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A new extension of the normal distribution 

Maria do Carmo S. Lima* Gauss M. Cordeiro*  

Edwin M. M. Ortega†† 

Abstract:Providing a new distribution is always precious for statisticians. A new three-

parameter distribution called the gamma normal distribution is defined and studied. 

Various structural properties of the new distribution are derived, including some explicit 

expressions for the moments, quantile and generating functions, mean deviations, 

probability weighted moments and two types of entropy. We also investigate the order 

statistics and their moments. Maximum likelihood techniques are used to fit the new 

model and to show its potentiality by means of two examples of real data. Based on three 

criteria, the proposed distribution provides a better fit then the skew-normal distribution. 
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Normal distribution; Quantile. 

 

1 Introduction 

In statistics, the normal distribution is the most popular model in applications to real data. When the 

number of observations is large, it can serve as an approximate distribution for other models. The 

probability density function (pdf) (for x ∈R) of the normal N(µ,σ) distribution becomes 

,                           (1) 

where −∞ < µ < ∞ is a location parameter and σ > 0 is a scale parameter. Its cumulative distribution 

function (cdf) is given by x − µ )  

G(x;μ, σ)= Φ(
𝑥−𝜇

𝜎
)                                                             (2) 

A family of univariate distributions generated by gamma random variables was proposed by Zografos 

and Balakrishnan (2009) and Ristic and Balakrishnan (2011). They defined the gamma-G (“GG” for 

short) distribution from any baseline cdf G(x), x ∈R, using an additional shape parameter a > 0, by the 

pdf and cdf 

                                           (3) 

and 

 G(x)]),                      (4) 
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respectively, where g(x) = dG(x)/dx, tdt is the gamma function, tdt 

and γ1(a,z) = γ(a,z)/Γ(a) are the incomplete gamma function and the incomplete gamma function ratio, 

respectively. 

Each new GG distribution can be obtained from a specified G distribution. For a = 1, the G 

distribution is a basic exemplar with a continuous crossover towards cases with different shapes ( for 

example, a particular combination of skewness and kurtosis). Zografos and Balakrishnan (2009) 

motivated the GG distribution as follows. Let X(1),...,X(n) be lower record values from a sequence of 

i.i.d. random variables from a population with pdf g(x). Then, the pdf of the nth lower record value is 

given by (3) with a = n. A logarithmic transformation of the baseline distribution G transforms the 

random variable X with density function (3) to a gamma distribution. In other words, if X has the density 

(3), then the random variable Z = −log[1 − G(X)] has a gamma density π(z;a) = Γ(a)−1 za−1 e−z ,z > 0, 

say Z ∼ G(a,1). The opposite is also true, if Z ∼ G(a,1), then the random variable X = G−1(1 − e−Z) has 

the GG density function (3). Nadarajah et al. (2013) derived some mathematical properties of (3) in the 

most simple, explicit and general forms for any G distribution. 

In this paper, we study some structural properties of the gamma normal (GN) distribution, which 

generalizes the normal disribution. In Section 2, we introduce the GN distribution and provide plots of 

its density function. We derive expansions for the pdf and cdf (Section 3) and explicit expressions for 

the quantile function (Section 4), ordinary and incomplete moments and Bonferroni and Lorenz curves 

(Section 5), generating function (Section 6) and entropies (Section 7). In Section 8, we investigate the 

order statistics and their moments. The estimation of the model parameters is performed by maximum 

likelihood in Section 9 and two applications are provided in Section 10. Concluding remarks are 

addressed in Section 11. 

