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Abstract: In this paper, we consider functional varying coefficient model in present 

of a time invariant covariate for sparse longitudinal data contaminated with some 

measurement errors. We propose a regularization method to estimate the slope 

function based on a reproducing kernel Hilbert space approach. As we will see, our 

procedure is easy to implement. Our simulation results show that the procedure 

performs well, especially when either sampling frequency or sample size increases. 

Applications of our method are illustrated in an analysis of a longitudinal CD4+ 

count dataset from an HIV study. 
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1. Introduction 

 In functional data, unlike multivariate data, the observations are naturally curves. In fact they 

are independent and identically distributed realizations of a stochastic process. See Ramsay and 

Silverman (2002, 2005) for an overview of methods and applications. See also Ferraty and Vieu 

(2006) and, Horváth and Kokoszka (2012). In many experiments realizations of involved 

trajectories are not directly observable. Instead, the observed data are obtained at discrete location 

points. These type of data are usually sparsely and irregularly sampled on random time points 

and are noise-contaminated. The aforementioned situation often occurs in many longitudinal 

experiments, for example in the most of biological, biomedical and medical studies. 

Varying coefficient models which are extension of parametric regression models, became 

popular after the works of Cleveland et al. (1991) and, Hastie and Tibshirani (1993). These 

models have been extensionally studied in the literature. Most of existing approach are based on 

polynomial spline, smoothing splines and local polynomial smoothing. See for example Hoover 

et al. (1998), Wu et al. (1998), Kauermann and Tutz (1999), Chiang et al. (2001), Wu and Chiang 

(2000) and Huang et al. (2002, 2004). See Fan and Zhang (2008) to review the collection of 

approaches and applications up-to that date. In the case of sparse designs and noisy measurement, 

we refer the readers to Sentürk and Müller (2008), Noh and Park (2010), Sentürk and Müller 

(2010), Sentürk and Nguyen (2011), Chiou et al. (2012), and Sentürk et al. (2013). 

In this paper, we consider the following functional varying coefficient model  

𝑌(𝑡) = 𝛼0(𝑡) + 𝛽0(𝑡)𝑋 + 𝑍(𝑡),        𝑡 ∈ 𝒯                             (1) 
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where 𝒯 ⊂ ℝ is a compact set, 𝑌(𝑡) is a square integrable response with mean function 

𝜇𝑌(𝑡) and 𝑋 is a random variable with finite variance 𝜎𝑋
2. Also, 𝛼0(𝑡) and 𝛽0(𝑡) are smoothed 

intercept and slope functions, respectively, and 𝑍(𝑡)  is a mean zero random processes, 

independent of 𝑋. We want to estimate 𝛼0(𝑡) and 𝛽0(𝑡) in the situation that the observations are 

sparse and irregular longitudinal data and contaminated with some measurement errors. Let 𝑉𝑖𝑗 

denote the observations of the random function 𝑌𝑖 at the random times 𝑇𝑖𝑗, contaminated with 

measurement errors 𝜀𝑖𝑗 which are assumed to be independent and identically distributed with 

means zero and finite variance, and independent of random function 𝑌. Then the model that we 

consider is  

 𝑉𝑖𝑗 = 𝑌𝑖(𝑇𝑖𝑗) + 𝜀𝑖𝑗 ,        𝑗 = 1,… ,𝑚;         𝑖 = 1,… , 𝑛.                     (2) 

 The requirement that the number of time points in each curve are equal is not essential and 

is placed for easy illustration of the methodology. 

In the present paper, we use a reproducing kernel Hilbert space (RKHS) framework for 

estimating the slope function. We assume that the slope function 𝛽0  resides in an RKHS, a 

subspace of the collection of square integrable functions on 𝒯. Then we investigate the method 

of regularization for estimating 𝛽0 . By obtaining an estimate of 𝛽0 , say �̂�0 , we estimate the 

intercept function 𝛼0 via  

�̂�0(𝑡) = �̂�𝑌(𝑡) − �̅��̂�0(𝑡),        𝑡 ∈ 𝒯, 

where �̅� =
1

𝑛
∑𝑛𝑖=1 𝑋𝑖 and �̂�𝑌(𝑡) is a smoothed estimate of 𝜇𝑌(𝑡). Under the random design 

setup discussed above, the mean function estimate �̂�𝑌(𝑡) can be obtained by, for example, any of 

the methods discussed in Yao et al. (2005), Li and Hsing (2010), and Cai and Yuan (2011). 

