Using Theorem 3, and using the fact that 𝐸(𝑇𝑘2) = 𝛾𝑘2Γ(1 + 𝑘2/𝑐), 

the 𝑟𝑡ℎ non-central moments of the WKUM distribution is given by 

𝐸(𝑋𝑟) = ∑ ∑ (
𝑟 𝛼⁄

𝑘1
)

(−1)𝑘1+𝑘2𝑘1
𝑘2𝛽−𝑘2

𝑘2!

∞

𝑘2=0

∞

𝑘1=0

𝛾𝑘2Γ(1 + 𝑘2/𝑐). 

（5） Mean deviations: Using Theorem 4, the mean deviation from the mean and 

the mean deviation from the median of the WKUM distribution are given 

respectively by  

𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2 ∑ ∑ (
1 𝛼⁄

𝑘1

)
(−1)𝑘1+𝑘2𝑘1

𝑘2𝛽−𝑘2

𝑘2!

∞

𝑘2=0

∞

𝑘1=0

𝛾𝑘2Γ (1 +
𝑘2

𝑐
, (

log(1 − 𝜇𝛼)−𝛽

𝛾
 )

𝑐

),  

               𝐷(𝑀) = 𝜇 − 2 ∑ ∑ (
1 𝛼⁄

𝑘1

)
(−1)𝑘1+𝑘2𝑘1

𝑘2𝛽−𝑘2

𝑘2!

∞

𝑘2=0

∞

𝑘1=0

𝛾𝑘2Γ (1 +
𝑘2

𝑐
, (

log(1 − 𝑀𝛼)−𝛽

𝛾
 )

𝑐

), 

 where Γ(𝑎, 𝑥) = ∫ 𝑢𝑎−1𝑥

0
𝑒−𝑢 is the incomplete gamma function. 

4.2 The log-logistic-Kumaraswamy {exponential} (LLKUM) distribution 

A random variable 𝑇 is said to follow the log-logistic distribution with parameter 𝜆 if it 

has the cdf 𝐹𝑇(𝑥) = 1 − (1 + 𝑥𝜆)
−1

, 𝑥 > 0, 𝜆 > 0.  Using (6) and (7), the cdf and pdf of the 

LLKUM distribution are given respectively by 

                                      𝐹𝑋(𝑥) = 1 − (1 + (log(1 − 𝑥𝛼)−𝛽)𝜆)
−1

,                                         (35) 

                                  𝑓𝑋(𝑥) =
𝛼𝛽𝜆𝑥𝛼−1

1 − 𝑥
(1 + (log(1 − 𝑥𝛼)−𝛽)𝜆)

−2
,                                       (36) 

𝑜 < 𝑥 < 1, 𝛼, 𝛽, 𝜆 > 0. 
The graph of the pdf of the LLKUM distribution is given in Figure 2. 



 

 

 

 

Patrick Osatohanmwen, F. O. Oyegue, F. Ewere, B. Ajibade                   229 

 

 

 
Figure 2. The pdf of the LLKUM distribution. 

4.3 The exponential Kumaraswamy {log-logistic} (EKUM) Distribution 

A random variable 𝑇 is said to follow the exponential distribution with parameter 𝜃 if it 

has the cdf 𝐹𝑇(𝑥) = 1 − 𝑒−𝜃𝑥, 𝑥 > 0, 𝜃 > 0. Using (12) and (13), the cdf and pdf of the 

EKUM distribution are given respectively by  

                          𝐹𝑋(𝑥) = 1 − exp{−𝜃[(1 − 𝑥𝛼)−𝛽 − 1]},                                                (37) 

                          𝑓𝑋(𝑥) = 𝛼𝛽𝜃𝑥𝛼−1exp{−𝜃[(1 − 𝑥𝛼)−𝛽 − 1]},                                        (38) 

0 < 𝑥 < 1, 𝛼, 𝛽, 𝜃 > 0. 
The graph of the pdf of the EKUM distribution is given in Figure 3. 

 

 



 

 

 

230              A New Family of Generalized Distributions on the Unit Interval:  The 𝑇 −

Kumaraswamy Family of Distributions 

 

 

Figure 3. The pdf of the EKUM distribution. 

