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Abstract

Since the first confirmed case of COVID-19 was identified in December 2019, the total COVID-
19 patients are up to 80,675,745, and the number of deaths is 1,764,185 as of December 27, 2020.
The problem is that researchers are still learning about it, and new variants of SARS-CoV-2 are
not stopping. For medical treatment, essential and informative genes can lead to accurate tests
of whether an individual has contracted COVID-19 and help develop highly efficient vaccines,
antiviral drugs, and treatments. As a result, identifying critical genes related to COVID-19 has
been an urgent task for medical researchers. We conducted a competing risk analysis using the
max-linear logistic regression model to analyze 126 blood samples from COVID-19-positive and
COVID-19-negative patients. Our research led to a competing COVID-19 risk classifier derived
from 19,472 genes and their differential expression values. The final classifier model only involves
five critical genes, ABCB6, KIAA1614, MND1, SMG1, RIPK3, which led to 100% sensitivity and
100% specificity of the 126 samples. Given their 100% accuracy in predicting COVID-19 positive
or negative status, these five genes can be critical in developing proper, focused, and accurate
COVID-19 testing procedures, guiding the second-generation vaccine development, studying
antiviral drugs and treatments. It is expected that these five genes can motivate numerous new
COVID-19 researches.
Keywords classification; competing risk; COVID-19 test; COVID-19 treatment; COVID-19
vaccine; gene-gene interaction

1 Introduction
COVID-19 pandemic is a serious global health threat. Its impact on the whole world is tremen-
dous. Many countries have put significant efforts and measures in preventing its spread, develop-
ing test procedures, vaccines, antiviral drugs, and treatments to battle this super severe disease.
However, new variants of SARS-CoV-2 are not stopping. It is still unknown when the COVID-19
pandemic can be controlled, and the people’s life can go back to normal.

There have been many research results published. These results help researchers, administra-
tors, and ordinary people understand COVID-19 better. At the early stage, finding the origins of
SARS-CoV-2 was fundamental for researchers to know how the virus was developed and spread.
For example, in the genomic characterization and epidemiology of COVID-19, research results
include the study of implications for virus origins and receptor binding (Lu et al., 2020), the
proximal origin of SARS-CoV-2 (Andersen et al., 2020), and decoding the evolution and trans-
missions from the animal using whole genomic data (Yu et al., 2020), amongst many others.

The pharmaceutical industry has responded swiftly to the COVID-19 pandemic. Testing
procedures and kits have been developed and widely applied. Potentially effective antiviral drugs
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have been studied in large-scale randomized controlled clinical trials. Most recently, randomized
controlled vaccine trials have brought good news and hope to the public, and several countries
have started vaccine processes.

For controlling the fast spread of COVID-19, rapid and accurate testing methods are in
demand. On the one hand, rapid antigen tests are designed to tell whether or not someone has
contracted the disease in a few minutes. A natural question will be whether or not they are
accurate (Guglielmi, 2020). On the other hand, a chest x-ray radiograph (CXR) may be more
reliable. For radiologists to differentiate SARS-CoV-2 infected pneumonia from different known
pneumonia types on CXR, a trained deep neural network, CV19-Net, is introduced (Zhang et al.,
2020). The performance of CV19-Net exceeds that of experienced thoracic radiologists. However,
these tests’ accuracy is about 80%, with some tests being better and up to 90% of accuracy.

In terms of potential effective antiviral drugs, published COVID-19 studies have shown no
clear evidence of the clinical benefits of using antiviral drugs to treat patients (The-RECOVERY-
Collaborative-Group, 2020). Recent work suggests that hydroxychloroquine can benefit some
groups of people through a relative treatment effect design by Teng and Zhang (2020) which is
a generalization of a proportional covariate effect model in Xie et al. (2019).

Combing through the genome, researchers have tied COVID-19 to some genes associated
with the immune system’s response. For example, genome-wide association analysis may allow
for identifying potential genetic factors involved in the development of COVID-19 (The-Severe-
Covid-19-GWAS-Group, 2020). A large-scale multi-omic study of COVID-19 severity illuminated
the unique COVID-19 phenotype, and systems analysis revealed strong biomolecule associations
with COVID-19 status and severity (Overmyer et al., 2020). Upper airway gene expression
differentiated COVID-19 from other acute respiratory illnesses and showed the suppression of
innate immune responses by SARS-CoV-2 (Mick et al., 2020), amongst much other research work.