The paper is organized as follows. In section 2, we introduce our methodology for estimating 

the slope function 𝛽0. Section 3 presents results of some simulation studies. An application to a 

longitudinal CD4+ count dataset are demonstrated in section 4. Finally, concluding remarks and 

possible extensions of our work are presented in Section 5. 

 

 

2. Estimation Method  

In this section, we introduce a regularization method for estimating the slope function. First, 

we present the general definitions and common properties of RKHS required in this paper. 

Verification of these results as well as more detailed discussions of RKHS theory can be found, 

for example, in Aronszajn (1950). 

Let ℋ be a Hilbert space of functions on some set 𝒯 and denote by 〈⋅,⋅〉ℋ the inner product 

in ℋ. A bivariate function 𝐾 on 𝒯 × 𝒯 is said to be a reproducing kernel for ℋ if   

    (i) 𝐾(⋅, 𝑡) ∈ ℋ for every 𝑡 ∈ 𝒯, and  

    (ii) 𝑓(𝑡) = 〈𝑓, 𝐾(⋅, 𝑡)〉ℋ for every 𝑡 ∈ 𝒯 and 𝑓 ∈ ℋ.  

 When (i) and (ii) hold, ℋ is said to be a reproducing kernel Hilbert space (RKHS) with 

reproducing kernel 𝐾. Property (ii) is called the reproducing property. If 𝐾 is a reproducing 
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kernel of ℋ then, it can be shown that, 𝐾 is the unique reproducing kernel and 𝐾 is a symmetric 

and positive definite function: that is, 𝐾(𝑠, 𝑡) = 𝐾(𝑡, 𝑠) for 𝑠, 𝑡 ∈ 𝒯 and for any real 𝑏1, … , 𝑏𝑁 

and 𝑠1, … , 𝑠𝑁 ∈ 𝒯,  

∑

𝑁

𝑖=1

∑

𝑁

𝑗=1

𝑏𝑖𝑏𝑗𝐾(𝑠𝑖, 𝑠𝑗) ≥ 0. 

Conversely, if 𝐾 is a symmetric and positive definite function on 𝒯 × 𝒯, a unique RHKS of 

functions on 𝒯 with 𝐾 as the reproducing kernel can be constructed. The notation ℋ(𝐾) will be 

used to denote the RKHS having the reproducing kernel 𝐾. 

Assume that the reproducing kernel 𝐾 is square integrable, that is,  

∫
𝒯×𝒯

𝐾2(𝑠, 𝑡)𝑑𝑠𝑑𝑡 < ∞. 

Then Mercer’s theorem (see Riesz and Sz.-Nagy 1955) states that 𝐾 admits the following 

eigenvalue decomposition:  

𝐾(𝑠, 𝑡) = ∑𝑘≥1 𝜌𝑘𝜙𝑘(𝑠)𝜙𝑘(𝑡)                                             (3) 

 where 𝜌1, 𝜌2, … are constants and 𝜙1, 𝜙2, … are orthonormal basis for 𝐿2(𝒯), that is  

〈𝜙𝑗 , 𝜙𝑘〉𝐿2(𝒯) = ∫
𝒯

𝜙𝑗(𝑡)𝜙𝑘(𝑡)𝑑𝑡 = 𝛿𝑗𝑘 , 

 where 𝛿  is Kronecker’s delta. From Lemma 1.1.1 in Wahba (1990), we know that any 

squared integrable function 𝑓 on 𝒯 belongs to ℋ(𝐾) if and only if  

 ∥ 𝑓 ∥ℋ(𝐾)
2 = ∑𝑘≥1 𝜌𝑘

−1𝑓𝑘
2 < ∞,                                            (4) 

 where 𝑘 = 1,2,… for 𝑓𝑘 = 〈𝑓, 𝜙𝑘〉𝐿2(𝒯). 

