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Abstract

Following the outbreak of COVID-19, various containment measures have been taken, including
the use of quarantine. At present, the quarantine period is the same for everyone, since it is
implicitly assumed that the incubation period distribution of COVID-19 is the same regardless of
age or gender. For testing the effects of age and gender on the incubation period of COVID-19, a
novel two-component mixture regression model is proposed. An expectation-maximization (EM)
algorithm is adopted to obtain estimates of the parameters of interest, and the simulation results
show that the proposed method outperforms the simple regression method and has robustness.
The proposed method is applied to a Zhejiang COVID-19 dataset, and it is found that age and
gender statistically have no effect on the incubation period of COVID-19, which indicates that
the quarantine measure currently in operation is reasonable.
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1 Introduction
On March 11, 2020, the World Health Organization (WHO) declared a pandemic of COVID-
19, which is also called SARS-CoV-2. The outbreak of COVID-19 poses a serious challenge
to global public health and economy. By April 11, 2020, the pandemic had caused more than
1, 700, 000 confirmed cases of infection and over 100, 000 fatalities. To cope with this crisis,
several containment measures, including isolation of infected individuals, travel restrictions,
quarantine, etc, have been implemented in many countries to suppress virus transmission via
human-to-human contact. It is worth mentioning that in addition to taking these measures,
China has also established an efficient close-contact tracing system. Through these efforts, the
outbreak of COVID-19 in China is now well under control, which shows that such measures can
effectively block the transmission chain of COVID-19. One effective way of finding potentially
infected individuals is to keep those who may have been exposed to infectious pathogens in
quarantine for some time. As is well known, one of the key factors determining the optimal
quarantine time for suspected cases is a good understanding of the incubation period.

To date, there has been some excellent work on the incubation period of COVID-19. Based
on the first 425 laboratory-confirmed cases reported on January 22, 2020 in China, but with
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only 10 of them having exactly recalled dates of getting infected, Li et al. (2020) fitted a log-
normal distribution and found a mean incubation period of 5.2 days. Similarly, by analyzing 291
patients who recalled their dates of exposure to infectious pathogens, Guan et al. (2020) found
a median incubation period of 4.0 days. However, these studies involved individuals’ recall bias.
To fix this problem, Lauer et al. (2020) collected time data of four events, including possible
exposure to COVID-19 and symptom onset. For example, the exact exposure date was obtained
if available; otherwise, upper and lower bounds were obtained to form a possible interval of
exposure. A parametric accelerated failure time model was adopted and gave an estimate of
the median incubation period of COVID-19 that was also 5.2 days. Analogously, Backer et al.
(2020) estimated the distribution of the incubation period using the censored intervals for the
incubation periods of some confirmed cases, with these intervals having been obtained from the
relevant dates of travel history and symptom onset. However, both of these works suffered from
two sampling bias problems. One is that the short follow-up time meant that shorter incubation
periods would be observed more frequently. The other was that as the observations were of
time lags between two specific timings (e.g., between the date of departure from an epidemic
focus and the date of symptom onset), patients with longer incubation periods were more easily
observed. Linton et al. (2020) adopted a similar approach to Backer et al. (2020), but corrected
the shorter incubation period bias. To handle the longer incubation period bias, Qin et al. (2020)
used renewal process theory and proposed a length-biased Weibull distribution to fit the specific
time lag data of 1211 confirmed cases leaving Wuhan between January 19 and 23, 2020. They
estimated the median of the incubation period to be 8.13 days, much longer than the results
mentioned above.

The first motivation for proposing a mixture regression model is that although the assump-
tions in Qin et al. (2020) are quite reasonable, some cases may become infected on the day of
departure, and thus their observed time lags between departure from Wuhan and symptom onset
are also complete incubation periods, which are the time lags between infection and symptom
onset. This was also noted by Qin et al. (2020), but they only considered it in the context of
sensitivity analysis, whereas our focus here is clearly different from theirs. Therefore, a mixture
model would be more appropriate, since it provides a flexible tool to model data arising from a
heterogeneous population. Traditional mixture models involve no regression, and much excellent
work has been done on these models. For example, based on the Hessian of the multivariate nor-
mal mixture model, Boldea and Magnus (2009) gave estimates of all parameters that appeared
to be superior to previous estimates. Later, Qin and Priebe (2013) obtained robust estimates by
maximizing a novel Lq likelihood through the expectation-maximization (EM) algorithm. Chen
(2017) also presented detailed and correct consistency results from a maximum likelihood esti-
mator (MLE) with traditional mixture models and streamlined some previously obtained results.
More detailed and significant reviews can be found in the book by McLachlan and Peel (2000).

