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1 Proof of Theorem 1

In order to prove the identification of regression coefficient 3, we first prove the following lemma:

Lemma 1. If random variable V' has density

W (050 A p) = aA{p(M)* 1 + (1 p)T (1 )}exp<—<m>a>,v >0 W

a
with parameter a > 0,\ > 0,p € [0,1], then all parameters in this density are identifiable for

a # 1, but scale parameter X\ is always identifiable.

Proof of Lemma 1:

To prove scale parameter A is identifiable, it suffices to show that for (a1, A1,p1) and
(a2))‘27p2) with ala2 > Oa)\l7)\2 > O7plap2 S [07 1]) if

h*(v; a1, A, p1) = h* (v; a2, Aa, p2), for any v > 0, (2)

then )\1 == )\2.
Case 1(a1 = ag = 1): (2) is equivalent to

A1 exp(—A1v) = Ay exp(—Aqv), for any v > 0,

then it is obvious that Ay = Ao but pq, p2 can be arbitrary.
Case 2(ag = 1,9 # 1): (2) is equivalent to

1
A1 exp(—Av) = a2)\2{p2()\20)°‘2_1 +(1—=po)T < >}exp(—()\2v)a2), for any v > 0,

as
then

1
exp((30)** = Aro) = anda{pa0en)™ 1+ (1= )T (o )}/, for amy 0 > 0.

a2
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Now as g # 1, the left term is the exponential form function of v but the right term is a
polynomial function of v. Thus this is impossibly to happen.
Case 3(a1 # 1, a # 1): Similarly, (2) is equivalent to

ada{pa(Aov) ™ + (1= po)l ()}

a2

exp((A20)™ — (\v)™) = 1
aha{p (a0) =+ (1= )T ()}

, for any v > 0.

Now let the left term be mq(v) and the right term mq(v). If @ # a9, without loss of generality,

suppose a1 < «o, then it must hold lim mi) oo, contradicting with mi) — 1 Thus
V—00 2( ) mQ('U)

a1 = ag = a # 1 for some constant a. Furthermore, if Ay # A2, again without loss of generality,
suppose A1 < A2, then

. - a ayay . _ p2Ag
vlig)lo mi(v) = vl;lglo exp(((A2) (A)*)v?) = OO’UIEEO ma(v) = A

m1(v)
ma(v)

which contradicts with = 1. So it must hold A\; = Xo. By the way, moreover, we know

b1 = p2.
In short, if (2) holds, then A\; = Ag. This completes the proof of lemma. [J

Proof of Theorem 1:

To prove the identification of parameter of interest 3, it suffices to show that for (A1, a1, 81, 3;)
and (A2, az, 02, 8,), if

h(vl®, A1, 1,01, B1) = h(v| A2, a2, 82, 85),¥ v > 0,z € RP,
then B; = By. Now for any given «, in the notation (1) of Lemma 1, we have
h*(v;ar, A\ exp(x'By), m(x, 01)) = h*(v; az, A exp(x'By), m(x, 82)), for any v > 0.

By the result of Lemma 1, we have \j exp(x’3;) = Ay exp(2’3,), for any x € RP and therefore
A1 = A2, 3; = B9. What’s more, by the analysis of Lemma 1, a3 = a9 and if a3 = a9 # 1,
n(x,01) = 7(x,0:) for any & € RP and thus @; = 03. This implies that in the case a # 1 for
the proposed mixture density, all parameters involved are identifiable. But parameter of interest
B is always identifiable. This completes the proof of Theorem 1.[]

2 Proof of Theorem 2

First, let G(v|x,B, F,p) = p{“(vexp(w’ﬁ))exp(w’ﬁ) + (1 — p)g(vexp(x'B)) exp(x'B), where

d .
fv) = Zf}v),g(v) = fll:—:((:)dt,F(t) = 1— F\4(t). Suppose G(v|x, By, Fo,mo) is the true con-
ditional density of V' given X = x but we misspecify that it has the form G(v|z, 3, F) o,p) By

the result of White (1982), we know that 3 M 1s a consistent estimate of 3%, which is a part of
(p*, \*, a*, 3%) and (p*, \*, o, 3") maximizes the Kullback Leibler information

/ G (v]@, By, Fo, mo) log G(v]z, B, F, p)dv
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Let f(v; A, ) = fra(v), §(v; A, @) = gra(v) to emphasize the Weibull parameter, then as func-
tions of v, we have

fralv exp(x’'B)) exp(x’'B) = f(v; Aexp(x'B), @), gr,a(v exp(z’'B)) exp(x'B) = §(v; Aexp(x'B), a)

