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Abstract: In this paper, we propose a new generalization of exponentiated modified 

Weibull distribution, called the McDonald exponentiated modified Weibull distribution. The 

new distribution has a large number of well-known lifetime special sub-models such as the 

McDonald exponentiated Weibull, beta exponentiated Weibull, exponentiated Weibull, 

exponentiated expo- nential, linear exponential distribution, generalized Rayleigh, among 

others. Some structural properties of the new distribution are studied. Moreover, we discuss 

the method of maximum likelihood for estimating the model pa- rameters. 
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1. Introduction 

The exponential, Rayleigh, and linear exponential distribution are the most commonly used 

distributions in reliability and life testing, Lawless. These distri- butions have several desirable 

properties and nice physical interpretations. Un- fortunately the exponential distribution only has 

constant failure rate and the Rayleigh distribution has increasing failure rate. The generalized linear 

fail- ure rate distribution generalizes both these distributions which may have non- increasing 

hazard function also. Also, the Weibull distribution, having the ex- ponential, Rayleigh as special 

cases, is very popular distribution for modeling lifetime data and for modeling phenomenon with 

monotone failure rates, when modeling monotone hazard rates, the Weibull distribution may be an 

initial choice because of its negatively and positively skewed density shapes.  However,    the 
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Weibull distribution does not provide a reasonable parametric fit for modeling phenomenon 

with non-monotone failure rates such as the bathtub-shaped and the unimodal failure rates which 

are common in reliability and biological studies. 

The models that present bathtub-shaped failure rate are very useful in sur- vival analysis. But, 

according to Nelson, the distributions presented in lifetime literature with this type of data, as the 

distributions proposed by Hjorth, are sufficiently complex and, therefore, difficult to be modeled. 

Later, other works had introduced new distributions for modeling bathtub-shaped failure rate. For 

example, Rajarshi and Rajarshi presented a review of these distributions and Haupt and Schabe 

considered a lifetime model with bathtub failure rates. How- ever, these models do not present 

much practicability to be used and in recent years new classes of distributions were proposed based 

on modifications of the Weibull distribution to cope with bathtub-shaped failure rate. Among these, 

the exponentiated Weibull (EW) distribution introduced by Mudholkar et al., the modified Weibull 

(MW) distribution proposed by Lai et al. 

Elbatal introduced a generalized the modified Weibull distribution by pow- ering a positive 

real number to the cumulative distribution function (cdf). This new family of distribution called 

exponentiated modified Weibull distribution. The new distribution due to its flexibility in 

accommodating all the forms of the hazard rate function can be used in a variety of problems for 

modeling lifetime data. Another important characteristic of the distribution is that it contains, as 

special sub-models, the Weibull, exponentiated exponential (Gupta and Kundu), exponentiated 

Weibull distribution, generalized Rayleigh (Kundu and Rakab), generalized linear failure rate 

(Sarhan et al), modified Weibull distribution (Lai et al) and some other distributions. The 

exponentiated modified Weibull distri- bution is not only convenient for modeling comfortable 

bathtub-shaped failure rates data but is also suitable for testing goodness-of-fit of some special 

sub- models such as the exponentiated Weibull and modified Weibull distributions. 

 

A random variable X is said to have the exponentiated modified Weibull distribution (EMW 

D) with four parameters (α, β, λ, θ) if its probability density function is given by 

 

𝑓(𝑥) = 𝜃(𝛼 + 𝜆𝛽𝑥𝜆−1)𝑒−(𝛼𝑥+𝛽𝑥𝜆)[1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)]𝜃−1 

(1)

 

while the cumulative distribution function is given by 

 

𝐹(𝑥, 𝛼, 𝛽, 𝜃) = [1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)]𝜃 

(2) 
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where α > 0, β > 0 are scale parameters of the distribution whereas the parame- ters λ > 0 and 

θ > 0 denote the shape parameters. 

