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Abstract:This paper examines the performance of different kind of GARCH models with Gaussian, 

Student-t and generalized error distribution for Colombo Stock Exchange (CSE), in Sri Lanka. 

Analyzing the daily closing price index of CSE from January 02, 2007 to March 10, 2013. It was 

found that the Asymmetric GARCH models give better result than symmetric GARCH model. 

According to distributional assumption these models under Student-t as well as generalized error 

provided better fit than normal distributional assumption. The Non-Parametric Specification test 

suggest that the GARCH, EGARCH, TARCH and APARCH models with Student-t distributional 

assumption are the most successful model for CSE.  

 Key words: GARCH Model, Asymmetric GARCH Model, Generalized Error Density, Colombo 

Stock Exchange, Non Parametric Specification Test. 

1. Introduction 

The various well-known characteristics are common to many financial time series. Volatility 

clustering is often observed (i.e. large changes tend to be followed by large changes and small 

changes tend to be followed by small changes; Mandelbrot (1963) for early evidence). Second, 

financial time series often exhibit leptokurtosis, meaning that the distribution of their returns is 

fat-tailed see Fama (1965). Moreover, the so-called “leverage effect”, first noted in Black (1976), 

refers to the fact that changes in stock prices tend to be negatively correlated with changes in 

volatility. 

Engle (1982) proposed to model time-varying conditional variance with the Auto 

Regressive Conditional Heteroskedasticity (ARCH) processes that used past 

disturbances to model the variance of the series. Early empirical evidence showed that 

high ARCH order has to be selected in order to catch the dynamic of the conditional 

variance. The Generalized ARCH (GARCH) model of Bollerslev (1986) was an answer 

to this issue. It was based on an infinite ARCH specification and it allows reducing the 

number of estimated parameters from   to only 2. Both models allow taking the first 

two characteristics into account but their distribution is symmetric and fat tails therefore, 
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to model the third stylized fact, namely the “leverage effect”. To solve this problem, 

many nonlinear extensions of the GARCH models have been proposed. Among the most 

widely spread are the Exponential GARCH (EGARCH) of Nelson (1991), The Threshold 

GARCH (TGARCH) model of Zakoian (1994), Glosten et al. (1993) and the Asymmetric 

Power ARCH (APARCH) of Ding et al. (1993). Unfortunately, GARCH models often 

do not fully capture the thick tails property of high frequency financial time series. This 

has naturally led to the use of non-normal distributions to better model this excess 

kurtosis. Bollerslev (1986), Baillie and Bollerslev (1989), Kaiser (1996) and Beine, et al. 

(2000) among others used Student-t distribution while Nelson (1991) and Kaiser (1996) 

suggested the Generalized Error Distribution (GED). Other propositions include mixture 

distributions such as the normal-lognormal (Hsieh 1989 or the Bernoulli-normal Vlaar 

and Palm 1993). Peters (2001) in his working paper showed the forecasting performance 

of different kinds of asymmetric GARCH model with normal, Student-t and skewed 

Student-t distributional assumption for two major European stock indices. Forecasting 

conditional variance with asymmetric GARCH models has been studied in several papers 

Pagan and Schwert (1990), Brailsford and Faff (1996), Franseset et al. (1998), Loudon 

et al. (2000). On the other hand, comparing normal density with non-normal ones also 

has been explored in many occasions Hsieh (1989), Baillie and Bollerslev (1989), Peters 

(2000) and Lambert and Laurent (2000). Marcucci (2003) compared a number of 

different GARCH models in terms of their ability to describe and forecast the behavior 

of volatility of financial time series. He estimated assuming both Gaussian innovations 

and fat-tailed distributions, such as student-  and Generalized Error distribution. Hong 

and Li (2004) studied the Nonparametric Specification Tests of Discrete Time Spot 

Interest Rate Models in China. They examined a wide variety of popular spot rate models 

in China, including the single-factor diffusion models, GARCH models, Markov regime-

switching models and jump-diffusion models and the specification of these models. Hong 

and Li (2005) conducted a study on Nonparametric Specification Test for Continuous-

Time Models with Applications to Spot Interest Rates. Batra (2004) examined the time 

varying pattern of stock return volatility in Indian stock market. In this study the daily 

closing index of CSE in Sri Lanka is used. The structure of the assignment is as follows: 

Section 2 presents the different GARCH models used in this study, densities are 

described in Section 3 and Section 4 present non-parametric specification test, Section 5 

reports the empirical findings while Section 6 present the conclusions. 