/G(v|x, /607 F07 7TO) IOg G(U‘.%, B’ F)\,omp)dv

Fy(v exp(wlﬁo)) exp(iv'ﬁo)}
J Fo(t)
B)F (v eXp( B))
fF' } dv

-/ [Wofo(vexp(w’ﬂo))eXp(w'ﬂo)+(1—770)

exp(z'S

log [pf(v exp(a'B)) exp(a'B) + (1 - p)

- / {Trofo(z) +(1- WO)]?EEi;dt]

log [pf(z exp(a (8 — By))) exp('B) + (1 — p)

- / [m)fo(z) +(1- Wo)ff;z((j))dt]

log [pﬂz exp(a (8 — Bo))) exp(@’ (8 — o)) + (1 -

exp(w'ﬁ)_(zexp( ([3 ﬁo)))]d
[F(t)

») exp(a'(8 — ﬁo))F_(?«“ exp( "(B—By)))
JF(t)
] [pf(z; Aexp('(B — By)), @) + (1 — p)g(z; Aexp(2' (B — By)), )| dz

] dz+ '3,

FQ(Z)
[ Fo(t)dt

= /[Wofo(Z)Jr(l—Wo)
+ 2'By.

Let go(2) = mofo(2) + (1 — WO)%;Q(%I%@ a) =pf(z0,a) + (1 -p)g(z;0,a), then we can

find constants pg, 0¢, g, such that
/go(z) log g(z;p, 0, a)dz < /go(z) log g(2; po, 00, ) dz.
Thus
[ Gvke, 5o, Fo o) log Giule 5, F. pho
= /go(z) log g(z;p, Nexp(2' (B — By)), @)dz + x' By
. /
< /90(2) log g(z; po, 00, 0)dz + ' By.

And when p = pp, A = 09, 8 = By, @ = ap, the maximum is attained. Therefore, (p*, \*, a*, 3%) =
(po, 00, a0, By) and B, is a consistent estimate of 3. The proof is completed. [J

3 EM Computation Algorithm

Let z be a binary random variable,

Pz =1lx) = n(x, ),
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and

P(v,2[2) = P(v]z, 2) P(z|e) = [r(2,0) f(vexp(a B)) exp(a” B [(1 ~ (,0)) fﬁ(texp(ﬂm

The conditional likelihood is

In P(v, z|x)
F(vexp(z”B))

(vexp(z”B)) }
)dt ‘

= z[ln7(x,0) +1In f(vexp(z? B)) exp(x? B)] + (1 — 2) [ln(l —7(x,0)) +In —=

and the probability density for given x, z is

P|x,z=1)P(z = 1|x)
(v|le,z =1)P(z = 1|z) + P(v|z, 2 = 0)P(z = 0|x)"

Pz =1|z,v) = P

For the data {(v;, x;)}}_;, we present an EM algorithm as follow:
Step 1: Let t = 0 and initialize 5\0, Qo, BO, 6, for the parameters A7, ag, B, @1 and the tolerance
e>0
Step 2(E step): Let t =t + 1,

;}/]tg = P(Zk’ = 1|mk27vk‘7S\tfladtflalét—laétfl)a

Given the observed data, the expectation of log full likelihood is

L'(X\a,B8,0) = > {4iInm(zk,0) + (1 —44) In[1 — m(xx, 0)]}
k=1

n

+ 3 (At eptel ) el @) + (130 n e S

Let
LL(6) = (At Inm(ws, 0) + (1 — 4f) In[l — (x4, 0)]},
k=1

n

LyhaB) =Y {az In(f (v exp(@X3)) exp(@l B)] + (1 - 40)1

k=1

\ Foentalo) |
[ F(texp(zi@))dt )

Step 3(M step):
0 = arg max LL(8), (A, &, B,) = avg max L, (A B)
If [|( A, éu, B;, 9;)’ — (M_1, dy_1, 31717 9;,1)’|] < € {\i, du,B;,0;} is the final estimates.
Otherwise, Return to Step 2.
On the convergence of EM algorithm, it may be refered to Wu (1983), Meng and Rubin (1993),
Liu and Rubin (1994) and for more detailed literature review of EM algorithm, see the book by
Liang et al. (2010).

Pl el ) .
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