 

The aim of this paper is extend the (EMW D) distribution by introducing three extra shape 

parameters to define a new distribution refereed to as the Mc- Donald Exponentiated Modified 

Weibull (McEMW ) distribution. The role of the three additional parameters is to introduce 

skewness and to vary tail weights and provide greater flexibility in the shape of the generalized 

distribution and consequently in modeling observed data. It may be mentioned that although 

several skewed distribution functions exist on the positive real axis, not many skewed distributions 

are available on the whole real line, which are easy to use for data analysis purpose. The main idea 

is to introduce three shape parameters, so that the (McEMW ) distribution can be used to model 

skewed data, a feature which is very common in practice. 

 

 

1.1 McDonald Generalized Distribution. 

For an arbitrary parent cdf G(x), the probability density function (pdf) f (x) of the new class 

of distributions called the McDonald generalized distributions (denoted with the prefix ”Mc”  for 

short) is defined by 

   

𝑓(𝑥, 𝑎, 𝑏, 𝑐) =
𝑐

𝐵(𝑎, 𝑏)
𝑔(𝑥)[𝐺(𝑥)]𝑎𝑐−1[1 − [𝐺(𝑥)]𝑐]𝑏−1 

(3) 

 

where a >0, b >0 and c >0 are additional shape parameters.(See Corderio et al. for 

additional details). Note that g(x) is the pdf of parent distribution ,𝑔(𝑥) =
𝑑𝐺(𝑋)

𝑑𝑥
 

Theclass of distributions (3) includes as special sub-models the beta generalized (Eugene et 

al;[6]) for c = 1 and Kumaraswamy (Kw) generalized distributions (Cordeiro and Castro, [4])for a 

= 1. For random variable X with density function (3), we write X~Mc−G(a, b, c).The probability 

density function (3) will be most tractable when G(x) and g(x) havesimple analytic expressions. 

The corresponding cumulative function for this generalization is given by 

 

𝐹(𝑥, 𝑎, 𝑏, 𝑐) = 𝐼[𝐺(𝑥)]𝑐(𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)
∫ 𝜔(𝑎−1)(1 − 𝜔)𝑏−1 𝑑𝜔

[𝐺(𝑥)]𝑐

0

 

(4) 

 

Where𝐼𝑦(𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
𝜔(𝑎−1)(1 − 𝜔)𝑏−1 𝑑𝜔denotes the incomplete beta function ratio 

(Gradshteyn & Ryzhik, [8]). Equation (4) can also be rewritten as follows 
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where

 

 

is the well-known hypergeometric functions which are well established in the lit- erature 

( see,Gradshteyn and Ryzhik ). Some mathematical properties of the cdf F (x) for any Mc-G 

distribution defined from a parent G(x) in equation (5), could, in principle, follow from the 

properties of the hypergeometric function, which are well established in the literature (Gradshteyn 

and Ryzhik, Sec. 9.1). One important benefit of this class is its ability to skewed data that cannot 

prop- erly benefitted by many other existing distributions. Mc-G family of densities allows for 

higher levels of flexibility of its tails and has a lot of applications in various fields including 

economics, finance, reliability, engineering, biology and medicine. 

 

The hazard function (hf) and reverse hazard functions (rhf) of the Mc-G distribution are given 

by 

 

ℎ(𝑥) =
𝑓(𝑥)

1 − 𝐹(𝑥)
=

𝑐𝑔(𝑥)[𝐺(𝑥)]𝑎𝑐−1[1 − [𝐺(𝑥)]𝑐]𝑏−1

𝐵(𝑎, 𝑏){1 − 𝐼[𝐺(𝑥)]𝑐(𝑎, 𝑏)}
, 

(6) 

and

 

𝜏(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
=

𝑐𝑔(𝑥)[𝐺(𝑥)]𝑎𝑐−1[1 − [𝐺(𝑥)]𝑐]𝑏−1

𝐵(𝑎, 𝑏){𝐼[𝐺(𝑥)]𝑐(𝑎, 𝑏)}
, 

 

respectively. Recently Cordeiro et al. presented results on the McDonald normal distribution. 

Cordeiro et al. proposed McDonald Weibull distribution, and Fran- cisco et al. obtained the 

statistical properties of the McGamma and applied the model to reliability data. Oluyede and 

Rajasooriya introduced the McDagum distribution and its statistical properties with 

applications.Elbatal and Merovci introduced the McDonald exponentiated Pareto distribution. 