Still, many uncertainties remain in testing procedures, vaccine, and antiviral drug devel-
opments (Rowland, 2020). The reported genes in the published work are positively associated
with some parts of the immune system. However, it is not clear whether they are critical, i.e.,
they may be close to COVID-19 but may not be the actual cause of COVID-19. On the other
hand, the number of reported genes is not small. As a result, these genes’ inter-relationships will
make the inference difficult and may mislead to wrong directions of vaccine and antiviral drug
developments.

2 Statistical Methodology
The max-linear competing factor models (Cui and Zhang, 2018), the max-linear regression mod-
els (Cui et al., 2020), and the max-linear logistic models (Xu, 2019) have an advantage over
existing models in a large class of research problems, e.g., nonlinear predictions and classifica-
tions. These models are different from the random forest, support vector machine, group lasso
based machine learning methods, and deep learning methods. Max-linear models are not only
interpretable but also outperform existing methods. In the literature, theoretical statistical and
probabilistic foundations related to the competing risk factor models have been established (Cui
et al., 2020; Cui and Zhang, 2018; Malinowski et al., 2016; Xu, 2019; Cao and Zhang, 2020;
Zhang, 2005, 2020). The difference between the max-linear logistic regression and the classical
logistic regression is that the original linear combination of predictors is replaced by the max-
imum of several linear combinations of predictors, called competing factors or competing-risk
factors. We apply max-linear logistic regression in this study.
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Suppose (Yi, Xi), i = 1, . . . , n, are the characteristics of n persons with Yi corresponding
to the ith individual’ infected status (Yi = 0 for not infected, Yi = 1 for infected) and Xi =
(Xi1, Xi2, . . . , Xip) being the gene expression values with p = 19472 in this study. Using a logit
link (or probit link, Gumbel link), we can model the risk probability pi of the ith person’s
infection status as:

log
( pi

1 − pi

)
= β0 + Xiβ (1)

or alternatively, we write
pi = exp(β0 + Xiβ)

1 + exp(β0 + Xiβ)

where β0 is an intercept, Xi is a 1 × p observed vector, and β is a p × 1 coefficient vector
which characterizes the contribution of each predictor (gene in this study) to the risk. Given the
ultra-high dimension of the predictor vector in many gene related studies, parameter penalization
methods have to be implemented. This work is not going to discuss penalization, and the related
work is referred to the most recent monograph by Fan et al. (2020).

There are at least three major problems applying the classical logistic classifier (1) to disease
classifications. The first is that the number of genes selected is still not small. As a result, gene-
gene interactions can hardly be interpretable, and hence the selected genes can not be directly
used in drug development and treatment design. The second is that the classical logistic classifier
cannot provide additional information about how genes interact with different disease subtypes.
The third is that even with a relative non-small number of genes in the classical logistic classifier,
the accuracy is not high enough, often just 80%.

There is one crucial factor, competing (risk) factors, that has not been considered in many
existing statistical models, i.e., the existing classifiers do not distinguish the causes and the sub-
types of the disease. In scientific studies, competing factors exist in many scenarios (Malinowski
et al., 2016). The cause/regulation of each subtype of the disease can be different, i.e., each
subtype of the disease can result from one factor or multiple factors. For example, in a system,
e.g., a human body, all parts compete for resources to succeed. In terms of diseases (rare or
non-rare), all subtype diseases also compete for resources. The dominant one wins all and will
be diagnosed first. This study considers competing factors to be linear combinations of a set of
predictors.

Suppose a disease (e.g., COVID-19) may be related to G groups of genes

�ij = (Xi,j1, Xi,j2, . . . , Xi,jgj
), j = 1, . . . , G, gj � 0 (2)

where i is the ith individual in the sample, gj is the number of genes in jth group. The competing
(risk) factor classifier is defined as

log
( pi

1 − pi

)
= max(β01 + �i1β1, β02 + �i2β2, . . . , β0G + �iGβG) (3)

where β0j ’s are intercepts, �ij is a 1 × gj observed vector, βj is a gj × 1 coefficient vector which
characterizes the contribution of each predictor in the jth group to the risk.
Remark 1. In the definition of the competing risk factor classifier, the number (G) of competing
factors is unknown, predictors (genes) in each competing factor are unknown. They may be solved
simultaneously using penalization approach together with conditional likelihood (or composite
likelihood) method. We refer the readers to Xu (2019) for theoretical results.
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Remark 2. In this study, we will set G = 3. In each competing factor, we set the number of genes
to be three to have the genes in the competing factors interpretable and to avoid computational
complexity.
Remark 3. After the final model is fitted, each β0j + �ijβj can be used as a classifier and the
risk probabilities can be computed using Equation (1).