Now, consider functional varying coefficient model (1). We investigate the method of 

regularization for estimating 𝛽0. We assume that the slope function 𝛽0 resides in an RKHS ℋ(𝐾), 
a subspace of the collection of square integrable functions on 𝒯. The method of regularization 

estimates 𝛽0 by  

 �̂�𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽∈ℋ(𝐾)

{ℓ𝑛𝑚(𝛽) + 𝜆 ∥ 𝛽 ∥ℋ(𝐾)
2 }                                      (5) 

 where  

 ℓ𝑛𝑚(𝛽) =
1

𝑛𝑚
∑𝑛𝑖=1 ∑

𝑚
𝑗=1 (𝑉𝑖𝑗 − 𝑋𝑖𝛽(𝑇𝑖𝑗))

2
                         (6) 

 measures how well 𝛽  fits the data and ∥ 𝛽 ∥ℋ(𝐾)
2  is an RKHS norm that measures 

smoothness of 𝛽, and 𝜆 ≥ 0 is a tuning parameter that balances the fidelity to the data and the 

smoothness.  
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Remark 1 In general, ℓ𝑛𝑚  is chosen such that it is convex in 𝛽 and 𝐸[ℓ𝑛𝑚] is uniquely 

minimized by 𝛽0.  

Let 𝐊 be an 𝑛𝑚 × 𝑛𝑚 matrix defined by  

𝑲 =

(

 
 

𝑲11 𝑲12 𝑲13 ⋯ 𝑲1𝑛
𝑲21 𝑲22 𝑲23 ⋯ 𝑲2𝑛
⋮ ⋮ ⋱ ⋮ ⋮
𝑲𝑛1 𝑲𝑛2 𝑲𝑛3 … 𝑲𝑛𝑛

)

 
 

 

 where  

𝑲𝑖1𝑖2 = [𝐾(𝑇𝑖1𝑗1 , 𝑇𝑖2𝑗2)]1≤𝑗1≤𝑚,1≤𝑗2≤𝑚
,        1 ≤ 𝑖1, 𝑖2 ≤ 𝑛. 

 Define 𝑛𝑚 dimensional vectors 𝐗 and 𝐕 respectively as 𝐗 = [𝑋1𝟏𝑚
′ , … , 𝑋𝑛𝟏𝑚

′ ]′ where 𝟏𝑚 

is the 𝑚 dimensional vector with all elements equal to 1 and 𝐕 = [𝑉11, … , 𝑉1𝑚, 𝑉21, … , 𝑉𝑛𝑚]
′. 

Suppose 𝐐 be an 𝑛𝑚 × 𝑛𝑚 matrix such that  

 (the  𝑖th  column  of  𝐐) = (the  𝑖th  column  of  𝐊) ∘ (𝐗 ∘ 𝐗)),        𝑖 = 1,2, … , 𝑛𝑚 

where 𝐀 ∘ 𝐁 is the Hadamard product of two matrices 𝐀 and 𝐁. 

In the following theorem, we give solution of the minimization problem (5).  

Theorem 1 The function �̂�𝜆 minimizing the regularized empirical error  

𝑅𝐸𝐸(𝛽) =
1

𝑛𝑚
∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

(𝑉𝑖𝑗 − 𝑋𝑖𝛽(𝑇𝑖𝑗))
2
+ 𝜆 ∥ 𝛽 ∥ℋ(𝐾)

2  

over 𝛽 ∈ ℋ(𝐾), may be expressed as  

�̂�𝜆(𝑡) =∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

𝑎𝑖𝑗𝐾(𝑡, 𝑇𝑖𝑗) 

where 𝐚 = [𝑎11, … , 𝑎1𝑚, 𝑎21, … , 𝑎𝑛𝑚]
′ is the unique solution of the well-posed linear system 

in ℝ𝑛𝑚  

(𝑸 + 𝑛𝑚𝜆𝑰)𝒂 = 𝑿 ∘ 𝑽, 

with 𝐈 is the 𝑛𝑚 × 𝑛𝑚 identity matrix.  