4.3 The normal -Kumaraswamy {logistic} (NKUM) Distribution 

A random variable 𝑇 is said to follow the standard normal distribution if it has the cdf 

𝐹𝑇(𝑥) = Φ(𝑥), −∞ < 𝑥 < ∞ and Φ(. ) is defined in terms of the error function. Using (8) 

and (9) the cdf and pdf of the NKUM distribution are given respectively by  

                          𝐹𝑋(𝑥) = Φ(log[(1 − 𝑥𝛼)−𝛽 − 1]),                                                           (39) 

                       𝑓𝑋(𝑥) =
𝛼𝛽(1 − 𝑥𝛼)−𝛽−1𝑥𝛼−1

(1 − 𝑥𝛼)−𝛽 − 1
ϕ(log[(1 − 𝑥𝛼)−𝛽 − 1]),                      (40) 

ϕ(. ) = Φ′(. ), 0 < 𝑥 < 1, 𝛼, 𝛽 > 0.  
The graph of the pdf of the NKUM distribution is given in Figure 4. 

 
Figure 4. The pdf of the NKUM distribution. 

4.4 The logistic -Kumaraswamy {extreme value} (LKUM) Distribution 

A random variable 𝑇 is said to follow the logistic distribution with parameter 𝜆 > 0,  if it 

has the cdf 𝐹𝑇(𝑥) = 1 − (1 + 𝑒𝜆𝑥)
−1

, −∞ < 𝑥 < ∞. Using (10) and (11), the cdf and pdf of 

the LKUM distribution are given respectively by  

                                                    𝐹𝑋(𝑥) =
[log(1 − 𝑥𝛼)−𝛽]

𝜆

1 + [log(1 − 𝑥𝛼)−𝛽]𝜆
,                                         (41) 

                                           𝑓𝑋(𝑥) =
𝛼𝛽𝜆𝑥𝛼−1[log(1 − 𝑥𝛼)−𝛽]

𝜆−1

(1 − 𝑥𝛼){1 + [log(1 − 𝑥𝛼)−𝛽]𝜆}2
,                             (42) 

0 < 𝑥 < 1, 𝛼, 𝛽, 𝜆 > 0. 
The graph of the pdf of the LKUM distribution is given in Figure 5. 
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Figure 5. The pdf of the LKUM distribution. 

5. Applications 

In this section applications of some members of the generalized Kumaraswamy 

distributions will be carried out. Using the maximum likelihood estimation technique which 

involves the maximization of the log-likelihood function 

𝐿 = ∑ log(𝑓(𝑥𝑖))

𝑛

𝑖=1

, 

for a random independent sample 𝑥1, 𝑥2 … , 𝑥𝑛  where 𝑓(. ) is the pdf of a distribution, we 

shall fit the proposed members of the 𝑇 − Kumaraswamy family alongside the beta and 

Kumaraswamy distributions to two real data sets and assess the performance of all the 

distributions. A random variable 𝑋 is said to follow the beta distribution with parameters 

𝛼 > 0 and 𝛽 > 0, if it has the pdf 𝑓(𝑥) =
1

B(𝛼,𝛽)
𝑥𝑎−1(1 − 𝑥)𝛽−1, 0 < 𝑥 < 1, where B(. , . ) 

is the complete beta function.  

The first data set represents the first 58 observations of the failure times of Kevlar 

49/epoxy strands when the pressure is at 90% stress level, obtained from Andrews and 

Herzberg (1985). The data set is contained in Table 1. The WKUM, LLKUM, EKUM, 

NKUM, LKUM, beta and Kumaraswamy (Kumar) distributions are used to fit the data set. 

The results which include the parameter estimates, the log-likelihood values, and the values 

of the Kolmogorov-Smirnov (K-S) statistic as well as its p-value for all the distributions are 

contained in Table 2. Figure 6 displays the histogram and fitted densities to the data set.  

The second data set represents the percentage of poor children living below and equal 

R$140 in 1991 in 5496 Brazilian Municipal Districts. The data were extracted from the 

Atlas of Brazil Human Development database available at http://www.pnud.org.br. The 

NKUM, beta and Kumaraswamy distributions are used to fit the data set. The results of the 

fit which include the parameter estimates, the log-likelihood values and the values of the 

http://www.pnud.org.br/
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Kolmogorov-Smirnov (K-S) statistic as well as its p-value for all the distributions are 

contained in Table 3. Figure 7 displays the histogram and fitted densities to the data set.  