As for the second motivation for our proposed model, we note that, except for the mixture
problem, all of the incubation period studies mentioned above considered only the incubation
period in the whole population. However, for physiological reasons, the incubation period distri-
butions of infected individuals may differ depending on age and gender. These effects may have
a negative influence on current quarantine measures. Consequently, it is meaningful to assess the
effect of age and gender on the incubation period of COVID-19 through a regression model. The
mixture model approaches mentioned above are clearly not appropriate for a regression problem.
For the regression model, Jiang and Tanner (1999) considered a hierarchical mixtures-of-experts
model in which exponential family regression was mixed, and they obtained their estimates by a
maximum likelihood method. Khalili and Chen (2007) defined a family of parametric conditional
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density functions and created a finite mixture of regression models (FRM). Through the use of
a weighted penalized log-likelihood function, they implemented variable selection procedure for
the FRM. However, these two models are not appropriate for our regression problem.

In this paper, we propose a novel two-component mixture regression model (1). Parame-
ter estimates are obtained through the maximum likelihood method and the EM algorithm is
adopted. For a more detailed literature review of the EM algorithm, readers can refer to the
book by Liang et al. (2010). As is well known, one drawback of the EM algorithm is the de-
pendence of its solution on the initial values that are used, and this is often a consequence of
a local maxima problem with the objective functions. Dimitris and Evdokia (2003) studied the
effect of initial values on the EM algorithm for a finite normal mixture model with each normal
component having common variance and for a finite Poisson mixture model. They compared
several methods for choosing initial values for the EM algorithm in these models, including, for
example, a random starting point and starting at some moment estimates. Although their new
initial value estimator produced better results, it cannot be easily extended to our setting. In
this paper, owing to its simplicity, we adopt the classic random initialization method to partially
handle the initial value dependence of the EM algorithm, and we conduct a sensitivity analysis
for our settings with the aim of showing that this initialization method is a reasonable one.

The rest of the paper is organized as follows. In Section 2, a novel mixture regression model
(1) is proposed and the reason for formulating such a model is discussed. The estimator of the
parameters of interest is the MLE based on the conditional likelihood of observed data, and
the estimates are calculated using the EM algorithm. In Section 3, several simulation studies
are conducted to test the performance of the proposed method. Furthermore, under various
possible fixed ranges of uninteresting parameters, a sensitivity analysis is implemented. The
results show that the estimates of the parameters of interest are robust to these various settings.
Some simulations are also conducted to test whether likelihood ratio tests (l.r.t.’s) work for our
proposed model. The results reveal that the application of l.r.t.’s is appropriate. In Section 4,
the proposed model and method are applied to a Zhejiang COVID-19 dataset. The sensitivity
analysis shows the estimates of the parameters of interest and maximum likelihood are robust
and makes the results more reliable. Finally, based on l.r.t.’s for the regression coefficients of
age and gender in the model (1), we find that it is statistically not rejected that age and gender
have no effect on the incubation period of COVID-19.

2 Model and Estimation Method
In this section, we propose a mixture model for the data analysis. Let V denote the time lag
of a confirmed case between departure from Wuhan and onset of symptoms. His/her covariate
column vector X ∈ Rp contains different risk factors, such as age and gender. We define the
conditional density of V given X = x as h(v|x, λ, α, θ, β):

h(v|x, λ, α, θ, β) = π(x, θ)fλ,α(v exp(x ′β)) exp(x ′β)+ (1−π(x, θ))gλ,α(v exp(x ′β)) exp(x ′β), (1)

where

gλ,α(v) = F̄λ,α(v)∫
F̄λ,α(t) dt

, F̄λ,α(t) = 1 − Fλ,α(t),

π(x, θ) = exp(θ0 + x ′θ1)

1 + exp(θ0 + x ′θ1)
, θ = (θ0, θ

′
1)

′.
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Here, Fλ,α(·) is a cumulative distribution function (c.d.f.) and fλ,α(·) is the corresponding prob-
ability density function (p.d.f.), which is assumed to be the Weibull distribution density, i.e.,
fλ,α(y) = αλ(λy)α−1 exp{−(λy)α}, y � 0, λ > 0, α > 0. Then gλ,α(y) = αλ exp{−(λy)α}/�(1/α).
In the following, we suppose that there are n independent and identically distributed (i.i.d.)
realizations {(vi, xi )}ni=1 of (V , X) and that the true values of λ, α, β, θ are λ0, α0, β0, θ0, respec-
tively.