2 The GN distribution 

By taking the pdf (1) and cdf (2) of the normal distribution with location parameter µ ∈R and dispersion 

parameter σ > 0, the pdf and cdf of the GN distribution are obtained from equations (3) and (4) ( for x 

∈R) as 

                    (5) 

and 

.     (6) 

Evidently, the GN distribution is defined by a simple transformation: if Z ∼ G(a,1), then the random 

variable X = Φ−1(1 − e−Z) has the density function (5). Hereafter, a random variable X following (5) is 

denoted by X ∼GN(a,µ,σ). The density function (5) does not involve any complicated function and the 

normal distribution arises as the basic exemplar for a = 1. It is a positive point of the current 

generalization. We motivate the paper by comparing the performances of the GN, normal and 

skewnormal models applied to two real data sets. 

In Figure 1, we display some possible shapes of the density function (5) for some parameter values. It 

is evident that the GN distribution is much more flexible than the normal distribution. 

The new distribution is easily simulated as follows: if V is a gamma random variable with parameter 

a, then 

X = σ Φ−1[1 − exp(−V )] + µ 
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has the GN(a,µ,σ) distribution. This scheme is useful because of the existence of fast generators for 

gamma random variables and the standard normal quantile function is available in most statistical 

packages. 

(a)                                                       (b)                                                       (c)                           

 

x x x 

Figure 1: Plots of the new density function for some parameter values. (a) For different values of a with µ = 0 

and σ = 1. (b) For different values of a and σ with µ = 0. (c) For different values of a, µ and σ. 

 

3 Useful expansions 

Expansions for equations (5) and (6) can be derived using the concept of exponentiated 

distributions. Consider the exponentiated normal (EN) distribution with power parameter a > 0 defined 

by Y ∼ EN(a,µ,σ), with cdf and pdf given by Ha(y) = Φ(y−σµ)a and , 

respectively. 

The properties of several exponentiated distributions have been studied by some authors, see 

Mudholkar and Srivastava (1993) and Mudholkar et al. (1995) for exponentiated Weibull (EW), Gupta 

et al. (1998) for exponentiated Pareto, Gupta and Kundu (2001) for exponentiated exponential (EE) 

and Nadarajah and Gupta (2007) for exponentiated gamma (EG) distributions. More recently, Cordeiro 

et al. (2011) investigated these properties for the exponentiated generalized gamma (EGG) distribution. 

Based on an expansion due to Nadarajah et al. (2013), we can write 

 

  , 

 

where a > 0 is any real parameter and the constants pj,k can be calculated recursively by 

 

, 

for k = 1,2,... and pj,0 = 1. Let 
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. 

Then, equation (5) can be expressed as 

,                                                                  (7) 

where   denotes the EN(a + k,µ,σ) density function. The cdf 

corresponding to (7) becomes 

,                           (8) 

where  denotes the EN cdf with parameters a + k, µ and σ. 

If a > 0 is a real number, we can expand   as 

,                                  (9) 

where 

.                                                      (10) 

Combining equations (8) and (9), we obtain 

. 

By differentiating the previous equation and changing indices, we can write 

,                                                                        (11) 

where . Clearly, . Equation (11) is the main result of this section. 

It reveals that the GN density function is a linear combination of EN densities. So, several properties of 

the GN distribution can be obtained by knowing those properties of the EN distribution. 

4 Quantile Function 

The GN quantile function, say Q(u) = F−1(u), can be expressed in terms of the normal quantile 

function (QN(·)). The normal quantile function is given by x = QN(u) = σΦ−1(u) + µ. Inverting equation 

(6) , we obtain the quantile function of X as 

F−1(u) = QGN(u) = µ + σ QN {1 − exp[−Q−1(a,1 − u)]},                                   (12) 

for 0 < u < 1, where Q−1(a,u) is the inverse function of Q(a,z) = 1−γ(a,z)/Γ(a). Quantities of interest can 

be obtained from (12) by substituting appropriate values for u. Further, the normal quantile function can 

be expressed as (Steinbrecher, 2002) in equation (43), see Appendix A. Further, after some algebra (see 

Appendix A), we obtain 
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,                                                                         (13) 

where and the quantity dk was defined in Section 3. 