2. Models of the Study 

Let us consider a univariate time series ty
. If 1t

 is the information set (i.e. all the 

information available) at time 1t , we can define its functional form as: 

tttt yEy    ][ 1      (1) 
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where 
].[.E
 denotes the conditional expectation operator and t  is the disturbance term (or 

unpredictable part), with 
0][ tE 

 and 
0][ stE 

, st  . 

The t  term in Eq. (1) is the innovation of the process. The conditional expectation is the 

expectation conditional to all past information available at time 1t . The Autoregressive 

Conditional Heteroscedastic (ARCH) process of Engle (1982) is any 
}{ t of the form 

ttt z        (2) 

where tz
 is independently and identically distributed (i.i.d.) process, 

0][ tzE
, 

1][ tzVar
 and where t

 is a time-varying positive and measurable function of the information 

set at time 1t . By definition, t  is serially uncorrelated with mean zero but its conditional 

variance equals to 
2

t
 and therefore, may change over time, contrary to what is assumed in OLS 

estimations. Specifically the ARCH (q) model is given by 





q

i

itit

1

2

0

2  .     (3) 

The models considered in this paper are all ARCH-type. They differ on the functional form 

of 
2

t
but the basic logic is the same. 

2.1 GARCH Model 

The GARCH model of Bollerslev (1986) can be expressed as  








 
p

ij

jtj

q

i

itit

2

1

2

0

2  .     (4)  

Using the lag or backshift operator L , the GARCH (p, q) model is 
22

0

2 )()( ttt LL         (5) 

with

q

q L....LL)L(   2

21 and 

p

p LLLL   ....)( 2

21 . 

Based on Eq. (5), it is straightforward to show that the GARCH model is based on an infinite 

ARCH specification. If all the roots of the polynomial 
0)(1  L

 of Eq. (5) lie outside the 

unit circle, we have 
211

0

2 )](1)[()](1[ tt LLL   
 or equivalently 
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, which may be seen as an ARCH( ) process since the 

conditional variance linearly depends on all previous squared residuals. 

 

 2.2 EGARCH Model 

The EGARCH or Exponential GARCH model was proposed by Nelson (1991). The 

specification for conditional variance is: 


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The left hand side of Eq. (6) is the log of the conditional variance. This implies that the 

leverage effect is exponential rather than quadratic and that forecasts of the conditional variance 

are guaranteed to be non-negative. The presence of the leverage effects can be tested by the 

hypothesis
0i . The impact is asymmetric if

0i . 

 

2.3 TGARCH Model 

TARCH or Threshold ARCH and Threshold GARCH were introduced independently by 

Zakoian (1994) and Glosten et al. (1993). The generalized specification for the conditional 

variance is given by: 

kt
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2      (7) 

where 
1t , if 

0t  or 
0t , otherwise. 

In this model
0it and

0it  have differential effects on the conditional variance; 

0it  has an impact of i
, while 

0it  has an impact of ii  
. If

0i ,
0it  

increases volatility and we say that there is a leverage effect for the thi   order. If 
0i  the 

news impact is asymmetric. 

 

2.4 APARCH Model 

Taylor (1986) and Schwert (1990) introduced the standard deviation GARCH model where 

the standard deviation is modeled rather than the variance. Ding, et al. (1993) introduced the 

Asymmetric Power ARCH model. The APARCH (p, q) model can be expressed as: 
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 
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where
00 

, 0 ,
),.......,2,1(0 pjj 

, 
0i

and 
),...,2,1(,11 qii  

. 