  Proof. For any 𝛽 ∈ ℋ(𝐾), write 𝛽(𝑡) = ∑𝑘≥1 𝑐𝑘𝜙𝑘(𝑡) where 𝑐𝑘 = 〈𝛽, 𝜙𝑘〉𝐿2(𝒯). From (4), 

we have ∥ 𝛽 ∥ℋ(𝐾)
2 = ∑𝑘≥1 𝜌𝑘

−1𝑐𝑘
2. 

For any 𝑘 ≥ 1, we have  

𝜕𝑅𝐸𝐸

𝜕𝑐𝑘
=
−2

𝑛𝑚
∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

𝑋𝑖[𝑉𝑖𝑗 − 𝑋𝑖𝛽(𝑇𝑖𝑗)]𝜙𝑘(𝑇𝑖𝑗) + 2𝜆
𝑐𝑘
𝜌𝑘
. 

If 𝛽 is a minimizer of 𝑅𝐸𝐸, then for each 𝑘, we must have 
∂𝑅𝐸𝐸

∂𝑐𝑘
= 0 or equivalently  
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𝑐𝑘 = 𝜌𝑘∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

𝑎𝑖𝑗𝜙𝑘(𝑇𝑖𝑗) 

where 𝑎𝑖𝑗 =
𝑋𝑖[𝑉𝑖𝑗−𝑋𝑖𝛽(𝑇𝑖𝑗)]

𝑛𝑚𝜆
. Thus,  

�̂�(𝑡) = ∑

∞

𝑘=1

𝑐𝑘𝜙𝑘(𝑡) = ∑

∞

𝑘=1

𝜌𝑘∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

𝑎𝑖𝑗𝜙𝑘(𝑇𝑖𝑗)𝜙𝑘(𝑡) 

=∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

𝑎𝑖𝑗∑

∞

𝑘=1

𝜌𝑘𝜙𝑘(𝑇𝑖𝑗)𝜙𝑘(𝑡) =∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

𝑎𝑖𝑗𝐾(𝑡, 𝑇𝑖𝑗), 

 where the last equality follows from (3). Replacing 𝛽(𝑡) in the definition of 𝑎𝑖𝑗 above to 

obtain  

𝑎𝑖𝑗 =
𝑋𝑖[𝑉𝑖𝑗 − 𝑋𝑖 ∑

𝑛
ℓ=1 ∑

𝑚
𝑘=1 𝑎ℓ𝑘𝐾(𝑇𝑖𝑗 , 𝑇ℓ𝑘)]

𝑛𝑚𝜆
. 

By multiplying both sides in 𝑛𝑚𝜆  and writing the results in matrix form, we obtain 

(𝐐 + 𝑛𝑚𝜆𝐈)𝐚 = 𝐗 ∘ 𝐕. This system is well-posed since 𝐐 is positive definite and the addition of 

a positive definite matrix and identity matrix is strictly positive definite.     

Remark 2 We can define minimization problem (0.5) in more general sense. For example, 

one may replace the RKHS norm ∥ 𝛽 ∥ℋ(𝐾)
2  by penalty functional 𝐽(𝛽) and then define  

�̂�𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽∈𝐻(𝐾)

{ℓ𝑚𝑛(𝛽) + 𝜆𝐽(𝛽)} 

where the penalty functional 𝐽 is a squared semi-norm on ℋ(𝐾) such that the null space  

ℋ0(𝐾) = {𝑔 ∈ ℋ(𝐾): 𝐽(𝑔) = 0} 

be a finite dimensional linear subspace of ℋ(𝐾) . In this case, let {𝜉1, … , 𝜉𝑁}  be an 

orthonormal basis for ℋ0(𝐾), where 𝑁 = dim(ℋ0(𝐾)). It can be shown that , there exist 𝐝 =