In practice, we have to choose a threshold probability value to decide a patient’s class label.
Following the general trend in the literature, we set the threshold to be 0.5. As such, if pi � 0.5,
the ith individual is classified as disease free, otherwise the individual is classified to have the
disease.

The remaining problem is to identify the genes in each competing factor, which can be
implemented in the following optimization problem:

(β̂, Ŝ) = arg minβ, Sj ⊂S, j=1,2,...,G

n∑
i=1

(
I (pi � 0.5)I (Yi = 1) + I (pi > 0.5)I (Yi = 0)

)
(4)

where I (.) is an indicate function, pi is defined in Equation (3), S = {1, 2, . . . , 19472} is the
index set of all genes, Sj = {jj1, . . . , jj,gj

}, j = 1, . . . , G are index sets corresponding to (2), and
Ŝ = {jj1, . . . , jj,gj

, j = 1, . . . , G} is the final gene set selected in the final classifiers.
Remark 4. A perfect classifier (100% sensitivity and 100% specificity) will have

∑n
i=1

(
I (pi �

0.5)I (Yi = 1) + I (pi > 0.5)I (Yi = 0)
) = 0 in Equation (4), which is the case in our study.

Remark 5. We note that the optimization procedure in Equation (4) is different from exist-
ing approaches, e.g., likelihood method and composite likelihood.

∑n
i=1

(
I (pi � 0.5)I (Yi =

1) + I (pi > 0.5)I (Yi = 0)
)

is a newly introduced loss function in this study. It takes values
0 (the best), 1, 2, . . . , n (the worst). The approach applied in this study is more like a machine
learning approach. Nevertheless, the final competing risk classifier is interpretable and gene-gene
interactions are expressed.

The optimization problem (4) is a combination of combinatorial optimization and continu-
ous variable optimization. As a result, its algorithm complexity is extremely high. In this study,
we adopt a simple approach to find some feasible solution. The following is the procedure.
1. Randomly draw three sets of genes with each set having three genes;
2. Use any optimization procedures (e.g., Nelder–Mead method, genetic algorithm, simulated

annealing) to solve (4);
3. Repeat the above two steps until an acceptable solution is reached.
Remark 6. We have done an extensive Monte Carlo search to find our final competing classifier.
A Matlab® demo code for solving Equation (4) is available online. However, we have experienced
quite a few times man-machine interactions to reduce the dimensions from 19472 to 5. As such,
we don’t have a well-documented algorithm for solving Equation (4). It will be a future project
as it is an algorithm problem, i.e., not a methodological problem. As the number of genes is
big, the first step may not be efficient. Dimension reduction can be helpful. In our man-machine
interactions, to train our program, we first allowed the loss function to take a value around 12,
i.e., 10% of error rate. We recorded some sets of genes that performed better than other sets
of genes, and to form a new set of genes, then repeated the above procedure to get the final
classifier. We were able to find an optimal solution to have a loss function taking the value zero.
The dimension reduction procedure we used is ad hoc. Other dimension reduction procedures
may be useful and worthy of further investigation. Besides some well-documented dimension
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reduction algorithms, we have used quotient correlation coefficients for dimension reduction in
other projects (Zhang, 2008; Zhang and Ma X, 2011; Zhang et al., 2017).
Remark 7. Given that we used Monte Carlo method in this study, we have set a seed number
(just the day we started the project) in our Matlab programs. The seed number can help, but
not sure for final results as we had quite a few steps man-machine interactions, i.e., the seed
number might not have an effect.
Remark 8. Given the objective function in Equation (4) is heavily flat (taking integer values),
non-smooth, and non-convex, there may be multiple optimal solutions that exist. Our final
solution is a global optimal. We have obtained some different sets of estimated coefficients, but
the conclusions remain the same.

3 Data Descriptions, Results and Interpretations
The data used in this analysis are publicly available: Large-scale Multi-omic Analysis of COVID-
19 Severity (Overmyer et al., 2020) Public on August 29, 2020, the link and the summary are
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157103. The experiment type is “Ex-
pression profiling by high throughput sequencing.” One hundred twenty-six samples were ana-
lyzed in total, with 100 COVID-19 patients and 26 non-COVID-19. There are two types of
datasets available. One type is TPM (Transcripts Per Million), while another type is expected
counts. We used TPM data in this study.