This model is quite interesting since it couples the flexibility of a varying exponent with the 

asymmetry coefficient (to take the “leverage effect” into account). Moreover, the APARCH 

model includes seven other ARCH extensions as a special case: 

i)  ARCH when 
),....2,1(0,2 pii  

 and
),....2,1(0 pjj 

. 

ii)  GARCH when 
),....2,1(0,2 pii  

. 

iii)  Taylor (1986) / Schwert (1990) GARCH when
),....2,1(0,1 pii  

. 

iv)  GJR when 2 ,    v) TARCH when 1 . 

vi)  NARCH when  
),....2,1(0 pii 

and
),....2,1(0 pjj 

. 

vii)  The log-ARCH of Geweke (1986) and Pentula (1986), whenever 0 .   

 

3. Distributional Assumptions 

It may be expected that excess kurtosis and skewness displayed by the residuals of 

conditional heteroscedasticity model will be reduced if a more appropriate distribution is used. 

In this study, three distributions such as Gaussian, Student-t and Generalized Error are considered. 

Given a distributional assumption, ARCH models are typically estimated by the method of 

maximum likelihood. 

 

3.1 Gaussian 

The Normal distribution is by far the most widely used distribution when estimating and 

forecasting GARCH models. If we express the mean equation as in Eq. (1) and ttt z  
, the 

log-likelihood function of the standard normal distribution is given by 

 



T

t

ttT zL
1

22 )ln()2ln(
2

1
     (9) 

where T is the number of observations. 

 

3.2 Student t-Distribution  

For the Student-t distribution, the log-likelihood contributions are of the form: 



 

462  CHOOSING THE BEST PERFORMING GARCH MODEL FOR SRI LANKA STOCK MARKET BY 

NON-PARAMETRIC SPECIFICATION TEST 

  2ln5.0
2

ln
2

1
ln 








































 
 


TL     

 
 





























T

t

t
t

z

1

2
2

2
1ln)1()ln(5.0


            (10) 

where   is the degree of freedom 2  and 
(.)

is the gamma function. When 
 , we have the normal distribution. So that the lower   the fatter the tails. 

 

3.3 Generalized Error  

For the GED, we have:  

 

  

 

 

2/

2

2

2

2

3

/1

/3
)ln(5.0

2//3

/1
ln

2

1
r

t

t

tT
r

zr

rr

r
L



































        (11) 

where the tail parameter 0r . The GED is a normal distribution if 2r , and fat-tailed if

2r . 

 

4. Non Parametric Specification Test 

Recently Hong and Li (2005) proposed two new nonparametric transition density-based 

specification tests for continuous-time series models. These tests share the appealing features of 

both Ait-Sahalia (1996) and Gallant and Tauchen (1996) nonparametric approaches and have 

many additional nice properties. First, unlike Ait-Sahalia (1996) marginal density-based test, the 

tests are based on the transition density which captures the full dynamics of a continuous-time 

process. Second, to achieve robustness to persistent dependence, the data is transformed via a 

dynamic probability integral transform using the model transition density which is well known 

in statistics (e.g., Rosenblatt 1952) and is more recently used to evaluate out-of-sample density 

forecasts in discrete-time analysis (e.g. Diebold, et al. 1998, Hong et al. 2004). The transformed 

sequence is i.i.d. U[0,1] under correct model specification irrespective of the dependence 

structure of the original data. Third, to eliminate the well-known “boundary bias” of kernel 

estimators as documented in Chapman and Pearson (2000), a boundary-modified kernel is 

introduced. Fourth, to reduce the impact of parameter estimation uncertainty, a test based on the 

Hollinger metric is proposed. Fifth, the regularity conditions for asymptotic analysis are based 

on the model transition density rather than the stochastic differential equation of the underlying 

process. As a consequence, the tests are applicable to a vast variety of continuous-time and 

discrete-time dynamic models such as GARCH/stochastic volatility models, regime-switching 

models, jump-diffusion models and multi-factor diffusion models. The nonparametric 
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specification test proposed recently by Hong and Li (2005) to evaluate different spot rate models. 

