The normal distribution is the most popular model in applications to real data. We propose a new extension of this distribution, called the Kummer beta normal distribution, which presents greater flexibility to model scenarios involving skewed data. The new probability density function can be represented as a linear combination of exponentiated normal pdfs. We also propose analytical expressions for some mathematical quantities: Ordinary and incomplete moments, mean deviations and order statistics. The estimation of parameters is approached by the method of maximum likelihood and Bayesian analysis. Likelihood ratio statistics and formal goodnessof-fit tests are used to compare the proposed distribution with some of its sub-models and non-nested models. A real data set is used to illustrate the importance of the proposed model.