Elbatl & al. intro- duced the McDonald generalized linear failure rate distribution. 

 

The rest of the article is organized as follows. In Section 2, we define the cu- mulative, density 

and hazard functions of the (McEMW ) distribution and some special cases. Section 3, includes 

rthmoment , moment generating function.The distribution of the order statistics is expressed in 

Section 4. Least Squares and Weighted Least Squares Estimators of McEMW distribution are 

presented in Section 5. Finally, Maximum likelihood estimation of the parameters is deter- mined 

in Section 6. 
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2. The McDonald Exponentiated Modified Weibull Distribution 

In this section we studied the seven parameter McDonald Exponentiated Mod- ified Weibull 

(McEMW ) distribution. Using G(x) and g(x) in (3) to be the cdf and pdf of (1) and (2). The pdf 

of the McEMW distribution is given by 

 

where α, β are scale  parameters  the  other  positive  parameters  λ, θ, a, b  and  c are shape 

parameters, and ϕ = (α, β, λ, θ, a, b, c). The corresponding cdf of the McEMW  distribution  is  

given  by 

 

 

𝐹(𝑥) = 𝐼[𝐺(𝑥)]𝑐(𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)
∫ 𝜔(𝑎−1)(1 − 𝜔)𝑏−1 𝑑𝜔

[𝐺(𝑥)]𝑐

0

 

=
1

𝐵(𝑎, 𝑏)
∫ 𝜔(𝑎−1)(1 − 𝜔)𝑏−1 𝑑𝜔

(1−𝑒
−(𝛼𝑥+𝛽𝑥𝜆)

)𝜃𝑐

0

 

= 𝐼
(1−𝑒

−(𝛼𝑥+𝛽𝑥𝜆)
)𝜃𝑐

(𝑎, 𝑏) 

(8) 

also, the cdf can be written as follows 

 

𝐹(𝑥) =
(1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)

)𝑎𝜃𝑐

𝑎𝐵(𝑎, 𝑏)
 2

 𝐹1(𝑎, 1 − 𝑏; 𝑎 + 1; (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐)

(9) 

 

Where  2
 𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = 𝐵(𝑏, 𝑐 − 𝑏)−1 ∫

𝑡𝑏−1(1−𝑡)𝑐−𝑏−1

(1−𝑡𝑥)𝑎 𝑑𝑡
1

0
 

Figures 1 and 2 illustrates some of the possible shapes of the pdf and cdf of the McEMW 

distribution for selected values of the parameters. 
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Figure 1: The pdf’s of various McEMW distributions for values of parameters 

 

 

 

 

 

 

0.0    0.5    1.0    1.5    2.0    2.5  3.0 0.0    0.5    1.0    1.5    2.0    2.5  3.0 

 

 

 

0.0    0.5    1.0    1.5    2.0    2.5  3.0 0.0    0.5    1.0    1.5    2.0    2.5  3.0 

Figure 2: The cdf’s of various McEMW distributions for values of parameters. 
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The hazard rate function and reversed hazard rate function of the new distribution are given 

by 

 

ℎ(𝑥) =
𝑓(𝑥, 𝜑)

1 − 𝐹(𝑥, 𝜑)
 

=
𝑐𝜃𝜇𝜆𝜇[1 − (

𝜆
𝑥)𝜇]𝜃𝑎𝑐−1{1 − [1 − (

𝜆
𝑥)𝜇]𝜃𝑐}𝑏−1[1 − (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐]𝑏−1

𝐵(𝑎, 𝑏) {1 −
(1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝑎𝜃𝑐

𝑎𝐵(𝑎, 𝑏)
𝐹1(𝑎, 1 − 𝑏; 𝑎 + 1; (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐

2
 }

 

 
(10) 

and 

 

𝜏(𝑥) =
𝑓(𝑥, 𝜑)

𝐹(𝑥, 𝜑)
 

=
𝑐𝜃(𝛼 + 𝜆𝛽𝑥𝜆−1)𝑒−(𝛼𝑥+𝛽𝑥𝜆)[1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑎𝑐−1[1 − (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐]𝑏−1

𝐵(𝑎, 𝑏) {
(1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝑎𝜃𝑐

𝑎𝐵(𝑎, 𝑏)
𝐹1(𝑎, 1 − 𝑏; 𝑎 + 1; (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)

2 )𝜃𝑐}

 

 

(11)
 

 respectively. 