Assuming the underlying process {Xt} follows the following data generating process:  

tttt dWtXdttXdX ),(),( 00                 (12) 

where 
),(0 tX t

 and 
),(0 tX t

 are the drift and diffusion functions respectively and tW

is a standard Brownian motion. Let 
),/,(0 sytxp

be the true transition density of the 

diffusion process
 tX

 that is the conditional density of (
xX t  /

tsyX s  ),
. For a 

given 

pair of drift and diffusion models
),,(  tX t and

),,(  tX t a certain family of transition 

densities 
 ),,/,( sytxp  is characterized. If a model is correctly specified, there exists some 

0 satisfying
 ),/,(),,/,( 00 sytxpsytxp 

 almost everywhere for some
0 . To test 

such a hypothesis, Hong and Li (2005) first transform the discretized data 
 n
X

1   via a 

probability integral transform and define this discrete transformed sequence by 

n,......,,,dx],)(,X/,x[p)(Z
X

)( 2111  



 




.
  

(13) 

If the model is correctly specified, the exists some
0  such that 

],)1(,/,[ 0)1(    Xxp
 

])1(,/,[ )1(0    Xxp
almost surely for all ∆ >0 . 

Consequently, the transformed series 
 n

ZZ
10 )(



 

is i.i.d. 
]1,0[U

 under correct 

specification. It can be called that 
 n
Z

1
)(

   “generalized residuals” of the model 

 ),,/,( sytxp . Here, i.i.d 
]1,0[U

 property captures two important aspects of model 

specification, i.i.d characterize the correct specification of model dynamics and 
]1,0[U

 

characterize correct specification of the model marginal distribution. The test that whether

 n
Z

1
)(

  follows i.i.d 
]1,0[U

 is not a trivial task because it is a joint hypothesis. The well-

known Kolmogorov-Smirnov test checks 
]1,0[U

 under the i.i.d assumption rather than test i.i.d 

and 
]1,0[U

 jointly. It would miss the alternatives whose marginal distribution is uniform but not 

i.i.d. To make such joint hypothesis tests, Hong and Li (2005) develop two nonparametric tests 

of i.i.d. 
]1,0[U

by comparing a kernel estimator 
),(ˆ

21 zzg j  for the joint density 
),(ˆ

21 zzg j  of 

},{ jZZ   with unity, the product of two 
]1,0[U

 densities. The kernel joint density estimator is 

for any integer
0j

. 
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And the kernel k (.) is a bounded symmetric probability density with support 
]1,1[
 so that
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where 
)1(1 u

 is the indicator function, taking value 1 if 
1u

 and zero, otherwise. 

)ˆ(ˆ  ZZ 
 and ̂  is a n - consistent estimator for 0 . 

6/1ˆ  nSh z , where zŜ is the sample 

standard deviation of
 n
Z

1 . The first tests is based on a quadratic form between 
),(ˆ

21 zzg j

and 1, the product of two 
]1,0[U

 densities, 
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211 ]1),(ˆ[)(ˆ dzdzzzgjM j                (16) 

and the first test statistic is a properly centered and scaled version of )(ˆ
1 jM : 

2/1
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0

1 /])(ˆ)1[()(ˆ VAjMhnjQ h ,               (17) 

where the non-stochastic centering and scale factors 
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Under correct model specification, (Hong and Li 2005, Theorem 1) has shown that 

)1,0()(ˆ NjQ  in distribution and under model misspecification, )(ˆ jQ  in probability. 

Whenever
},{ jZZ  are not independent or

]1,0[U
. (Hong and Li 2005, Theorem 3). 

The quadratic form test )(ˆ jQ though convenient and quite accurate when the true parameter 

0  was known might be adversely affected by any imprecise estimate for ̂  in finite samples. 