The motivation for formulating (1) is as follows. Assume that an infected case with covariates
X has incubation period T satisfying

log(T ) = X′γ + εf .

The error term εf has density function f (·). Thus, the conditional density of T given X = x is
f (t exp(x ′β)) exp(x ′β)(β = −γ ). When γ = 0, i.e., X has no effect on the incubation period T ,
the density of T will be f (t) and typically is assumed to be the Weibull distribution density.
This is the reason for our choice of fλ,α for f in the density (1).

For a confirmed infected case, let V denote his/her time lag between departure from Wuhan
and onset of symptoms, which can be considered as the forward time in a renewal process, and
let A be the time lag between infection and departure from Wuhan, which can be considered as
the backward time and unobservable. As pointed out in Qin et al. (2020), V is a length-biased
version of the incubation period T , since it is easier to observe V if T = A + V is longer. Now,
for the above infected case who has covariates X = x and incubation period density function
f (t exp(x ′β)) exp(x ′β), given X = x, by renewal process theory, the joint density of (A, V ) is

f ((a + v) exp(x ′β)) exp(x ′β)

μ(x)
, μ(x) =

∫
tf (t exp(x ′β)) exp(x ′β) dt.

Marginally, given X = x, A and V have the same density, i.e.,

g(v exp(x ′β)) exp(x ′β), g(v) = F̄ (v)∫
F̄ (t) dt

, F̄ (t) =
∫ ∞

t

f (w) dw.

This is equivalent to log(V ) = X′γ + εg, and the error term εg has density function g(·).
In short, given X = x, if A = 0 and V actually is the complete incubation period T , then

it has density f (v exp(x ′β)) exp(x ′β). Otherwise, its density is g(v exp(x ′β)) exp(x ′β). Combined
with the mix proportion π(x, θ), which is typically assumed to have logistic regression model
form, and our choice for f , we obtain the proposed density (1).

Unlike the classic two-component mixture model, the two density components in (1) share
the same parameters λ, α, β. Thus, estimation of λ, α, β is always possible. As is well known,
the unidentifiability problem of parameters in a Gaussian mixture model is caused by the un-
constrained mix proportion (Boldea and Magnus, 2009), but this does not happen with our
model. The identification of the parameter of interest β in our mixture regression model can be
summarized as the following theorem.

Theorem 1. If (V , X) has conditional density (1), then if α �= 1 holds in the proposed mixture
density (1), all parameters in the density are identifiable. However, the parameter of interest β

is always identifiable.

Proof: See the Supplementary Material.
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In practice, we obtain the MLE (λ̂ML, α̂ML, β̂ML, θ̂ML) of (λ, α, β, θ) through maximizing
the conditional likelihood of the observed data:

L(λ, α, β, θ) =
n∏

i=1

h(vi |xi , λ, α, θ, β). (2)

Under some regularity conditions, when the underlying model is (1), the consistency of the MLE
is obvious. Interestingly, in some cases, the MLE of β is robust to misspecified model setting.

Theorem 2. If π(x, θ) in (1) is known to be independent of x, which means θ1 ≡ 0 and the
mix proportion is constant, then, even when the underlying incubation period distribution Fλ,α

actually is not the Weibull c.d.f., β̂ML obtained by our model still is a consistent estimate of β0.

Proof: See the Supplementary Material.
Next, we discuss how to calculate the MLE. Owing to π(x, θ), direct maximization of

the conditional likelihood of the observed data is hard to implement. Thus, the EM algorithm
is adopted in this paper. We give the detailed computation procedure in the Supplementary
Material.

3 Simulation Studies
In this section, we conduct several simulation studies to test the performance of the proposed
method, its sensitivity, and the inference method used in the following section. Monte Carlo
samples of size n are independently generated B times and the estimate Est is averaged over
estimates of all replications, and SE is the standard error of the B estimates.

3.1 Estimation Performance

Here, we first test the estimation performance using two examples.

Example 1. The data generating model is (1) with

β = (β1, β2)
′ =

[
0.8
0.6

]
, λ = 0.2, α = 2,

X = [X1, X2]′ ∼ N

([
1
1

]
,

[
0.5 0
0 0.5

])
, θ =

⎡
⎣θ0

θ1

θ2

⎤
⎦ =

⎡
⎣0

1
1

⎤
⎦ .