[𝑑1, … , 𝑑𝑁]
′ ∈ ℝ𝑁 and 𝐚 = [𝑎11, … , 𝑎1𝑚, 𝑎21, … , 𝑎𝑛𝑚]

′ ∈ ℝ𝑛𝑚 such that  

�̂�𝜆(𝑡) = ∑

𝑁

𝑘=1

𝑑𝑘𝜉𝑘(𝑡) +∑

𝑛

𝑖=1

∑

𝑚

𝑗=1

𝑎𝑖𝑗𝐾(𝑡, 𝑇𝑖𝑗). 

 

3. Simulation Studies 
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To demonstrate the performance of the proposed estimator, we carried out a set of simulation 

studies with different combinations of sampling frequency and sample size. Let 𝒯 = [0,1]. The 

true slope function 𝛽0 is fixed as  

𝛽0(𝑡) = 𝑐𝑜𝑠(𝜋𝑡) + 𝑠𝑖𝑛(𝜋𝑡),        𝑡 ∈ [0,1]. 

It is clear that, 𝛽0 ∈ 𝒲2
2 where 𝒲2

𝑟 is the 𝑟th order Sobolev-Hilbert space:  

𝒲2
𝑟 = {𝑔: [0,1] → ℝ|𝑔, 𝑔(1), … , 𝑔(𝑟−1)    𝑎𝑟𝑒    𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦    𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠    𝑎𝑛𝑑    𝑔(𝑟)

∈ 𝐿2([0,1])} 

Under the squared norm ∥ 𝑔 ∥𝒲2
𝑟

2 = ∑𝑟−1𝑘=0 (∫
1

0
𝑔(𝑘)(𝑡) 𝑑𝑡)

2
+ ∫

1

0
[𝑔(𝑟)(𝑡)]2 𝑑𝑡 , the Hilbert 

space 𝒲2
𝑟 is an RKHS with reproducing kernel  

𝐾𝑟(𝑠, 𝑡) =
1

(𝑟!)2
𝐵𝑟(𝑠)𝐵𝑟(𝑡) +

(−1)𝑟−1

(2𝑟)!
𝐵2𝑟(|𝑠 − 𝑡|), 

 where 𝐵𝑟(⋅)  is the 𝑟 th Bernoulli polynomial. Abramowitz and Stegun (1965) give the 

following formula for Bernoulli polynomial  

𝐵2𝑞(𝑡) = (−1)
𝑞−12(2𝑞)!∑

∞

𝜈=1

𝑐𝑜𝑠(2𝜋𝜈𝑡)

(2𝜋𝜈)2𝑞
. 

The covariate 𝑋  is generated from 𝑁(0,2) . The response trajectories were generated 

according to model (0.1) with  

𝑍(𝑡) = 𝑠𝑖𝑛(𝜋𝑡)𝑍1 + 𝑐𝑜𝑠(𝜋𝑡)𝑍2,        𝑡 ∈ [0,1] 

where 𝑍1 and 𝑍2 are 𝑖. 𝑖. 𝑑 random variables from 𝑁(0,0.1). From each generated function, 

𝑚  random locations were uniformly sampled from [0,1]  and so the noisy observations are 

obtained following model (2) with 𝜀~𝑁(0,0.1).  
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Figure 1: A typical simulated dataset: The top left panel shows 𝑛 = 50 simulated functions for 𝑌(𝑡). 

Noisy observations at 𝑚 = 5, 3  and  2 random locations on each curve are given in the top right, the 

bottom left and the bottom right panels, respectively. 

Figure 1 provides a visual inspection of a typically simulated data. The fifty curves were 

given in the top left panel of Figure  1. Other panels of Figure  1 show the observed data for 𝑚 =

5, 3  and  2, where observations from the same curve are connected together.  
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Figure 2: The values of the integrated squared error, ∥ �̂�𝜆 − 𝛽0 ∥𝐿2(𝒯)
2  as a function of 𝜆 with 𝑛 = 50 and 

𝑚 = 5. 