To alleviate this problem they proposed a second test based on the square Hellinger metric, 

  
1

0

1

0
21

2

211 ]1),(ˆ[)(ˆ dzdzzzgjM j               (20) 

which is a quadratic form between 
),(ˆ

21 zzg j  and 11.1   . The associated test statistic 

is 
2/1

0

0

2 /])(ˆ)(4[)(ˆ VAjMhjnjH h ,              (21) 

where 
0

hA
and 0V

 are as in Eq. (18) and Eq. (19). Under correct model specification this test 

has the same asymptotic distribution as )(ˆ jQ  and is asymptotically equivalent to )(ˆ jQ  in the 

sense   that 0)(ˆ)(ˆ  jHjQ  in probability. Under model misspecification we also have 

)(ˆ jH  as n → ∞ whenever 
},{ jZZ   are not independent or

]1,0[U
. 

It can be summarized the omnibus evaluation procedures following Hong and Li (2005): (i) 

estimate the parameters of discrete spot rate models using maximum likelihood estimation (MLE) 

method to yield a n -consistent estimator ̂ ; (ii) compute the model generalized residual
nZZ 1)}ˆ(ˆ{   

 , where 
)(Z

 is given in Eq. (13); (iii) compute the boundary- modified 

kernel joint density estimator 
),(ˆ

21 zzg j in Eq. (14) for a pre-specified lag j , using a kernel in 

Eq. (15) and the bandwidth 
6/1ˆ  nSh z , where zŜ is the sample standard deviation of the model 

generalized residual 
 n

Z
1

ˆ
 ; (iv) compute the test statistics )(ˆ jQ  in Eq. (17) and )(ˆ jH in Eq. 

(21); (v) compare the value of )(ˆ jQ or )(ˆ jH   with the upper-tailed 
)1,0(N

 critical value C
 

at level  (e.g., 
645.105.0 C

). The upper-tailed rather than two sided 
)1,0(N

critical values is 

suitable since negative )(ˆ jQ  and )(ˆ jH  occurs only under correct model specification when n  

is sufficiently large. Both of )(ˆ jQ  and )(ˆ jH  diverge to +∞ when 
},{ jZZ   are not 

independent or 
]1,0[U

under model specification granting the tests asymptotic unit power. 
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5. Empirical Study 

The data analyzed here is the daily closing price index for CSE in Sri Lanka from January 

02, 2007 to March 10, 2013. The parameter estimation process choice here is MLE. The indices 

prices are transformed into their returns to obtain stationary series. The transformation is: 

 )ln()ln(*100 1 ttt yyr
, where y  is the return index at time t . Refer table 1. 

Some of the descriptive statistics for daily returns are displayed in Table 1. Mean returns of 

the CSE is 0.067. Volatility (measured as a standard deviation) is 1.6012. The return of CSE 

market is leptokurtic in the sense that kurtosis exceeds positive three and the return series also 

display significant skewness. According to Jarque and Bera (1987) statistics normality is rejected 

for the return series. The results from ARCH test can not reject the ARCH effect which indicate 

that the series have ARCH effect. Overall these results clarify support the rejection of the 

hypothesis that CSE time series of daily returns are time series with independent daily values. 

Moreover, the statistics justify use of the GARCH specification in modeling the volatility of Sri 

Lanka stock market. 

 

Table 1: Descriptive Statistics of CSE daily returns. 

Sample 

Size 

Mean Min. Max. Standard 

Deviation 

Skewness Kurtosis Jarque-Bera (JB) 

Test (p-value) 

ARCH Test 

1550 0.067 -20.568 29.214 1.6012 4.174 144.16 1298067 (0.00) 0.0012 (0.97) 

Parameter Estimation 

In comparison of the performance of GARCH models the simple mean equation is used: 

tty  
for all models. 

Table 2: MLE of the parameters and their corresponding t-statistic 

  

  
0  i  j  

k (or i ) 
 

  

 

r  

 

  

 

 

1 

N 0.1800 

(4.568) 

1.092 

(13.632) 

0.3792 

(6.571) 

0.2813 

(5.526) 

    

S 0.0019 

(0.1301) 

0.1460 

(7.448) 

0.7099 

(7.528) 

0.3388 

(8.754) 

 3.8813 

(17.944) 

  

G 0.0122 

(1.921) 

0.2390 

(8.722) 

0.8200 

(5.912) 

0.2776 

(61.278) 

  0.8150 

(61.278) 

 

 

 

2 

N 0.1529 

(4.381) 

