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We congratulate Tian, Tan, Jiang, Wang and Zhang for their well-written article and rigor-
ous effort to model COVID-19 data and evaluate the potential effects of mitigation strategies and
reopening, which is crucial to provide policymakers with empirical guidance for their decision-
making. This effort is substantial and produces interesting insights. We agree that modeling
effects of interventions is important and understudied in existing models, and also agree with
the statements in the motivation that it is important to weight the potential cost of mitigation
strategies against the benefits they promise. We acknowledge some of the fundamentally difficult
challenges the authors had to address in order to develop such a model, including the nontriv-
ial issue of computing the specified differential equations and the estimation of time-varying
parameters, and that the Bayesian modeling approach chosen by the authors does a nice job
of overcoming these limitations, and making computations feasible. We focus our discussion on
evaluating several key assumptions underlying the modeling and describing how they may impact
results,and suggest certain characteristics of the pandemic that we believe might be important
to incorporate into the model to further improve it.

1 Novel Statistical-Epidemiological Modeling of the Pandemic
There are numerous modeling efforts for the pandemic that involve either classic epidemiological
approaches using generative compartment models such as the SIR model or SEIR model while
making homogeneity assumptions, or statistical models of the time series as curve data. The
classic epidemiological models capture the dynamics of infectious disease spread but lack flexi-
bility to model complex features of the data that might be important, e.g. time varying effects.
The statistical models, although possessing great flexibility to capture the features of the curves,
suffer from lack of interpretability and failure to capture the actual dynamics of infectious dis-
ease spread. We would characterize the author’s model as a hybrid statistical-epidemiological
model, based on underlying compartment models so generative in nature yet incorporating sta-
tistical modeling components to capture the effect of time and intervention plus incorporating
stochastic components and uncertainty quantification, in some sense striking a balance between
the extremes and capturing the best of both worlds.

2 Interesting Novel Features of the Model
There are a few key components we find novel and interesting. First, we agree that modeling
the effects of mitigation strategies is fundamentally important and understudied, and appreciate

∗Corresponding author. Email: jeffrey.morris@pennmedicine.upenn.edu.

197

mailto:jeffrey.morris@pennmedicine.upenn.edu


198 Morris, J.S. and Huang, J.

the efforts of the authors in doing this. Second, the incorporation of a hidden infection compo-
nent into the modeling has advantages over the standard SIR/SEIR frameworks and reflects a
fundamentally important characteristic of SARS-CoV-2 that many infected individuals remain
asymptomatic, yet can potentially spread the disease. Any modeling that only acknowledges
confirmed cases underestimates the scope of the pandemic, and this fundamental flaw can limit
the performance of the models. Third, we agree that the idea of considering tradeoffs of infec-
tious disease suppression and collateral damage of strict mitigation strategies is a good one. We
discuss more about each of these ideas, and also mention critical points and suggestions for how
we believe it might be improved.

3 Modeling Effect of Interventions to Support Policy Decisions
The authors specify a parametric model for the effect of interventions on the viral spread that
we find to be well-justified and parsimonious, which stabilizes the estimation and provides in-
terpretable parameters while being flexible enough to capture the most likely curve shapes. The
function α(t) in Eq (2) imposes a constraint on the shape of α(t), parameters of α(t) have strong
interpretability and can be used to assess the effects of policy interventions.

However, the proposed form only allows modeling of a single policy assuming the change of
intervention occurs at one time point. A more realistic scenario is that multiple policy interven-
tions are used to mitigate the spread of virus, and the relaxation of restriction is implemented
gradually in step with the gradual reopening of the economy. It would be interesting to see
extensions of the proposed form to accommodate such scenarios. In addition to the method of
assuming parametric forms of α(t) that correlates disease transmission with policy interventions,
the modeling of intervention effects can also be made using regression models. For example, the
work by Rubin et al. (2020) from the Children’s hospital of Philadelphia PolicyLab incorporates
a measure of social distancing as a covariate to gain knowledge on the impact of public policies
on disease transmission. The major strength of using regression model is its flexibility to study
multiple interventions, interactions of interventions and even the change of intervention effects
over time. Different types of policies affect individuals, businesses, and communities differently
and alter measures of social distancing differently, which form a continuum of the nation’s mit-
igation plan that controls the spread as well as balance against individual rights and economic
outcomes. It could be challenging to handle these complexities in a parametric function of α(t)

and regression may be a better option.