We estimate 𝛽 based on these generated data according to Theorem 1. The integrated squared 

error, ∥ �̂�𝜆 − 𝛽0 ∥𝐿2[0,1]
2 = ∫

1

0
(�̂�𝜆(𝑡) − 𝛽0(𝑡))

2𝑑𝑡 , as a function of the tuning parameter 𝜆  is 

given in Figure  2. The smoothing parameter is set to yield the smallest integrated squared error 

and therefore reflect the best performance of the estimating procedure. 

The next numerical experiment intends to demonstrate the effect of sample size 𝑛  and 

sampling frequency 𝑚 . We repeat the experiment with varying combinations of 𝑛 =
25, 50, 100  or  200, and 𝑚 = 1, 3  or  5. The obtained value of the smoothing parameter, for 

each simulated data set, is reported in Table 1. As we see in the Table, the value of smoothing 

parameters decreases whenever either 𝑛  or 𝑚  increases. That is because, when number of 

observations increase we just need a little smoothing. By 200 runs replications the average of 

integrated squared errors and variance of �̂� for each of the settings are reported in Table 2. It can 

be seen from the table that increasing either 𝑚 or 𝑛 leads to improved estimates, whereas such 
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improvement is more visible for small values of 𝑚. In addition, the average integrated squared 

error and the variance of estimated slope function decrease as either 𝑚 or 𝑛 increases. 

Table 1: The value of smoothing parameter for different values of 𝑚 and 𝑛 

 𝑚 = 1 𝑚 = 3 𝑚 = 5 

𝑛 = 25 4 × 10−4 6 × 10−5 2.5 × 10−5 

𝑛 = 50 2 × 10−4 2 × 10−5 8 × 10−6 

𝑛 = 100 6 × 10−5 5 × 10−6 2.5 × 10−6 

𝑛 = 200 2 × 10−5 10−6 5 × 10−7 

 

   Table 2: Averaged integrated squared error ∥ 𝛽𝜆 −𝛽0 ∥𝐿2
2  for various combinations of 

𝑚 and 𝑛 over 200 runs. The numbers in the parentheses are the variances 

 𝑚 = 1 𝑚 = 3 𝑚 = 5 

𝑛 = 25 0.6353    (0.1028) 0.5417    (0.0656) 0.5164    (0.0542) 

𝑛 = 50 0.5788    (0.0741) 0.5055    (0.0476) 0.4830    (0.0363) 

𝑛 = 100 0.5274    (0.0529) 0.4755    (0.0339) 0.4579    (0.0226) 

𝑛 = 200 0.4978    (0.0392) 0.4554    (0.0254) 0.4440    (0.0183) 

 

4. Application 

CD4+ cells are a type of white blood cell that fights infection. CD4+ cells move throughout 

body, helping to identify and destroy germs such as bacteria and viruses. It is a well known fact 

that the human immune deficiency virus (HIV) causes AIDS by attacking CD4+ cells. HIV 

infects components of CD4+ cells. It directly and indirectly destroys CD4+ cells. The CD4+ 

count measures the number of CD4+ cells in a sample of blood. CD4+ counts are reported as the 

number of cells in a cubic millimeter of blood. A normal CD4+ count is around 1100 cells per 

cubic millimetre of blood. In general, HIV disease is progressing if the CD4+ count is going 

down. This means the immune system is getting weaker and HIV infected persons are more likely 

to get sick. In some persons, CD4+ counts can drop dramatically, even going down to zero. 
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The dataset considered here is from the Multicenter AIDS Cohort Study. The data contains 

CD4+ cell counts for a total of 369 infected men along with other variables (see Kaslow et al, 

1987). In this study, the patients were scheduled to have their measurements made twice a year, 

however some subjects missed some of their scheduled visits. So, the actual times of 

measurement is random, irregular and sparse. The number of measurements for each individual 

varies from 1 to 12 yielding a total of 2376 records. 