Since the conditional observed likelihood (2) may have various local maxima, a random ini-
tialization method is adopted here. We set the initial values as λI , αI , βI = [βI1, βI2]′, θ I =
[θI0, θI1, θI2]′. For a test of this method, we take two settings:
1. Fixed initial value setting: λI = 0.1, αI = 3.5, βIi = 0, i = 1, 2, θIk = 0, k =, 0, 1, 2. This

setting is denoted by FS.
2. Random initial value setting: λI = U(0, 1), αI = U(1, 10), βIi = U(−5, 5), i = 1, 2, θIk =

U(−5, 5), k =, 0, 1, 2. In this random setting, the estimate is chosen as the one with the
maximum likelihood among 10 and 100 estimates, which are obtained by starting at 10 and
100 random initial points, respectively. The setting starting at 10 random initial points is
denoted by Rnd10 and that starting at 100 random initial points by Rnd100.
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Table 1: Results for Example 1.

Settings FS Rnd10 Rnd100 SR

Quantity True value Est SE Est SE Est SE Est SE

λ 0.2 0.1944 0.0075 0.1978 0.0079 0.1993 0.0078 – –
α 2.0 2.0677 0.0701 2.0372 0.0716 2.0236 0.0660 – –
β1 0.8 0.8081 0.0253 0.8045 0.0249 0.8025 0.0243 0.7131 0.0232
β2 0.6 0.5986 0.0181 0.5962 0.0173 0.5917 0.0172 0.5205 0.0221
θ0 0 −0.1900 0.3814 −0.0686 0.3975 −0.0126 0.4011 – –
θ1 1.0 1.0128 0.3846 1.0731 0.4203 1.0982 0.4057 – –
θ2 1.0 0.8406 0.2931 0.9086 0.3312 0.9308 0.3193 – –

For the purpose of comparison, a competing model is chosen as a regression model fitted
by regressing the logarithm of the observed time lag over covariates. From the discussion about
the motivation for (1), the estimate of βi (i = 1, 2) is the negative regression coefficient estimate
of this simple regression. We denote this estimation method by SR. The simulation results with
n = 1500, B = 200 are summarized in Table 1.

From Table 1, we see that when we implement the proposed EM estimation method, the
regression coefficients β, θ are estimated very well, no matter the initial setting with which
the EM computation procedure starts. However, compared with the results of FS, the random
initialization method produces results with smaller bias and SE. Comparing the results of Rnd10
and Rnd100, we note that the proposed EM computation procedure is robust to a random choice
of initial values and thus is reasonable. From comparison with the results of Rnd10 and Rnd100,
it is found that estimates obtained by SR will produce large bias, and this may lead to unreliable
statistical inference. This shows the greater practical power of our model and method.

Example 2. The data generating model is the same as that in Example 1, but with λ = α = 1.
This actually means h(v|x, λ, α, θ, β) = w(v exp(x ′β)) exp(x ′β), w(v) = e−v. We again take two
initialization settings:
1. Fixed initial value setting: λI = 0.1, αI = 2.5, βIi = 0, i = 1, 2, θIk = 0, k =, 0, 1, 2. This

setting is denoted by FS.
2. Random initial value setting: λI = U(0, 1), αI = U(1, 10), βIi = U(−3, 3), i = 1, 2, θIk =

U(−3, 3), k =, 0, 1, 2. In this setting, the estimate is chosen as the one with the maximum
likelihood among 10 estimates, which are obtained by starting at 10 random initial points.
This setting is denoted by Rnd10.

The competing model is the same as in Example 1. The simulation results with n = 1500, B = 200
are summarized in Table 2.

In Example 2, since V |x ∼ w(v exp(x ′β)) exp(x ′β), it is obvious that θ has no effect on the
generated data, and Theorem 1 shows that θ is unidentifiable. However, β is still identifiable, and
so we can estimate it. We see that the EM implementation with fixed initial value setting and
the 10 random initial values setting produces unbiased estimates of β. However, interestingly,
SR also produces an unbiased result. The reason behind this is as follows.

In this special case, log V = x ′γ + ε, γ = −β, and eε ∼ exp(1). This can be rewritten as
log V = c + x ′γ + ε′, ε′ = ε − Eε, and c = Eε. Thus, the SR method can produce unbiased
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Table 2: Results for Example 2.

Settings FS Rnd10 SR

Quantity True value Est SE Est SE Est SE

λ 1.0 1.0040 0.0820 1.0034 0.0910 – –
α 1.0 1.0006 0.0445 1.0039 0.0554 – –
β1 0.8 0.8001 0.0356 0.7993 0.0360 0.8026 0.0494
β2 0.6 0.6013 0.0357 0.6008 0.0368 0.6026 0.0439
θ0 0 −2.4434 0.6487 NA NA – –
θ1 1.0 −1.3047 1.2544 NA NA – –
θ2 1.0 −1.0822 2.2313 NA NA – –

NA means that the absolute value of the quantity is large; e.g., for θ2, Est and SE are
respectively −27.2430 and 26.9600.

results. However, compared with the results obtained by our method, the SE produced by the
SR method is much larger.