4 Modeling the Unreported Infections
A major challenge of modeling disease transmission based on the traditional SIR model is that the
data of infections are often under-reported. As the SIR model assumes all infected individuals
are recorded, the inference could be biased. The unreported infections of COVID-19 can be
substantial due to the narrow case definition, constrained testing criteria and limited testing
capacity, particularly in the initial stage of the outbreak (Wu et al., 2020; Chow et al., 2020;
Hortaçsu et al., 2021). In this paper, Tian et al. (2021) extended the SIR model to add a
compartment of the unreported infections. Such an extension is significant as it provides a
convenient approach to gain a deeper understanding of the spread of the virus. It also provides
an opportunity to monitor community transmission and study heard immunity even with the
under-reported data. To our best knowledge, this is one of the first efforts to address the under-
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reporting issue of the of COVID-19 data. Because information that can be used to study the
unreported infections is limited, the proposed model and inference are based on an assumption
that the average duration from being infected to recovered among the unreported cases is known,
which is a fair assumption. In practice, the value of such a duration can be specified using
knowledge learned from epidemiology studies of infected individuals.

However, the proposed approach also assumes that all infections are equally likely to be
unobserved which may not be true. We thus suggest a potential improvement of the model.
Specifically, we suggest adding an additional parameter, w, which indicates probability of an
infection stays unreported. Then the differential equation of H(t) will be related to wI (t) and
the equation of C(t) will be related to (1 − w)I (t). One would imagine that this parameter
is related to the proportion of asymptomatic infections in the population, as asymptomatic
infections are most likely to be unreported. This parameter itself cannot be estimated from the
data of reported infections but could be informed by testing capacity and eligibility requirements
for testing which could be time variant. Data from large-scale geographic seroprevalence studies
could be used to infer this parameter, and perhaps it could be allowed to vary over time based
on the increased testing practices that likely capture an increasing proportion of infections over
time. Another idea would be to model separate dynamics for the asymptomatic and symptomatic
infected cases, and then with the model making assumptions about the relative proportions of
these, which might be allowed to vary over time.

Also, the proportion of hidden infections seems determined by the DH and DC parameters,
with DH fixed and DC effectively pinned down to a limited interval via an informative prior, and
these parameters essentially determine the number of hidden infections. It may be true that these
assumptions are made to stabilize the challenging calculations, but it seems that if the number
of hidden infections is too restricted, this could bias the model and compromise the quality of
projections. Based on the results, it appears that the values used assume that most infectious
cases are detected as confirmed cases by the end of the modeling period, which is almost certainly
a false assumption based on serology test results. At a minimum, it seems like sensitivity analyses
to these parameters and hyperparameters should be done, or alternatively more care taken to
try to match the characteristics of case detection proportions based on serology studies and
confirmed case counts. Further, it would be instructive to consider how model projections would
have changed sans the novel hidden infection component to demonstrate the realized benefit of
this innovation in the modeling.

5 Modeling Tradeoffs of Disease Suppression and Collateral Dam-
age

We strongly agree with the authors’ point that it is important to acknowledge the tradeoffs of
infectious disease spread suppression, which adjusting for the cost of each mitigation strategy,
in order to mitigate the collateral damage while maximizing disease suppression. This is the
key to sustainable strategies for viral control. While we agree with the strong discussion, we
were disappointed that there was not more effort to substantively address this question using
the modeling results. The quantification of damage via GDP loss provides a well-defined, if
incomplete, assessment of one of the key types of collateral damage severe mitigation strategies
can cause, the financial ones. How does one decide when the damage is too much to justified
a specific intervention; i.e. how is the tradeoff determined? If you open too early, it is clear
that more cases will occur and indirectly reduce GDP via hospital burden and the future strict
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mitigation strategies that may become necessary, and if you open too late, unnecessary damage
can be induced on the GDP. After setting up this important point in the introduction, it would
be interesting to see a more detailed analysis and discussion of how the model results inform
the assessment of these tradeoffs.

6 Conclusions
The authors have pulled together a detailed hybrid statistical-epidemiological modeling approach
that captures several elements central to the pandemic that is not rigorously addressed in most
existing models, including a hidden infection compartment and modeling specific effects of inter-
vention in a parsimonious and interpretable fashion. These contribute interesting insights into
the pandemic and have general usefulness in continuing to assess effects over time. We have also
raised several questions and suggested improvements of how the modeling framework might be
adapted and extended to capture the pandemic dynamics even more accurately, which may help
it realize its impact potential.
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