The objective here is to evaluate the effects of centred age at HIV infection on CD4+ counts 

based on model (1). In this dataset, centred age at HIV infection is time-independent covariate 

variable 𝑋  and CD4+ counts are considered as response functions 𝑌(𝑡)  of time since 

seroconversion (time when HIV becomes detectable). Figure 3 displays individual trajectory of 

CD4+ count for the included 369 subjects along with the smooth estimated mean function. As 

we see in the figure, mean of CD+ counts decreases to below 1100 cells when time runs up.  

 

Figure 3: Left panel: Observed individual trajectories of CD4+ count. Right panel: the smooth estimate of the 

mean function for CD4+ count. 

We calculate the smoothing parameter of �̂�𝜆 using the following 𝐾-fold cross-validation. The 

369 subjects is randomly partitioned into 𝐾 roughly equal part. Of the 𝐾 parts, a single part is 

retained as the validation data for testing the model, and the remaining 𝐾 − 1 parts are used as 

training data. For each 𝑘 = 1,2,… , 𝐾, we fit the model with parameter 𝜆 to the other 𝐾 − 1 parts, 

giving �̂�𝜆
−𝑘. Then we compute its error in predicting the 𝑘th part as follows:  

𝐸𝑘(𝜆) = ∑

𝑖 ∈ 𝑖𝑡ℎ 𝑝𝑎𝑟𝑡

1

𝑚𝑖
∑

𝑚

𝑗=1

(𝑉𝑖𝑗 − �̂�𝑌(𝑇𝑖𝑗) − (𝑋𝑖 − �̅�)�̂�𝜆
−𝑘(𝑇𝑖𝑗))

2
. 

The cross-validation error is defined by  
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𝐶𝑉(𝜆) =
1

𝐾
∑

𝐾

𝑘=1

𝐸𝑘(𝜆). 

We compute CV(λ) for many values of λ and choose the value of λ that makes CV(λ) smallest. 

The estimated smoothing parameter λ= 0.1 was obtained by 5-fold cross-validation. 

The estimated slope function, �̂�𝜆 is shown in the left panel of Figure 4. The right panel of 

Figure 4 shows the estimated mean surface 𝐸[𝑌(𝑡)|𝑋]. The estimated slope function, �̂�𝜆 initially 

increases and then after seroconversion decreases rapidly. Note that the surface of Figure 4 shows 

that the age at HIV infection has significant effect on the mean of CD4+ cell numbers. From this 

surface, we observe that for older peoples the means of CD4+ cell numbers are increasing 

function before seroconversion and decreasing after that. In contrast, for younger peoples these 

means function decrease until one year after seroconversion and then increase slowly. But for 

middle age the means of CD4+ cell numbers fluctuate around 1000 cells before seroconversion 

and during the second year after seroconversion decrease rapidly, and then increase slowly. In 

general, for older people, when time runs up, HIV infections spread faster. On the other hand, the 

situation for younger people before seroconversion is normal.  

 

Figure 4: Left panel: Estimated slope function. Right panel: Estimated 𝐸[𝑌(𝑡)|𝑋]. for CD4+ count. 

   

5. Discussions 

We have developed a regularization method for slope function estimation in functional 

varying coefficient model with longitudinal response data and scalar covariate. Since longitudinal 
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data arise in many fields of science, the proposed method can be applicable in these fields. We 

note that although the methodology is proposed for irregular and sparsely sampled functional 

data, such as longitudinal data, it can be also applied for regularly and densely sampled functional 

data. Our simulation study shows that the procedure performs well. Also the estimator of the 

slope function introduced in closed form that makes it computationally very tractable. 

The theoretical properties of the proposed estimator can be studied. For example, one can 

study convergence rate and asymptotically distribution of the slope function estimator. On the 

other hand, the existence of only one covariate is the limitation of our proposed model, that can 

be resolved by extension the model to the case with combination of longitudinal and scaler 

covariates. These ideas will be explored in future works. 
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