 

Table 1: Kevlar 49/epoxy strands failure times data (pressure at 90%) 

0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 

0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18,  0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 

0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 

0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99 

 
Table 2: Maximum likelihood fit of the failure times data  

 

Distribution WKUM LLKUM EKUM NKUM LKUM beta Kumar 

Parameter 

Estimates 

𝛼 = 0.8957 
(0.0011) 

 
𝛽 = 12.450 

(7.1227) 
 
𝑐 = 0.8353 

(0.0082) 
 
𝛾 = 8.8990 

(5.2626) 

𝛼 = 0.1663 
(0.2053) 

 
𝛽 = 0.5707 

(0.3824) 
 
𝜆 = 2.9746 

(1.5706) 

𝛼 = 0.6388 
(0.1207) 

 
𝛽 = 0.0847 

(0.0847) 
 
𝜃 = 10.817 
(12.9019) 

𝛼 = 0.2771 
(0.0530) 

 
𝛽 = 0.4950 

(0.0624) 

𝛼 = 0.1662 
(0.2082) 

 
𝛽 = 0.5706 

(0.3877) 
 
𝜆 = 2.9763 

(1.5934) 

𝛼 = 0.6776 
(0.1107) 

 
𝛽 = 1.0411 

(0.1873) 
 

 

𝛼 = 0.6826 
(0.1146) 

 
𝛽 = 1.0478 

(0.1795) 

Log-

likelihood 

5.8027 4.1832 5.5132 6.0852 4.1832 5.6714 5.6824 

AIC −3.6053 −2.3664 −5.0265 −8.1705 −2.3664 −7.3427 −7.3648 

BIC 4.6365 3.8150 1.1548 −4.0496 3.8149 −3.2218 −3.2439 

K – S 

p-value 

0.0980 

0.5570 
0.0960 

0.5522 
0.1071 

0.5447 
0.1084 

0.5310 
0.0972 

0.5563 
0.1038 

0.5255 

0.1034 

0.5304 

                     (Standard error of estimates in parenthesis) 

 

From Table 2, it can be observed that all the generalized Kumaraswamy distributions as 

well as the beta and Kumaraswamy distributions provided adequate fit for the data by virtue 

of the reported p-value of the K – S statistic values with the WKUM distribution providing 

the best fit by possessing the highest p-value. 
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Figure 6.  Histogram and fitted densities of the failure times data. 

 

Table 3: Maximum likelihood fit of the percentage data  

Distribution NKUM beta Kumar 

Parameter 

Estimates 

𝛼 = 0.4349 
(0.083) 

 
𝛽 = 0.5089 

(0.0066) 

𝛼 = 1.1092 
(0.0197) 

 
𝛽 = 1.1100 

(0.0197) 
 

 

𝛼 = 1.1071 
(0.0190) 

 
𝛽 = 1.1111 

(0.0200) 

Log-likelihood 31.6852 20.0866 20.0460 

AIC −59.3714 −36.1732 −36.0921 

BIC −46.1479 −22.9497 −22.8685 

K – S 

p-value 

0.0119 

0.3614 
0.0128 

0.3264 

0.0127 

0.3327 

                                               (Standard error of estimates in parenthesis) 

Results in Table 3 clearly indicate the superiority of the NKUM distribution over the 

beta and Kumaraswamy distributions in fitting the data set since it reported the highest p-

value value. This application clearly suggests that the 2-parameter NKUM distribution can 

be more flexible than the 2-parameter beta and Kumaraswamy distributions. 
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Figure 7. Histogram and Fitted densities of the percentage data. 

 

6. Summary and Conclusion 

A new family of generalized univariate distributions on the unit interval called the 𝑇 −

Kumaraswamy distributions, which generalizes the Kumaraswamy distribution has been 

introduced in this paper.  General expression for the quantile function, mode, moments, 

entropy and mean deviations of the generalized family have been given. Five members of 

the new family have been defined and applied to real data sets to demonstrate their 

applicability. Results obtained indicate that the members of the new family can be used as 

good alternatives to the beta and Kumaraswamy distributions. In particular, the normal-

Kumaraswamy {logistics} distribution proved to be more flexible than the beta and 

Kumaraswamy distributions. We hope that the proposed family of distribution will attract 

wider applications in the analysis of proportion and percentage data. 
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