3.2 Sensitivity Analysis
In practice, θ is not usually the parameter of interest, and too large a value of θi may lead
to a computational barrier. In the absence of a constraint, convergence may then be slow. To
avoid this problem, we can constrain each component of θ to a given range when implementing
optimization. Thus, it is necessary to test the sensitivity of the estimates of λ, α, β to such
constrained optimization. For this purpose, we first explore the case with no covariate. Let
fλ,α(y) and gλ,α(y) be defined as before. The mixture density function m(v; λ, α, p) = pfλ,α(v)+
(1 − p)gλ,α(v) for different mix proportions p (0 � p � 1) is shown in Figures 1 and 2 for λ =
0.2, α = 2 and λ = 0.1, α = 0.6, respectively. From these figures, it can be seen that in contrast
to the multimodality of the traditional mixture model, the mixture of the Weibull distribution
and its length-biased version is unimodal when α > 1 and has no peak when α � 1. This makes it
impossible to determine the distribution from which the sample arises. Fortunately, this is not our
goal, which is simply estimation of the parameters of interest λ, α. Take λ = 0.2, α = 2, p = 0.5
as an example. Through fixing the specific value and range of p, we get the MLE of the relevant
unknown parameters. The simulation results with n = 1500, B = 200 are summarized in Table 3.

From Table 3, for the case of fixed p, it can be seen that a departure from the true value
p0 of p will bring some bias. It should be noted that the greater the departure, the larger will
be the bias. This is also reflected in Figure 1. For the case of a fixed range, when this range
contains p0, the MLE produces unbiased estimates. When the range does not contain p0, the
estimates will have some bias. Furthermore, the greater the departure of the range from p0 is,
the larger will be the bias.

For the case with covariates, we still take Example 1 with the 10 random initial value
setting: λI = U(0, 1), αI = U(1, 10), βIi = U(−5, 5) (i = 1, 2), θIk = U(a, b) (k = 0, 1, 2). The
maximization step is also constrained in {θi ∈ [a, b], i = 1, 2, 3}. The results are summarized in
Table 4. From this table, it can be seen that compared with the result with no constraint, no
matter how large the fixed range of θ is, when it contains θ0, the estimates of λ, α, β are very
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Figure 1: Density function m(v; λ, α, p) = pfλ,α(v) + (1 − p)gλ,α(v) for λ = 0.2, α = 2.

stable and are still unbiased. These results indicate the greater reliability of the proposed method.
However, when the true value of θi is not contained in the fixed range, such as (−2, −0.5), (−1, 0),
the greater the departure of the range from θ0, the larger will be the bias of the MLE of β. For
example, the departure of (−2, −0.5) from θ0 is greater than that of (−1, 0.5), and the results
in the (−2, −0.5) case have larger bias than those in the (−1, 0.5) case. The reason behind
this is that β is actually combined with the scale parameter λ in the mixture model. Thus,
the sensitivity of the estimate of β in the mixture regression model is just a reflection of the
sensitivity of the estimate of the scale parameter in the no-covariate case. Therefore, in practice,
a larger fixed range is preferred when permitted. This is also what we have done in the real data
analysis.

3.3 Hypothesis Testing

In Section 4, l.r.t.’s will be used to make inferences for the parameters of interest. However,
in Wolfe (1971) and the book by Everitt and Hand (1981), it is noted that standard l.r.t.’s
may fail for the mixture model since the asymptotic distribution is no longer a χ2 distribution.
Aitkin and Rubin (1985) also pointed out this problem and placed a prior distribution on the
mix proportion to make the asymptotic distribution of l.r.t.’s approximate the classical standard
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Table 3: Sensitivity analysis for m(v; λ, α, p) with λ = 0.2, α = 2, p = 0.5, n = 1500, B = 200.