We can obtain the inverse function Q−1(a,u) in the Wolfram website as 

, 

where a0 = 0, a1 = Γ(a+1)1/a, a2 = Γ(a+1)2/a/(a+1), a3 = (3a+5)Γ(a+1)3/a/[2(a+1)2(a+2)], etc. 
We use throughout the paper an equation of Gradshteyn and Ryzhik (2007, Section 0.314) for a power 

series raised to a positive integer j: 

,                                                              (14) 

where the coefficients cj,i (for i = 1,2,...) are easily obtained from the recurrence equation 

 

cj,i = (ia0)−1 ∑ [𝑚(𝑗 +  1)  −  𝑖] 𝑎𝑚 𝑐𝑗, 𝑖 − 𝑚
𝑖
𝑚=1                                                                           (15) 

 

and . The coefficient cj,i can be determined from cj,0,...,cj,i−1 and then from the quantities a0,...,ai. 

In fact, cj,i can be given explicitly in terms of the coefficients ai, although it is not necessary for 

programming numerically our expansions in any algebraic or numerical software. 

By expanding the exponential function and using (14), we have (see Appendix A) 

, 

where the p′
rs are defined there. We can write 

  . 

By using equations (13) and (14), we can obtain from (12) 

,                                                                  (16) 

where  and Some algebraic 

details about (16) and others quantities of interest are given in Appendix A. Equations (13)-(15) are the 

main results of this section. 

5 Moments 

Here, we obtain the ordinary and incomplete moments of X. They can be immediately derived 

from the moments of Y following the EN(a,µ,σ) distribution. Hereafter, let Z be the standard GN(a,0,1) 

random variable. First, we obtain the moments of Z. Thus, we can write from (7) 
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Further, we can express  in terms of QN(u) as 

 

Using (13) and (14), we can rewrite   as 

,                                                                       (17) 

 

Where the quantities e𝑛,𝑠  are determined from (13)-(15) as e𝑛,𝑠 = (𝑖𝜔0)−1 ∑ [𝑚(𝑛 + 1) −𝑠
𝑚=1

𝑠]𝜔𝑚 e𝑛,𝑠−𝑚  for s ≥ 1,  e𝑛,0 = 𝜔0
𝑛, 𝜔𝑚 = ∑ (−2)𝑚−𝑘(√2𝜋)𝑘∞

𝑘=𝑚 (
𝑘
𝑚

) 𝑑𝑘  and the quanity 𝑑𝑘  was 

defined in Section 3. 

The moments of X immediately follow from the moments of Z as E(X𝑛) = ∑ (
𝑛
𝑘

)𝑛
𝑘=0  μ𝑛−𝑘σ𝑘𝜇𝑘

′ . 

The second representation for µ′n is based on (n,r)th probability weighted moment (PWM) (for n 

and r positive integers) of the standard normal distribution given by 

 

μ𝑛
′ = ∑ 𝑏𝑘𝑠𝑟+1(𝑎 + 𝑘)𝜏𝑛,𝑟

∞
𝑘,𝑟=0                                          (18) 

Where s𝑟(𝑎)is given by (10) and τ𝑛.𝑟 can be expressed as (Nadarajah,2008) 

 
(n+r−p)even 

                       , (19) 

where 

 

is the Lauricella function of type A (Exton, 1978) and the Pochhammer symbol (a)k = 

a(a+1)...(a+k−1) indicates the kth rising factorial power of a with the convention (a)0 = 1. 

We derive three formulae for the nth incomplete moment of Z given by E(Zn|Z < y) = Tn(y) = 

. First, based on equation (11), with µ = 0 and σ = 1, Tn(y) reduces to 

 

                                               (20) 

We can write Φ(x) as a power series , where a0 = (1 + √2/π)−1/2, a2j+1 

=(−1)j/[√2π 2j(2j + 1)j!] for j = 0,1,2... and a2j = 0 for j = 1,2,... Further, using (14), we have 

 

,                                                               (21) 

where the coefficients cr,j can be determined from the recurrence equation (15) with these a′
is. Thus, using 

(21) and changing variable in the last integral, it follows from (20) 
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 .                             (22) 

Next, we derive a second representation for the moments. The integral   dx can 

be determined for q > 0 and q < 0. We define 

 

. 