-0.0505 

(-4.633) 

-0.3430 

(-6.558) 

0.6991 

(10.826) 

0.5058 

(12.613) 

   

S 0.0052 

(0.3201) 

-0.3620 

(-8.171) 

0.1203 

(3.124) 

0.4360 

(8.059) 

0.7338 

(20.441) 

3.350 

(16.365) 

  

G 0.0124 

(1.820) 

-0.3846 

(7.284) 

-0.1510 

(-3.172) 

0.5078 

(7.359) 

0.6382 

(11.840) 

 0.8043 

(53.979) 

 

 

 

N 0.2016 

(4.685) 

0.9237 

(15.068) 

0.8529 

(4.5751) 

0.3085 

(6.780) 

0.2500 

(6.527) 
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[Note: 1, 2, 3 and 4 represent GARCH, EGARCH, TGARCH and APARCH model 

respectively and N, S, G indicate Gaussian, Student-t and Generalized error distribution 

respectively] 

Table 2 presents the maximum likelihood estimate (MLE) of the parameters and their 

corresponding t-statistic. The use of GARCH set of models seems to be justified. All coefficients 

are significant at 5% level of significance except the coefficient of  in case of Student-t and 

generalized error densities. Table 3 reports some useful statistics such as Box-Pierce statistics for 

both residuals and the squared residuals, Akaike Information Criteria (AIC) and Log Likelihood 

value.  

 

Table 3: Estimation Statistics-Model comparison 

 )20(Q  )20(2Q  
AIC Log-likelihood 

 

Gaussian 

GARCH 10.669 2.2003 3.4867 -2712.20 

EGARCH 13.395 2.2461 3.4504 -2682.90 

TGARCH 9.3922 2.2584 3.4749 -2702.01 

APARCH 11.281 2.0266 3.4440 -2677.56 

 

Student-t 

GARCH 6.568 1.9802 2.3598 -1855.10 

EGARCH 9.7426 2.2565 2.3123 -1795.31 

TGARCH 6.4787 2.9364 2.2990 -1754.41 

APARCH 5.9830 1.8125 2.2453 -1742.14 

 

GED 

GARCH 7.0015 2.2057 2.4675 -1907.11 

EGARCH 11.6570 2.2602 2.4069 -1868.97 

TGARCH 19.1910 2.3436 2.4635 -1898.72 

APARCH 6.9929 0.2241 2.3676 -1837.38 

The Akaike Information Criteria (AIC) and the log-likelihood values suggest the fact that 

TGARCH, EGARCH or APARCH models fit the data well than the traditional GARCH. On the 

basis of AIC and log-likelihood value the APARCH model outperforms than TGARCH and 

EGARCH model. EGARCH model gives better result than TGARCH model in case of Gaussian 

and Generalized error densities. Regarding the densities, the Student-t and Generalized error 

3 S 0.0055 

(0.3770) 

0.1466 

(7.556) 

-0.1829 

(-1.290) 

0.7898 

(6.501) 

0.3397 

(8.801) 

3.905 

(18.041) 

  

G 0.1509 

(1.143) 

2.342 

(4.771) 

-0.1740 

(-14.745) 

0.1049 

(111.60) 

0.5648 

(6.179) 

 1.9230 

(76.007) 

 

 

 

4 

N 0.0494 

(133.513) 

0.6554 

(47.493) 

0.3697 

(22.098) 

0.2048 

(15.283) 

0.3943 

(9.191) 

  0.4387 

(6.026) 

S -0.00029 

(-0.0213) 

0.1662 

(7.042) 

0.4126 

(9.334) 

0.5246 

(11.947) 

-0.9559 

(-14.751) 

3.8162 

(17.871) 

 0.8280 

(7.3469) 

G 0.0124 

(1.314) 

0.2663 

(7.293) 

0.4738 

(6.645) 

0.4154 

(6.521) 

-0.0406 

(-.5750) 

 0.8146 

(52.217) 

0.8177 

(6.025) 
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distributions clearly outperform the Gaussian. In the case of Student-t distribution the AIC value 

for the model GARCH, EGARCH, TGARCH and APARCH are less than the densities of 

Gaussian density. The log likelihood value is strictly increasing in case of Student-t densities 

comparing with the generalized error and Gaussian densities. All the models seem to do a good 

job in describing the dynamic of the first two moments of the series as shown by the Box-Pierce 

statistics for the residuals and the squared residuals which are all non-significant at 5% level. 