The goal is to select a sparse (single digit) number of genes with high performance. We start
with three competing factors in logistic regression models, with each factor having only three
genes randomly drawing from 19472 genes. A Monte Carlo method with extensive computation
is used to find the final model with the best performance of sensitivity and specificity and the
smallest number of genes. We refer the details to Remark 6.

Using a probability higher than 50% as the threshold, we identify five critical genes (ABCB6,
KIAA1614. MND1, SMG1, RIPK3), which lead to a 100% precision of classifying all 126 patients
in their respective groups. Our final classifier is a combined classifier of three competing factor
(CF) classifiers expressed as:

CF1) −0.330340967+3.415275789 × KIAA1614−0.124771579 × SMG1+0.21769849 × MND1,
CF2) −0.737841461−0.462005922 × ABCB6+0.0653607995 × SMG1+0.909277249 × MND1,
CF3) 6.928277138 − 0.392092650 × RIPK3. (5)

The final classifier CFmax is the maximum of (CF1, CF2, CF3), i.e., CFmax = max(CF1,
CF2, CF3).

Table 1 (in an online supplementary file) lists all of the final selected genes and their
differentiated expression values from 126 plasma and leukocyte samples. Columns CF1–3 are
computed from the formulas listed above. Predictive probabilities (Columns P1, P2, P3, Pmax)
are computed using Columns of classifiers (CF1, CF2, CF3), and CFmax (the combined max-
classifier), respectively using the classical logistic regression function.

In Table 1 in the #ID column, C1-103 stands for patients with COVID-19, NC1-26 stands
for patients without COVID-19. Figure 1 illustrates the summarized results. Note that in Column
Pmax, a probability of 0.50 is due to truncation, i.e., its actual value is less than 0.50. From
Column Pmax, we can see that the combined max-classifier correctly classified all patients into

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157103
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Figure 1: The performance of each individual classifier and the combined classifiers.

their corresponding COVID-19 groups, respectively. Classifiers CF1, CF2, CF3 alone correctly
classified 62 (I, II, IV, V in Figure 1), 75 (I, II, III, VI), 17 (I, III, IV, VII) COVID-19 patients out
of 100 patients into the COVID-19 group respectively. Classifiers CF1 and CF2 together correctly
classified 98 (except VII) COVID-19 patients out of 100 patients into the COVID-19 group.
Classifiers CF1 and CF3 together correctly classified 67 (except VI) COVID-19 patients out of
100 patients into the COVID-19 group. Classifiers CF2 and CF3 together correctly classified 84
(except V) COVID-19 patients out of 100 patients into the COVID-19 group. There are 16 (V),
33 (VI), 2 (VII) COVID-19 patients out of 100 being classified correctly by only one classifier of
CF1, CF2, CF3, respectively, i.e., only one classifier works for those patients. The numbers of
correctly classified among 100 COVID-19 patients by (CF1 and CF2 simultaneously, not CF3),
(CF1 and CF3 simultaneously, not CF2), (CF2 and CF3 simultaneously, not CF1), are 34 (II),
7 (IV), 3 (III), respectively. The number of correctly classified among 100 COVID-19 patients
by CF1, CF2, CF3 simultaneously (note: not the max-classifier) is 5 (I).

Based on the classifiers’ performance in Figure 1, we can see that there are at least seven
subtypes (I–VII) of patients as they have different characteristics, e.g., competing factors and
their combinations. Of course, these seven subtypes can further be divided into subtypes based
on the interactions (coefficients in (5)). It is clear that these five genes can be used to test and
predict which type of COVID-19 diseases a patient may have.