For q < 0 and q > 0, we have 

A(j,q) = (−1)j G(j) + (−1)j+1H(j,q) 

and 

A(j,q) = (−1)jG(j) + H(j,q), 
 

respectively, where the integral  dx can be easily computed (Whittaker and Watson, 

1990). The details are given in Appendix B. After some algebra, we can write Tn(y) as 

                                (23) 

where   is given by (10) 

and the quantities a′
is are defined in Section 4. Some details about (23) are given in Appendix B. 

 

A third representation for Tn(y) is based on the normal quantile function. Thus, equation (21) becomes 

 

 

After some algebra, using (13) and (14), we have 

,                                                           (24) 

where en,s is given before. More details about (24) are addressed in Appendix B. The 

nth incomplete moment of X follows after a binomial expansion 

. 

We can derive the mean deviations of Z about the mean  and about the median M in terms of its first 

incomplete moment. They can be expressed as 

  ,                                          (25) 

 

where  and . The quantity T1(q) can be obtained from (22) (or (23) or 

(24)) with n = 1 and the measures δ1 and δ2 in (25) are immediately determined by setting   and q = 

M, respectively. 

For a positive random variable X, the Bonferroni and Lorenz curves are defined by  
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and , respectively, where q = F−1(π) = QGN(π) comes from the quantile function (12) for a 

given probability π. 

Next, we obtain the probability weighted moments (PWMs) of Z. They cover the summarization and 

description of theoretical probability distributions. The primary use of these moments is to estimate the 

parameters of a distribution whose inverse cannot be expressed explicitly. The (s,p)th PWM of Z is 

formally defined as 

 

Using (8), (11) and (14), we obtain 

                          (26) 

where dr is definedin Section 3,f�̅�,𝑗 = (𝑗𝑒0)−1 ∑ [𝑣(𝑝 + 1) − 𝑗]𝑒𝑣𝑓�̅�,𝑗−𝑚
𝑗
𝑣=1  for 𝑗 ≥ 1,𝑓�̅�,0 ,    and

 

Equations (17)-(19), (22)-(24) and (26) are the main results of this section. Some algebraic details are given in 

Appendix B. 

The skewness and kurtosis measures can be calculated from the ordinary moments using well- known 

relationships. Plots of the skewness and kurtosis for selected parameters values as function of a are displayed in 

Figure 2. In the plots of Figures 2a and 2c, σ = 10.50, whereas in those of Figures 2b and 2d, µ = 2.50. 

(a)                                                                                ( b ) 

 

a                                                                                                                                a 

 

 

 

 

0.5 2.5 0.0 1.0 1.5 2.0 

µ =−0.5 
µ =−1.0 
µ =1.5 
µ =2.0  

4  0 1 2 3 

σ =0.5 
σ =1.5  
σ =2.5  
σ =3.5  
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(c)                                                                                       (d) 

 

a                                                                                                                                 a 

Figure 2: (a) Skewness of X as function of a for some values of µ. (b) Skewness of X as function of a for some 

values of σ. (c) Kurtosis of X as function of a for some values of µ. (d) Kurtosis of X as function of a for some 

values of σ. 

6 Generating function 

The generating function M(−t) = E(e−tZ) of Z ∼GN(a,0,1) is given by 

 
Inserting equation (21), we obtain 

 

Based on Prudnikov et al. (1986,Eq.2.3.15.8), the above integral can be rewritten as 

. 