 

Table 4: Models with Gaussian distributional assumption 

J GARCH EGARCH TGARCH APARCH 

1 166.45 158.96 165.21 160.78 

5 150.12 144.23 104.95 148.47 

10 138.56 130.45 98.01 130.14 

15 125.47 120.45 80.24 118.10 

 

Table 5: Models with student t- distributional assumption 

J GARCH EGARCH TGARCH APARCH 

1 10.42 9.28 8.48 10.11 

5 0.95 0.88 0.86 0.84 

10 0.51 0.21 0.40 0.46 

15 -1.52 -1.49 -1.27 -1.34 

 

Table 6: Models with generalized error distributional assumption 

J GARCH EGARCH TGARCH APARCH 

1 96.47 88.36 79.63 89.52 

5 78.45 71.25 58.66 70.56 

10 66.32 43.14 52.99 62.52 

15 40.38 30.58 32.66 35.42 

To identify the best performing model in this section, to do the specification tests follow the 

test procedures of Hong and Li (2005) and compute the relevant Q


(j) stats and picking up 
j

 

from 1 to 15. In this paper, it has been taken only 1, 5, 10 and 15 as the value of 
j

 to calculate 

the value of 
ˆ ( )Q j  from the each class of volatility rate models, (it’s mentionable that the results 

of H


(j) tests are quite similar). 
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Table 4 reports the )( jQ


 test statistics as function of lag order j  = 1, 5, 10, 15 for these 

models with Gaussian distributional assumptions. As shown in the table 4 the )( jQ


statistics 

for the GARCH, EGARCH, TGARCH and APARCH model under Gaussian distribution ranges 

from 80.24 to 166.45. Compared with the upper tailed 
)1,0(N

 critical value (e.g. 2.33 at the 1% 

level and 1.66 at the 5% level), the large )( jQ


statistics are overwhelmingly significant, 

suggesting that all four models are severely mis-specified at any reasonable significance level. 

Under Student-t distributional assumption the )( jQ


 statistics for the following four models 

are given in Table 5 ranges from -1.52 to 10.42 which can pass the original premise on 5% as 

well as 1% level. It means that GARCH, EGARCH, TGARCH and APARCH models under the 

student- t  distributional assumption are the most successful models. Table 6 reports these models 

with Generalized Error distribution. The Q


(j) statistics for these models are range from 30.58 to 

96.47. Adding Generalized Error distribution into these models reduces the Q


(j) statistics but 

these Q


(j) statistics are higher than student- t distributional assumption. However, compared 

with the upper tailed 
)1,0(N

critical value the large Q


(j) statistics are overwhelmingly 

significant, suggesting that all four models are not significance at any reasonable significance 

level. 

 

6. Conclusions 

This research paper examined a wide variety of popular GARCH models for CSE index 

return, including GARCH, EGARCH, TGARCH and APARCH model with Gaussian, Student-t 

and generalized error distribution. The comparison focused on two different aspects: the 

difference between symmetric and asymmetric GARCH (i.e., GARCH versus EGARCH, 

TGARCH and APARCH) and the difference among Gaussian, Student-t and Generalized error 

densities. The results show that noticeable improvements were made by using an asymmetric 

GARCH model in the conditional variance. According to distributional assumption these models 

with Student-t distribution give better results. The Non Parametric Specification test also suggests 

that the following model under student- t  distribution can pass the original premise on 5% as well 

as 1% level. It means the GARCH, EGARCH, TGARCH and APARCH models under Student-

t distributional assumption are significant models for CSE. Finally the study suggested that these 

four models were very suitable for the stock market of Sri Lanka. As a result, this study would 

be of great benefit to investors and policy makers at home and abroad. 
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