Figure 3 illustrates some of the possible shapes of the hazard function of the McEMW  distribution for 

selected  values  of the parameters. 
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Figure 3: The hazard function’s of various McEMW distributions for values of 
parameters. 
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2.1.  Submodels 

The McDonald Exponentiated Modified Weibull McEMW  distribution  is very flexible model 

that approaches to different distributions when its param- eters are changed. The McEMW 

distribution contains as special-models the following well known distributions. If X is a random 

variable with pdf (7), us- ing the notation X ∼ Mc−G(x, α, β, λ, θ, a, b, c) then we have the 

following cases. 

•Exponentiated Modified Weibull distribution:  For a = b = 1, the McEMW 

distribution reduces to EMW distribution which introduced by Elbatal. 

•McDonald  Modified  Weibull distribution: For θ = 1, the McEMW re- duces to  

McEW distribution. 

•Beta Modified Weibull distribution: For c = 1, θ = 1,the McEMW re- duces to  

BMW distribution. 

•Kumaraswamy  Modified  Weibull  distribution:   For  a  =  1, θ  =  1, the 

McEMW distribution reduces to KMW distribution. 

•Modified  Weibull  distribution:  For  a  = b  = c  = θ  = 1, the     McEMW 

distribution reduces to MW distribution. 

•McDonald Exponentiated Weibull distribution: For α = 0, the McEMW 

reduces to McEW distribution. 

•Beta Exponentiated Weibull distribution: For c = 1, α = 0,the McEMW 

reduces to BEW distribution. 

•Kumaraswamy Exponentiated Weibull distribution:For a = 1, α = 0,the 

McEMW distribution reduces to KEW distribution. 

•Exponentiated  Weibull  distribution:   For  a  =  b  =  c  =  1, α  =  0,the 

McEMW distribution reduces to EW distribution. 

•McDonald  Weibull distribution: For θ = 1 and α = 0, equation (7) be- comes  

McW distribution. 

•Beta Weibull distribution: For c = θ = 1, α = 0,the McEMW reduces to 

BEW distribution. 

•Weibull distribution: For a = b = c = θ = 1, α = 0,the McEMW distribu- tion reduces  

to KEW distribution. 

•Exponential distribution: For α = 0, λ = 1 and θ = 1 the McEMW distri- bution reduces  

to McEW distribution. 

•Generalized Rayleigh distribution: For α = 0, and λ = 2 the McEMW 

distribution reduces to McGR distribution. 
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3. Statistical Properties 

In this section we study the statistical properties of the (McEMW ) dis- tribution, specifically 

moments and moment generating function. Moments are necessary and important in any statistical 

analysis, especially in applications. It can be used to study the most important features and 

characteristics of a distri- bution (e.g., tendency, dispersion, skewness and kurtosis). 

 

Theorem 3.1 

 

The rth moment of (McEMW ) distribution, r = 1, 2, ... is given by 

𝜇𝑟
′ =

𝑐𝜃

𝐵(𝑎, 𝑏)
∑ (−1)𝑖+𝑗+𝑘

∞

𝑖=𝑗=𝑘=0

(
𝑏 − 1

𝑖
) (

𝜃𝑐(𝑎 + 𝑖) − 1

𝑗
)

(𝛽(𝑗 + 1))𝑘

𝑘!

× [
𝛼𝛤(𝑟 + 𝜆𝑘 + 1)

[ 𝛼(𝑗 + 1)]𝑟+𝜆𝑘+1
+ 𝜆𝛽

𝛤(𝑟 + 𝜆(𝑘 + 1))

[𝛼(𝑘 + 1)]𝑟+𝜆(𝑘+1)
] 

(12) 

Proof. 