Thus, the moment generating function (mgf) of Z becomes 

.                                (27) 

A second representation for M(t) can be based on the quantile function. We have 

 

Expanding the exponential function, using (16) and after some algebra, we obtain 

2.5 2.0 1.0 0.5 0.0 3.0 1.5 

µ =−0.5 
µ =−1.0 
µ =1.5 
µ =2.0  

3.0  0.0 0.5 1.0 1.5 2.0 2.5 

σ =0.5  
σ =1.5  
σ =2.5  
σ =3.5  
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,                                                               (28) 

where   and the 

quantities pj and hj,r are given in Section 4. 

Equations (27) and (28) are the main results of this section. The mgf of X is simply given by 

MX(t) = eµ M(σt), where ı = √−1. The characteristic function (cf) has many useful and important 

properties which gives it a central role in statistical theory. Its approach is particularly useful in 

analysis of linear combination of independent random variables. Clearly, a simple representation for 

the characteristic 

function (chf) ϕX(t) = MX(it) of X, where i = √−1, is given by 

sin(tx)f(x)dx. 

From the expansions  and , we obgtain 

 E(X2r+1). 

7 Entropies 

An entropy is a measure of variation or uncertainty of a random variable X. Two popular entropy 

measures are the Rényi and Shannon entropies (Shannon, 1951; Rényi, 1961). Here we consider 

therandom variable Z ∼GN(a,0,1). Thus, the Rényi entropy is defined as 

 

 
for γ > 0 and γ ≠ 1. 

First, we consider γ = n = 2,3,..., µ = 0, σ = 1 and the rth moment of the standard normal 

distribution given by 

.                                                          (29) 

 

We have two cases: m′r = 0, if r is odd, and m′r = 1 × 3... × (r − 1), if r is even. 

Using (21), we can write from (11) and (21) 

,          (30) 

Where and the m′j ’s 

are given by (29). The quantities dr’s are defined in Section 3, whereas the cr,j’s and the av’s are given 

in Section 
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5. 

We can write IR(γ) = (1 − γ)−1 E{f(Z)γ−1}. Let δ = E(Z). For γ real positive, we have 

E{f(Z)γ−1} = δγ−1 E{1 + θ[f(Z) − δ]}γ−1, 

where θ = δ−1. From the generalized binomial expansion, we obtain 

, 

where . Further, 

.                                 (31) 

We now obtain E{[f(Z)]n} for n ≥ 2. From equation (11) and using the binomial expansion, we 

can write 

, 

where ψn,j = E{Zj ϕ(Z)n}. Thus, 

. 

 
Setting √(n + 1)x = y, we can easily determine the last integral and then rewrite ρn as 

 

.                                               (32) 

By expanding the binomial term in (31), we can obtain an explicit expression for IR(γ), which holds for 

any γ real positive and γ ≠ 1, given by 

 ,               (33) 

where ρk is determined from (32). Algebraic details can be found in Appendix D. 

Next, the Shannon entropy of a random variable Z is defined by E{−log[f(Z)]}. It is a special case 

of the Rényi entropy when γ ↑ 1. Equation (30) is very complicated for limiting, and then we derive 

an explicit expression for the Shannon entropy from its definition. We can write 

 

.    (34) 

 

So, we first calculate E {log[ϕ(X)]} and E [log{−log[1 − Φ(X)]}]. Setting µ = 0 and σ = 1, the first 

quantity is easily calculated as follows 

 

,          (35) 

where  comes from (17) or (18) with n = 2. 
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The second quantity E [log{−log[1 − Φ(x)]}] is obtained from the expansion of log{−log[1 − 

Φ(x)]}. We can write (for 0 < u < 1) from MATHEMATICA 

 

   (36) 

From equations (34)-(36), we obtain the Shanon entropy E{−log[f(Z)]} using the ordinary 

moments given by (17), (18) and (21). Equations (30), (33)-(36) are the main results of this section. 

 

8 Order statistics 

Order statistics have been used in a wide range of problems, including robust statistical estimation 

and detection of outliers, characterization of probability distributions and goodness-of-fit tests, entropy 

estimation, analysis of censored samples, reliability analysis, quality control and strength of materials. 