Fixed value of p 0.1 0.2 0.4 0.5

QuantityTrue value MLE SE MLE SE MLE SE MLE SE

λ 0.2 0.1553 0.0032 0.1675 0.0033 0.1897 0.0037 0.2001 0.0038
α 2.0 2.6868 0.1535 2.4619 0.1236 2.1330 0.0869 2.0055 0.0752

Fixed value of p 0.6 0.8 0.9 1.0

QuantityTrue value MLE SE MLE SE MLE SE MLE SE

λ 0.2 0.2102 0.0040 0.2303 0.0044 0.2404 0.0045 0.2507 0.0046
α 2.0 1.8916 0.0656 1.6864 0.0499 1.5894 0.0426 1.4901 0.0351

Fixed range of p (0.1,0.4) (0.3,0.6) (0.7,0.9) (0,1)

QuantityTrue value MLE SE MLE SE MLE SE MLE SE

λ 0.2 0.1890 0.0043 0.1988 0.0090 0.2203 0.0042 0.1993 0.0098
α 2.0 2.1436 0.0950 2.0287 0.1319 1.7856 0.0573 2.0240 0.1392
p 0.5 0.3934 0.0218 0.4901 0.0802 0.7008 0.0073 0.4954 0.0912

Table 4: Results of sensitivity analysis for Example 1

10 random initial points setting

Fixed range (a, b) of θ (−3,3) (−5,5) (0.5,2)

Parameter True value Est SE Est SE Est SE

λ 0.2 0.1981 0.0082 0.1983 0.0084 0.2046 0.0063
α 2.0 2.0354 0.0741 2.0325 0.0758 2.0051 0.0636
β1 0.8 0.8043 0.0250 0.8043 0.0252 0.7934 0.0214
β2 0.6 0.5959 0.0175 0.5959 0.0174 0.5868 0.0152
θ0 0 −0.0561 0.4086 −0.0592 0.4247 0.5146 0.0576
θ1 1.0 1.0811 0.4233 1.0904 0.4158 0.8534 0.3073
θ2 1.0 0.9194 0.3419 0.9356 0.3715 0.7126 0.2447

Fixed range (a, b) of θ (-1,0.5) (-2,-0.5) No constraint

Parameter True value Est SE Est SE Est SE

λ 0.2 0.1991 0.0062 0.1638 0.0078 0.1978 0.0079
α 2.0 2.0787 0.0585 3.0110 0.2014 2.0372 0.0716
β1 0.8 0.7925 0.0194 0.7427 0.0241 0.8045 0.0249
β2 0.6 0.5887 0.0153 0.5357 0.0181 0.5962 0.0173
θ0 0 0.4327 0.1333 −0.5672 0.3104 −0.0686 0.3975
θ1 1.0 0.4935 0.0340 −0.5000 0.0000 1.0731 0.4203
θ2 1.0 0.4943 0.0277 −0.5040 0.0463 0.9086 0.3312
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Figure 2: Density function m(v; λ, α, p) = pfλ,α(v) + (1 − p)gλ,α(v) for λ = 0.1, α = 0.6.

asymptotic distribution. Thus, it is necessary to test whether the l.r.t.’s and the corresponding
classical standard asymptotic distribution work for our model. In this subsection, we adopt the
model from Example 1 with different β and test three null hypotheses:

H10 : β ≡ 0, H20 : β1 = 0, H30 : β2 = 0.

We still use the EM algorithm to obtain the estimates {λ̂i0, α̂i0, β̂ i0, θ̂ i0} of all parameters under
the constraint H0i (i = 1, 2, 3) and the estimates {λ̂0, α̂0, β̂0, θ̂0} of all parameters without con-
straints. The same random initialization setting as that in Example 1 is adopted, but we use 20
random initial values here. The maximization step also is constrained in {θi ∈ [−5, 5], i = 1, 2, 3}.
For Hi0(i = 1, 2, 3), the l.r.t. statistic lHi0 is

lHi0 = −2 log

[
L(λ̂i0, α̂i0, β̂ i0, θ̂ i0)

L(λ̂0, α̂0, β̂0, θ̂0)

]
.

Here, L(λ, α, β, θ) is given by (2), and the p-value is calculated as pHi0 = P {lHi0 � χ2
dimi

},
where χ2

dimi
is the chi-square random variable with degree dimi equal to the number of con-

strained parameters in Hi0. In our simulations, as illustrations, we reject the null hypothesis Hi0 if
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Table 5: Results of hypothesis testing simulation with different β.

β NH

H10 H20 H30

[0.8, 0.6]′ 100% 99.5% 100%
[0.8, 0]′ 100% 100% 2.5%
[0, 0]′ 3.0% 4.0% 3.0%

Table 6: Results of hypothesis testing simulation with β = [0.1, 0]′ and different n.

n NH

H10 H20 H30

500 21.5% 28.0% 5.0%
1000 37.0% 52.5% 5.0%
1500 62.0% 72.5% 6.5%
2000 77.5% 86.5% 3.5%
2500 86.0% 94.5% 3.0%
3000 90.5% 96.0% 3.5%

pHi0 � 0.05. We calculate and present the percentage RP of rejected null hypotheses among B

replications in the relevant tables, i.e.,

RP = number of rejected null hypotheses among B replications
B

.