We start with the well known definition of the rth moment of the random variable X with 

probability density function f (x) given by 

 

𝜇𝑟
′ = ∫ 𝑥𝑟

∞

0

𝑓(𝑥, 𝜑) 𝑑𝑥 

Substituting from (7) into the above relation, we get 
 

𝜇𝑟
′ =

𝑐𝜃

𝐵(𝑎, 𝑏)
∫ 𝑥𝑟

∞

0

[(𝛼 + 𝜆𝛽𝑥𝜆−1)𝑒−(𝛼𝑥+𝛽𝑥𝜆)[1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)]𝜃𝑎𝑐−1[1 − (1

− 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐]𝑏−1 𝑑𝑥] 

(13) 

since 0 < e−(αx+βxλ) < 1 for x > 0, the binomial series expansion of 

 

 

[1 − (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐]𝑏−1 𝑑𝑥 

 yields 

 

 [1 − (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐]𝑏−1 = ∑(−1)𝑖 (
𝑏 − 1

𝑖
) (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆

)𝜃𝑖𝑐

∞

i=0

 

(14) 
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thus we get 

𝜇𝑟
′ =

𝑐𝜃

𝐵(𝑎, 𝑏)
∑(−1)𝑖 (

𝑏 − 1

𝑖
)

∞

i=0

× ∫ 𝑥𝑟

∞

0

𝜃(𝛼 + 𝜆𝛽𝑥𝜆−1)𝑒−(𝛼𝑥+𝛽𝑥𝜆)[1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)]𝜃𝑐(𝑎+𝑖)−1 𝑑𝑥 

 

Again, the binomial series expansion  of 

1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)]𝜃𝑐(𝑎+𝑖)−1 

Yields 

[1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)]𝜃𝑐(𝑎+𝑖)−1 = ∑(−1)𝑗 (
𝜃𝑐(𝑎 + 𝑖) − 1

𝑗
) 𝑒−𝑗(𝛼𝑥+𝛽𝑥𝜆)

∞

𝑖=0

 

(15) 

we obtain 

 

 

𝜇𝑟
′ =

𝑐𝜃

𝐵(𝑎, 𝑏)
∑ (−1)𝑖+𝑗 (

𝑏 − 1

𝑖
)

∞

𝑖=𝑗=0

(
𝜃𝑐(𝑎 + 𝑖) − 1

𝑗
) × ∫ 𝑥𝑟

∞

0

(𝛼 + 𝜆𝛽𝑥𝜆−1)𝑒−(𝑗+1)(𝛼𝑥+𝛽𝑥𝜆) 𝑑𝑥 

(16) 

but the series expansion of e−β(j+1)xλ 
is given by 

 

𝑒−𝛽(𝑗+1)𝑥𝜆
= ∑

(−𝛽(𝑗 + 1))𝑘𝑥𝜆𝑘

𝑘!

∞

𝑘=0

 

(17) 

substituting from (17) into (16), yields 

 

𝜇𝑟
′ = 𝐶𝑖,𝑗,𝑘 ∫ 𝑥𝑟+𝜆𝑘(𝛼 + 𝜆𝛽𝜆−1)𝑒−𝛼(𝑗+1)𝑥

∞

0

𝑑𝑥 

(18) 

where 

 

𝐶𝑖,𝑗,𝑘 =
𝑐𝜃

𝐵(𝑎, 𝑏)
∑ (−1)𝑖+𝑗+𝑘 (

𝑏 − 1

𝑖
)

∞

𝑖=0,𝑗=0,𝑘=0

(
𝜃𝑐(𝑎 + 𝑖) − 1

𝑗
)

(𝛽(𝑗 + 1))𝑘

𝑘!
 

(19) 
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the integral in (18) can be computed as follows 

𝜇𝑟
′ = 𝐶𝑖,𝑗,𝑘 [𝛼 ∫ 𝑥𝑟+𝜆𝑘𝑒−𝛼(𝑗+1)𝑥 𝑑𝑥 + 𝜆𝛽 ∫ 𝑥𝑟+𝜆𝑘+𝜆−1𝑒−𝛼(𝑗+1)𝑥 𝑑𝑥

∞

0

∞

0

] 

= 𝐶𝑖,𝑗,𝑘 [
𝛼𝛤(𝑟 + 𝜆𝑘 + 1)

[ 𝛼(𝑗 + 1)]𝑟+𝜆𝑘+1
+ 𝜆𝛽

𝛤(𝑟 + 𝜆(𝑘 + 1))

[𝛼(𝑗 + 1)]𝑟+𝜆(𝑘+1)
] 

(20) 

wich completes the proof. 