Suppose Z1,...,Zn is a random sample from the standard GN distribution and let Z1:n < ··· < Zi:n 

denote the corresponding order statistics. Using (7) and (8), the pdf of Zi:n can be expressed as 

 

  . 

Based on equations (14) and (15), we obtain 

, 

where 𝑛𝑖+𝑗−1,0 = 𝑏0
𝑖+𝑗−1

 and 𝑛𝑖+𝑗−1,𝑘 = (𝑘𝑏0)−1 ∑ [𝑚(𝑖 + 𝑗) − 𝑘]𝑏𝑚𝑛𝑖+𝑗−1,𝑘−𝑚
𝑘
𝑚=1 . Hence, the pdf of 

Zi:n reduces to 

fi:n(z)=ϕ(z) ∑ ∑ 𝑚𝑗,𝑘,𝑟
∞
𝑘=0

𝑛−𝑖
𝑗=0 Φ(𝑧)(𝑖+𝑗)𝑎+𝑘+𝑟−1

                                                           (37)  

where 

. 

Equation (37) can be expressed as 

𝑓𝑖:𝑛(𝑧) = ∑ ∑ 𝑓𝑗,𝑘,𝑟ℎ(𝑖+𝑗)𝑎+𝑘+𝑟(𝑧),∞
𝑘=0

𝑛−𝑖
𝑗=0                                          (38) 

where 

  . 

Equation (38) is the main result of this section. It reveals that the pdf of the standard GN order 

statistics is a triple linear combination of EN densities with parameters (i+j)a+k+r, µ = 0 and σ = 1. 

So, several mathematical quantities of the GN order statistics such as ordinary and incomplete 

moments, mgf and mean deviations can be immediately obtained from those quantities of the EN 
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distribution. It gives the density function of the GN order statistics as a power series of the standard 

normal cumulative function multiplied by the standard normal density function. 

As an application of (37), the sth ordinary moment of Zi:n becomes 

 

, 

where τs,(i+j)a+k+r−1 can be obtained from (19). 

Another closed-form expression for  can be derived using a result due to Barakat and 

Abdelkader (2004) applied to the independent and identically distributed case. Thus, 

 

, 

where𝐽𝑗(𝑠) = ∫ 𝑧𝑠−1[1 − 𝐹(𝑧)]𝑗𝑑𝑥
∞

0
. By expanding [1−F(z)]j and using (8) , we obtain Jj(s). For any real a > 0, we 

can write from equations (8) and (15) 

 

where dm,k is defined in Section 6 and the quantities τn,r are given in equation (19). 

9 Estimation 

Here, we consider estimation of the unknown parameters of the GL distribution by the method of 

maximum likelihood. Let x1,...,xn be a random sample of size n from the GN(a,µ,σ) distribution. The 

log-likelihood function for the vector of parameters θ = (a,µ,σ)T can be expressed as 

 

                             (39) 

The components of the score vector U(θ) are given by 

, 

where ψ(·) is the digamma function. 

Setting these expressions to zero and solving them simultaneously yields the maximum likelihood 

estimates (MLEs) of the three parameters. We use the matrix programming language Ox ( MaxBFGS 

subroutine), see for example, Doornik (2006) and the procedure NLMixed in SAS to compute the 
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MLE θ. For interval estimation of the model parameters, we require the expected information matrix. 

The 3b× 3 total observed information matrix J(θ) is given by 

 

  , 

 

whose elements are listed in Appendix E. Under conditions that are fulfilled for parameters in the 

interior of the parameter space but not on the boundary, the asymptotic distribution of √n(θb−θ) is 

N3(0,K(θ)−1), where K(θ) = E{J(θ)} is the expected information matrix. The multivariate normal 

N3(0,J(θ)−1) distribution can be used to construct approximate confidence intervals for the parameters. 