First, we set n = 500, B = 200 and simulate with different β = [0.8, 0.6]′, [0.8, 0]′, [0, 0]′.
The results are summarized in Table 5, where NH denotes the null hypothesis. From this table,
we can see that the l.r.t.’s control the type I error well, since when the null hypothesis is true,
the false rejection rate is less than 5%. Even better, in such a case, the type II error is also very
small. The reason for this is that the regression coefficients β1, β2 are relatively large and thus
the signal is strong.

Consequently, as an another test, we set B = 200, β = [0.1, 0]′, which means that X2 has
no effect and X1 has a very weak effect. Since generally test power depends on sample size, we
simulate with various n to show the effect of sample size. The simulation results are summarized
in Table 6, where NH again denotes the null hypothesis. From this table, it can be noted that the
type-I error is still controlled well and is reasonable for the classical standard l.r.t.’s. Compared
with the results for β = [0.8, 0]′, we see that small but nonzero regression coefficients lead to
a sharp increase in the type II error, but increasing the sample size can increase the power of
the proposed test and reduce the type II error. All of these results show that the l.r.t.’s and the
corresponding classical standard asymptotic distributions work well for our model. It is therefore
appropriate to adopt these l.r.t.’s and asymptotic distributions.
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Figure 3: Data description.

4 Real Data Analysis
In this section, the proposed model and method are applied to a real dataset. Our real data
analysis is based on 143 observations of time lag between departure from Wuhan and onset of
symptoms, which is of count type but is treated as continuous for our method. These 143 cases
left Wuhan between January 19 and January 23, 2020 for Zhejiang. The observed risk factors
are Age and Gender (Female is set as 1). There are 66 female cases and 77 male cases. Figure 3
presents a description of our data, where Time Length is the time lag between the departure of
a case from Wuhan and their onset of symptoms. Some summary statistics for the real data are
also presented in Table 7.

In the estimation of λ, α, β in the model (1) for our real data, through an EM computational
procedure starting with λI = 0.1, αI = 2.0, βI = [0; 0], θ I = [0; 0; 0] without other constraints,
it is found that the estimate of (λ, α, βgender , βage) is (0.1849, 1.6713, −0.0673, 0.0029).

4.1 Sensitivity Analysis

Actually, without any other constraints, the estimate of θ is very unstable. However, θ is not a
parameter in which we are interested. For sensitivity analysis, we take a 20 random initial val-
ues computational procedure and choose the final estimate as we have done in the simulations.
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Table 7: Data summary statistics.

Variable Gender Mean Min Max 25% Median 75% 90% Std

Age Female 43.08 10.00 71.00 37.00 43.00 51.00 56.90 11.45
Male 41.77 10.00 70.00 32.00 42.00 50.00 59.80 13.47

Time Length Female 4.45 1.00 15.00 2.00 4.00 6.00 8.90 3.23
Male 4.35 1.00 10.00 2.00 4.00 6.00 7.00 2.42

Table 8: Results of sensitivity test for a fixed range of θ .

Value of l ML λ α βgender βage θ1 θ2 θ3

3 −329.9835 0.1849 1.6713 −0.0673 0.0029 1.5369 1.5986 1.0841
5 −329.9835 0.1849 1.6713 −0.0673 0.0029 2.4741 1.3965 1.0296
10 −329.9942 0.1861 1.6826 −0.0785 0.0027 9.9893 −4.6786 −0.0475

ML is the corresponding maximum likelihood.

Specifically, the random initialization setting is λI = U(0, 1), αI = U(1, 10), βIi = U(−1, 1), i =
1, 2, θIk = U(−l, l), k =, 0, 1, 2, where l is a pre-assumed positive constant. The maximization
step is also constrained in {θi ∈ [−l, l], i = 0, 1, 2}. The results of the sensitivity test are sum-
marized in Table 8. From this table, we can see that with different constrained ranges of θ when
randomly initializing and implementing the maximization step, the estimate of θ is unstable,
but λ, α, β and the corresponding maximum likelihood are robust to these settings. This makes
the estimates of interest λ, α, β more reliable.

4.2 Hypothesis Test for the Effect of Age and Gender
Finally, as the simulation results in Section 3.3 have shown, l.r.t.’s are allowed for βgender and
βage. We gives the corresponding test results under three null hypotheses: H1 : βgender = βage = 0,
H2 : βgender = 0, and H3 : βage = 0. The computation procedure is implemented with the setting
l = 5 in Section 4.1. The results are summarized in Table 9. All these results show that it is
statistically not rejected that age and gender have no effect on the incubation period. Based on
this on-hand evidence, a common quarantine period for the whole population is reasonable and
there is no need to specify different quarantine measures for different groups.