 

Theorem 3.2. 
The moment generating function of (McEMW ) distribution is given by 

 

𝑀(𝑡) = 𝐶𝑖,𝑗,𝑘 [
𝛼𝛤(𝜆𝑘 + 1)

[ 𝛼(𝑗 + 1) − 𝑡]𝜆𝑘+1
+ 𝜆𝛽

𝛤(𝜆(𝑘 + 1))

[𝛼(𝑗 + 1) − 𝑡]𝜆(𝑘+1)
] 

 (21) 

Proof 
We start with the well known definition of the M (t) of the random  variable 

X with probability density function f (x) given by 

𝑀(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑥𝑓(𝑥, 𝜑) 𝑑𝑥

∞

0

 

Substituting from (7) into the above relation, we get 

 

𝑀(𝑡) =
𝑐𝜃

𝐵(𝑎, 𝑏)
∫ [𝑒𝑡𝑥(𝛼 + 𝜆𝛽𝑥𝜆−1)𝑒−(𝛼𝑥+𝛽𝑥𝜆) [1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆)]

𝜃𝑎𝑐−1
∞

0

× [1 − (1 − 𝑒−(𝛼𝑥+𝛽𝑥𝜆))𝜃𝑐]
𝑏−1

𝑑𝑥] 

(22) 

using the binomial series expansion given by (15) and (17) we get 

 

𝑀(𝑡) = 𝐶𝑖,𝑗,𝑘 ∫ 𝑥𝜆𝑘(𝛼 + 𝜆𝛽𝜆−1)𝑒−𝑥[𝛼(𝑗+1)−𝑡]

∞

0

𝑑𝑥 

= 𝐶𝑖,𝑗,𝑘 [𝛼 ∫ 𝑥𝜆𝑘𝑒−𝑥[𝛼(𝑗+1)−𝑡] 𝑑𝑥 + 𝜆𝛽

∞

0

∫ 𝑥𝜆(𝑘+1)𝑒−𝑥[𝛼(𝑗+1)−𝑡] 𝑑𝑥

∞

0

] 

= 𝐶𝑖,𝑗,𝑘 [
𝛼𝛤(𝜆𝑘 + 1)

[ 𝛼(𝑗 + 1) − 𝑡]𝜆𝑘+1
+ 𝜆𝛽

𝛤(𝜆(𝑘 + 1))

[𝛼(𝑗 + 1) − 𝑡]𝜆(𝑘+1)
] 

(23) 

which completes the proof. 
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¸ 

 

4. Distribution of the order statistics 

In this section, we derive closed form expressions for the pdfs of the rth order statistic of the 

McEMW distribution, also, the measures of skewness and kurtosis of the distribution of the rth 

order statistic in a sample of size n for different choices of n; r are presented in this section. Let 

X1:n, X2:n, . . . , Xn:n be a simple random sample from (McEMW ) distribution with pdf and cdf 

given by (7) and (8), respectively. Let X1, X2, . . . , Xn denote the order statistics obtained from 

this sample. We now give the probability density function of Xr:n, say fr:n(x, ϕ) and the moments 

of Xr:n, r = 1, 2, . . . , n. Therefore, the measures of skewness and kurtosis of the distribution of 

the Xr:n are presented. The probability density function of Xr:n  is given by 

𝑓𝑟;𝑛(𝑥, 𝜑) =
1

𝐵(𝑟, 𝑛 − 𝑟 + 1)
[𝐹(𝑥, 𝜑)𝑟−1[1 − 𝐹(𝑥, 𝜑)]𝑛−𝑟]𝑓(𝑥, 𝜑) 

(24) 

where F (x, ϕ) and f (x, ϕ) are the cdf and pdf of the McEMW distribution given by (7), (8), 

respectively, and B(., .) is the beta function, since 0 < F (x, ϕ) < 1, for x > 0, by using the binomial 

series expansion of [1 − F (x, ϕ)]n−r , given by 

[1 − 𝐹(𝑥, 𝜑)]𝑛−𝑟] = ∑(−1)𝑗 (
𝑛 − 𝑟

𝑗
) [𝐹(𝑥, 𝜑)]𝑗

𝑛−𝑟

𝑗=0

 