We further notice that the signs of gene SMG1 are reversed in competing classifiers CF1 and
CF2, respectively. This observation indicates that the diversified types of COVID-19 patients
need different antiviral drugs and vaccines for treatment. It also raises one question whether or
not one type of the first generation vaccines can be protective for all subtypes of SARS-CoV-2.
Remark 9. Reproducibility of all results in Table 1 is guaranteed as the readers can directly work
on the downloaded data set from the link mentioned earlier to calculate the risk probabilities
using the coefficients listed in Equation (5). Table 1 includes the original gene expression values.
If the original published data has updated values which can happen at NCBI database, we
cannot guarantee the coefficients in Equation (5) will lead to the same conclusions.
Remark 10. The conclusion depends on data quality. The data used in this study are plasma
and leukocyte samples. Other types of gene expression data may not work. Also, the data is not
a random sample, and then its representativeness may not be guaranteed. For data descriptions,
we refer readers to Overmyer et al. (2020). As our objective functions (3) and (4) are new in
the literature, their statistical properties are unknown. The uncertainty quantification of the
estimators needs further investigation. In this study, our approach can be regarded as a man-
guided machine learning data science discovery.
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4 Discussions
This study is the first time in the medical literature that an infectious disease (and other diseases,
cancer, flu, etc.) can be classified 100% correctly using only a few (five) genes. Many published
results usually contain dozens of genes (e.g., 27 genes in Mick et al., 2020) for various purposes
but still couldn’t reach 100% correctness. In addition, we have also analyzed the expected counts
data accompanied to TPM data in Overmyer et al. (2020), and again found our newly introduced
competing classifier can 100% correctly classify the COVID-19 patients and non-COVID-19
patients, which shows that our approach is invariance preserving with different measures. The
inference/analysis approach used in this study is robust and can shed new light on all gene-related
research, i.e., not just the COVID-19 study. Researchers can apply max-linear type models in
their studies.

The discovery of the five critical genes ABCB6 (ATP Binding Cassette Subfamily B Member
6 - Langereis Blood Group), KIAA1614 (Uncharacterized Protein), MND1 (Meiotic Nuclear
Divisions 1), SMG1 (SMG1 Nonsense Mediated mRNA Decay Associated PI3K Related Kinase),
RIPK3 (Receptor Interacting Serine/Threonine Kinase 3) can have an immediate application:
design accurate test kit, and then determine a patient’s COVID-19 subtype. The critical genes
can save time and cost as researchers and drug companies can be more focusing on the targets.
The discovery of the five critical genes can motivate many new research directions and laboratory
experiments. For example, we can use these five genes as a starting point to conduct gene
network analysis, test other reported genes, find the causal directions in various projects, find
their connections directly or indirectly (through other genes) to conserved areas with critical
functions in spike proteins, and find their connections to (directly or indirectly) other genes which
can disrupt the life cycle of SARS-CoV-2. As a result, many other existing pieces of research
can be enriched. It is important to notice that KIAA1614 is uncharacterized, and SMG1 is an
mRNA type gene. They may need further explorations. It can also be hoped that new types
of diseases and another set of critical genes can be discovered. We note that the five critical
genes identified in this study were not reported in published work from our best knowledge.
Ultimately, new testing procedures, vaccines, antiviral drugs, and treatments for COVID-19 can
be designed.

The optimization problem (4) remains an open problem. In this study, setting G = 3 and
gj = 3 is purely ad hoc and for computational convenience and feasibility. We have tried gj = 2,
but the outcome was not satisfactory. A combination G = 2 and gj = 4 can be tried. However,
with gj = 4, the interpretation of gene-gene interaction can become complicated. Finally, we note
that the number of competing factors is smaller than the number of observed disease subtypes,
which indicates that the competing factor classifier is not only workable but also interpretable.

On Overfitting and Underfitting Compared with the classical logistic regression model,
the model complexity of model/equation (4) is higher, and hence Equation (4) can be over-fitting
the data. On the one hand, note that by taking the intercept terms in the second competing
factor and the third competing factor to be negative infinity or a substantial negative value,
Equation (4) reduces to the classical logistic regression. As a result, Equation (4) won’t cause
an over-fitting problem than the classical logistic regression. On the other hand, compared with
different classifiers with dozens of genes as predictors, the five-gene-based competing classifier
is the most sparse gene-based classifier. Moreover, as discussed in Cui et al. (2020) that the
classical linear regression is a particular case of the competing factor regression; the classical
logistic model is a particular case of the competing factor classifier. In terms of the competing
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factor classifier itself, if the number of competing factors or the number of gene predictors can
be reduced, the five-gene-based competing factor classifier is overfitting the data. However, We
were not able to reduce the number of genes to 4 or the number of competing factors to 2 in our
extensive computation. More computational work may be needed. In summary, these five genes
can potentially be drivers or messengers of COVID-19 disease.

Supplementary Material
Outcome Table 1 is in a supplementary file available online. A Matlab® demo code for solving
Equation (4) is also available.
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