As an illustration of this result, we can estimate the incubation periods for groups with
various ages and genders. Suppose that, given X = x, the conditional density of V is

π(x, θ)fλ,α(v exp(x ′
newβ) exp(x ′

newβ) + (1 − π(x, θ))gλ,α(v exp(x ′
newβ)) exp(x ′

newβ), (3)

where x = (xGender , xAge)
′, xnew = (xGender , I {xAge > 45})′, and xGender = 1 when the case is

female. The other notation is as before. We still adopt the 20 random initial values setting with
l = 10. The results are summarized in Table 10. From these, we can see that the estimates
of the Weibull distribution parameters and the mean and quantiles of the incubation periods
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Table 9: Results of hypothesis test.

Hypothesis H1 H2 H3

CML −330.5694 −330.2039 −330.3030
LLRS 1.1719 0.4408 0.6390

p-value 0.5566 0.5068 0.4241

CML is the corresponding constrained maximum likelihood.
LLRS is the log-likelihood ratio statistic.

Table 10: Results for the new model (3).

Female Male

Age > 45 � 45 > 45 � 45

Quantity Est CI Est CI Est CI Est CI

λ 0.210 (0.161,0.266) 0.184 (0.148,0.228) 0.227 (0.178,0.273) 0.199 (0.168,0.228)
α 1.673 (1.538,1.993) 1.673 (1.538,1.993) 1.673 (1.538,1.993) 1.673 (1.538,1.993)

Mean 4.254 (3.362,5.539) 4.857 (3.908,6.036) 3.935 (3.276,4.987) 4.493 (3.930,5.307)

Q0.05 0.807 (0.615,1.249) 0.922 (0.720,1.361) 0.747 (0.572,1.166) 0.853 (0.676,1.209)
Q0.25 2.262 (1.803,3.055) 2.583 (2.112,3.368) 2.092 (1.693,2.897) 2.389 (2.032,3.013)
Q0.50 3.826 (3.033,4.997) 4.368 (3.565,5.479) 3.539 (2.930,4.618) 4.041 (3.506,4.893)
Q0.75 5.789 (4.563,7.460) 6.610 (5.277,8.140) 5.355 (4.469,6.599) 6.115 (5.352,7.125)
Q0.90 7.840 (6.141,9.802) 8.951 (7.126,10.78) 7.252 (6.046,8.711) 8.280 (7.196,9.472)
Q0.95 9.175 (7.166,11.33) 10.48 (8.258,12.69) 8.487 (7.048,10.11) 9.691 (8.369,11.06)
Q0.99 11.86 (9.175,14.41) 13.55 (10.50,16.27) 10.97 (8.991,13.01) 12.53 (10.60,14.33)

CI is the 95% confidence interval obtained from 1000 times bootstraps.
Qp is the quantile corresponding to probability p of Weibull distribution with the estimated
parameter.

of different groups are similar. There are some differences in the quantile estimates, but these
are due to the limited sample size. The confidence intervals of all the quantiles contain the
corresponding quantile estimates of the different groups. Thus, these estimates should make
only a little difference, and this implicitly confirms the hypothesis test result.

5 Concluding Remarks
In this paper, we have proposed a novel mixture regression model to analyze the effects of age and
gender on the incubation period of COVID-19. An EM method is used to obtain estimates of the
parameters of interest, and the simulation results show that the proposed method outperforms
the simple regression method and has robustness. The hypothesis test simulations also show that
the application of l.r.t.’s and the corresponding classical standard asymptotic distribution is a
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reasonable approach. It should be noted, however, that we use a simple random initialization
method for the EM algorithm. To the best of our knowledge, the way in which a good starting
value should be chosen for the EM algorithm remains a difficult and unsolved problem deserving
of further work in the future.

By applying the proposed method to a Zhejiang COVID-19 dataset, it has been found
that age and gender statistically have no effect on the incubation period of COVID-19. Thus,
the quarantine period currently in operation, which is the same for everybody, is reasonable.
This result has direct significance for COVID-19 prevention work and future economic recovery.
However, our sample size still seems relatively limited, and so in the future it will be worthwhile
collecting more data to further confirm our results.

Supplementary Material
The Supplementary Material including the detailed proofs of Theorems 1 and 2, can be found
on the Journal of Data Science website. The data/code used in the analyses can be found at
https://github.com/SimonsZheng/Assessment-of-Effects-of-Age-and-Gender-on-COVID-19.
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