(25) 

we have 

𝑓𝑟;𝑛(𝑥, 𝜑) = ∑(−1)𝑗 (
𝑛 − 𝑟

𝑗
) [𝐹(𝑥, 𝜑)]𝑟+𝑗−1𝑓(𝑥, 𝜑)

𝑛−𝑟

𝑗=0

 

(26) 

5. Least Squares and Weighted Least Squares Estimators 

In this section we provide the regression based method estimators of the unknown parameters 

of the McDonald exponentiated modified Weibull, which was originally suggested by Swain, 

Venkatraman and Wilson to estimate the parameters of beta distributions. It can be used some 

other cases also. Suppose X(1:n), . . . , X(n:n) is a random sample of size n from a distribution 

function G(.) and suppose X(i:n); i = 1, 2, . . . , n denotes the ordered sample.  The proposed 
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method uses the distribution of G(X(i:n)). For a sample of size n, we have 

 

see Johnson, Kotz and Balakrishnan. Using the expectations and the variances, two variants 

of the least squares methods can be used. 

 

Method 1 (Least Squares Estimators). Obtain the estimators by mini- mizing 

 

∑ (𝐺(𝑋(𝑗:𝑛) −
𝑗

𝑛 + 1
)

2𝑛

𝑗=1

 

(27) 

 

Method 2 (Weighted Least Squares Estimators). The weighted least squares estimators can be 

obtained by minimizing 

∑ 𝜔𝑗

𝑛

𝑗=𝑞

(𝐺(𝑋(𝑗:𝑛) −
𝑗

𝑛 + 1
)

2

 

 (28) 

with respect to the unknown parameters, where 

𝜔𝑗 =
1

𝑉(𝐺(𝑋(𝑗:𝑛))
=

(𝑛 + 1)2(𝑛 + 2)

𝑗(𝑛 − 𝑗 + 1)
 

 

∑ 𝜔𝑗

𝑛

𝑗=𝑞

[𝐼
𝑒−(𝛼𝑥𝑖+𝛽𝑥𝑖

𝜆)𝜃𝑐 (𝑎, 𝑏) −
𝑗

𝑛 + 1
]

2
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with respect to the unknown parameters only. 

6. Estimation and Inference 

In this section we determine the maximum likelihood estimates MLE of the parameters of the 

McEMW (x, ϕ) distribution from complete samples only. Let X1, X2, . . . , Xn be a random sample 

from X ∼ McEMW (x, ϕ) with observed values x1, x2, . . . , xn and let ϕ = (α, β, λ, θ, a, b, c)T be 

the vector of the model parameters.  The log  likelihood  function  of  (7)  is  defined as 

Differentiating ℓ with respect to each parameter α, β, λ, θ, a, b andc and setting the result equals 

to zero, we obtain maximum likelihood estimates. The partial derivatives of L(ϕ) with respect to 

each parameter or the score function is given by: 

 

𝑈𝑛(𝜑) = (
𝜕ℓ

𝜕𝛼
,
𝜕ℓ

𝜕𝛽
,
𝜕ℓ

𝜕𝜆
,
𝜕ℓ

𝜕𝜃
,
𝜕ℓ

𝜕𝑎
,
𝜕ℓ

𝜕𝑏
,
𝜕ℓ

𝜕𝑐
), 

where 
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(32) 

𝜕ℓ

𝜕𝜃
=

𝑛

𝜃
+ 𝑎𝑐 ∑ 𝑙𝑜𝑔[1 − 𝑒−(𝛼+𝜆𝛽𝑥1

𝜆)]

𝑛

𝑖=1

+ 𝑐(𝑏 − 1) ∑
(1 − 𝑒−(𝛼+𝜆𝛽𝑥1

𝜆))𝜃𝑐 𝑙𝑜𝑔(1 − 𝑒−(𝛼+𝜆𝛽𝑥1
𝜆))

[1 − 𝑒−(𝛼+𝜆𝛽𝑥𝑖
𝜆)]

