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Tian et al. (2021) proposed the Susceptible-Unidentified infectious-Self-healing without be-
ing confirmed-Confirmed cases (SIHC) model that divides the population into four compart-
ments as opposed to three, which is assumed by the popular Susceptible-Infectious-Recovered
model (SIR; Kermack and McKendrick, 1927). Specifically, the authors divided the infectious
compartment into those who exhibit symptoms, and asymptomatic carriers. Instead of using a
recovered/removed compartment, the authors assumed that individuals in the infectious com-
partment eventually end up confirmed and hospitalized or quarantined, or self-healed without
being confirmed. This novel segregation is of practical value as it matches the current practices
in fighting COVID-19. In the rest of this discussion, we comment on the approach that the
authors have proposed, and suggest some possible extension of the work for future research.

1 The Proposed SIHC Model
There is a notable amount of work done by statisticians and biostatisticians since the breakout
of COVID-19. One of the most frequently used model, the SIR model, segregate the population
into three compartments, and used three differential equations to depict the evolution of each.
Many variants of the SIR model or its extensions have been used to model the development
of COVID-19 from different aspects (see, Wang et al., 2020; Yang et al., 2020; Hu and Geng,
2020). The proposed model takes into consideration hospitalization/quarantine (compartment
C) and self-healing (compartment H ), and similar to the original SIR model, the evolution of
the four compartments can also be described using differential equations:
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with ρ being transmissibility, and θ(t) denoting the time-varying average per-person contact
number, DH being the average duration from infection to self-healing, DC being the time taken
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from infection to test confirmation, and N denoting the population, which is assumed to be
constant over the duration of the pandemic.

The function α(t) = ρθ(t) is designed to reflect policy intervention, which, for states of
New York (NY), New Jersey (NJ), Connecticut (CT), and California (CA), means stay at
home orders, wear fast mask orders, etc. Among the compartments, C1:T is observable, while
I1:T and J2:T are latent, assuming H1 = 0. With Poisson assumption for It+1 | It+1(Zt , �) and
Ct+1 | Ct+1(Zt , �), and Ht+1 = Ht+1(Zt , �), the posterior distribution of the parameters can be
specified, which can be approximated using MCMC.

2 Real World Implications
The parameters that are used to specify the curve α(t) are estimated for the four states sep-
arately, and the estimated It per 100,000 for the four states are visualized together with their
respective confidence bands in Figure 6. It is clearly seen that after the stay at home orders were
enforced, It for NY, NJ and CT began to decrease, while CA showed an increasing trend, which
was rather concerning. This concern turned out to be rather serious - after the early reopen and
a summer surge, CA has become one of the hotspot states, together with Arizona, Florida, and
Texas. The five different scenarios corresponding to different re-open dates in Figure 7 are also
interesting.

Using these four states as benchmarks, a few interesting observations can be made. As we
know, NY, NJ and CT have already experienced their peaks before their resumption of business.
Some other states, such as CA, have not reached the peak yet still resumed their business. One
problem of interest is how parameters are adjusted with the data of a new state coming in.
If the state or region of interest is not quite similar to any of NY, NJ, CT and CA, such as
states in the midwest area or the Great Lakes region, it becomes challenging as to how to
select the benchmark. Second, the authors indicated that the initial work completed in May
2020 before widespread protests of social injustice occurred. The cases in NY and NJ, however,
still showed decreasing trend in June despite there have been protests in these two states. It
would be more interesting if further analysis could extend the study period to around the school
re-opening time. Finally, several recent works (Thomas et al., 2020; Hu and Geng, 2020; Pan
et al., 2020) studied spatial patterns in COVID-19 data from different perspectives. Spatial
heterogeneity leads to dramatic difference in social exposure to COVID-19, and stresses local
healthcare systems differently in terms of timing and severity. Population migration between
nearby states could be caused by the re-opening of schools. Detection of heterogeneity patterns
among spatial regions could reveal interesting insights for the study of COVID-19.

3 Conluding Remarks
Tian et al. (2021) proposed a modified version of the SIR model which has finer-partitioned
compartments, which provides more accurate depiction of the role of quarantine policies in
the fight against the COVID-19 pandemic. Four U.S. states are used as examples. The potential
impacts of choosing to re-open businesses on different dates are assessed. As the U.S. is currently
seeing another wave of COVID-19, the proposed approach can be further calibrated, and used
to assess future risks for more states.
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