𝑛

𝑖=1

 

(33) 

𝜕ℓ

𝜕𝑎
= 𝑛𝜓(𝑎 + 𝑏) − 𝑛𝜓(𝑎) + 𝜃𝑐 ∑ 𝑙𝑜𝑔[1 − 𝑒−(𝛼+𝜆𝛽𝑥1

𝜆)]

𝑛

𝑖=1

 

(34) 

𝜕ℓ

𝜕𝑏
= 𝑛𝜓(𝑎 + 𝑏) − 𝑛𝜓(𝑏) + ∑ 𝑙𝑜𝑔[1 − (1 − 𝑒−(𝛼+𝜆𝛽𝑥1

𝜆))𝜃𝑐]

𝑛

𝑖=1

 

(35) 

𝜕ℓ

𝜕𝑐
=

𝑛

𝑐
+ 𝜃𝑎 ∑ 𝑙𝑜𝑔[1 − 𝑒−(𝛼+𝜆𝛽𝑥1

𝜆)]

𝑛

𝑖=1

+ 𝜃(𝑏 − 1) ∑
(1 − 𝑒−(𝛼+𝜆𝛽𝑥1

𝜆))𝜃𝑐 𝑙𝑜𝑔(1 − 𝑒−(𝛼+𝜆𝛽𝑥1
𝜆))

[1 − (1 − 𝑒−(𝛼+𝜆𝛽𝑥𝑖
𝜆))𝜃𝑐]

𝑛

𝑖=1

 

(36) 

and 
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The elements of Hessian matrix are: 
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7. Application 

In this section, we use a real data set to show that the McEMW 
distribution can be a better model than one based on the EMW distribution, 
MW and Weibull distribution. The data set given in Table 1 taken from Murthy 
et al. page 180 represents the failure times of 50 components(per 1000h): 
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Table 1: Failure Times of 50 Components(per 1000 hours) 

 

The variance covariance matrix  of the MLEs under the McEMW dis- tribution is 

computed as 

 

Thus,  the  variances  of  the  MLE  of  α, β, λ, θ, a, b  and  c  is  var(αˆ)  =  4.195 · 

10−6, var(βˆ)  =  2.939 · 10−3,  var(λˆ)  =  2.805 · 10−5,  var(θˆ)  =  10.491, var(aˆ)  = 

8.611, var(ˆb) = 2.893 · 10−4, var(cˆ) = 1.071. 

Therefore, 95% confidence intervals for α, β, λ, γ, a, b and c are [1.001, 1.178], 

[10.685, 10.898], [0.179, 0.199], [6.539, 19.235] 

[1.150, 12.653], [0.080, 0.147] and [2.090, 6.147] respectively. 

 

In order to compare the two distribution models, we consider criteria like , −2ℓ and AIC 

(Akaike information criterion) for the data set. The better distribution corresponds to smaller −2ℓ 

and AIC values: 

AIC = 2k − 2ℓ 
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where k is the number of parameters in the statistical model, n the sample size and ℓ is the 

maximized value of the log-likelihood function under the considered model. Table 3 shows the 

MLEs under both distributions and the values of −2ℓ and AIC values.  The values in table 3 indicate 

that the McEMW distribution 

leads to a better fit than the EMW, MW distribution and Weibull distribution. A density plot 

compares the fitted densities of the models with the empirical histogram of the observed data (Fig.  

4).  The fitted density for the McEMW 

model is closer to the empirical histogram than the fits of the EMW,MW and Weibull sub-

models. 

 

 

Figure 4: Estimated densities of the models for the failure times of 50 components. 
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8. Conclusion 

 Here, we propose a new model, the so-called the McEMW dis- tribution which extends the 

EMW distribution in the analysis of data with rea lsupport. An obvious reason for generalizing a 

standard distribution is because the generalized form provides larger flexibility in modelling real 

data. We derive expansions for the moments and for the moment generating function. The esti- 

mation of parameters is approached by the method of maximum likelihood, also the information 
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matrix is derived. An application of the McEMW distribution to real data show that the new 

distribution can be used quite effectively to provide better fits than the EMW  distribution. 

. 
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