The likelihood ratio (LR) can be used for testing the goodness of fit of the GL distribution and for 

comparing this distribution with the normal model. We can compute the maximum values of the 

unrestricted and restricted log-likelihoods to construct LR statistics for testing some sub-models of the 

GL distribution. For example, we may use the LR statistic to check if the fit using the new distribution 

is statistically “superior” to a fit using the normal distribution for a given data set. In any case, 

hypothesis tests of the type H0 : ψ = ψ0 versus H : ψ ≠ ψ0, where ψ is a vector formed with some 

components of θ and ψ0 is a specified vector, can be performed using LR statistics. For example, the 

test of H0 : a = 1 versus H : H0 is not true is equivalent to compare the GN and normal distributions 

and then the LR statistic reduces to w = 2{ℓ(a,µ,σ) − ℓ(1,µ,σ)}, where a, µ and σ are the MLEs under 

H and µ and σ are the estimates under H0.  

 

10 Applications 

In this section, the potentiality of the GN model is illustrated in two applications to real data. An 

alternative analysis of these data can be performed using the normal distribution. The beta-normal 

( BN ) (Eugene et al., 2002) and Kumaraswamy-normal (KwN) models extend the normal model and 

they can also used to fit data that come from a distribution with heavy tails reducing the influence of 

aberrant observations. 

The BN distribution 

The BN density function with parameters µ and σ and two extra shape parameters α > 0 and β > 0 is 

given by 

, (40) 

For α = β = 1, we obtain the normal distribution. Recently, Alexander et al. (2012) and Cordeiro 

et al. (2012) proposed the generalized beta-generated and McDonald normal distributions, respectively. 

The first generated model contains, as special cases, several important distributions discussed in the 

literature such as the normal, exponentiated normal, BN and KwN distributions, among others. 

 

Kumaraswamy-normal (KwN) distribution 

The KwN density function with parameters µ and σ and two extra shape parameters a > 0 and b > 0 

is given by 

.      (41) 

For a = b = 1, we have the normal distribution. Clearly, equation (41) is much simpler than (40). 



Maria do Carmo S. Lima,Gauss M. Cordeiro                                                  399 

 

399 

10.1 Application 1: Carbohydrates data 

The first example refers to the data from on agronomic experiments (Matsuo, 1986) conducted at 

the Federal University of Paraná. The main objective was to verify the content of carbohydrates (in %) 

of the corn farms. Some summary statistics for the CO data are: mean=66.34, median=66.64, 

minimum=62.35 and maximum=68.46. 

The parameters of each model are estimated by maximum likelihood (Section 9) using the 

subroutine NLMixed in SAS. We report the MLEs (and the corresponding standard errors in 

parentheses) of the parameters and the values of the Akaike Information Criterion (AIC), Consistent 

Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC) in Table 2. The lower 

the values of these criteria, the better the fit. Since the values of these statistics are smaller for the GN 

distribution compared to their values for the other three models, we can conclude that the new 

distribution is the best model among the four to explain the current data. An analysis under the GN 

model also provides a check on the appropriateness of the normal model and indicates the extent for 

which inferences depend upon the model. For example, the LR statistic for testing the hypothesis H0 : 

a = 1 versus H : H0 is not true, i.e. to compare the GN and normal models, is w = 2{−63.05 − (65.20)} 

= 4.30(p-value = 0.0381), which provides support toward to the new model. 

 

Table 1: MLEs and information criteria. 

 

Figure 3 displays the estimated densities and cumulative functions and the empirical cdf for the GN and normal 

models. These plots reveal a better GN fit to these data. 

10.2 Application 2: Carbon monoxide data 

Here, we work with carbon monoxide (CO) measurements made in several brands of cigarettes in 

1998. The data have been collected by the Federal Trade Commission (FTC), an independent agency 

of the United States government, whose main mission is the promotion of consumer protection. For 

three decades the FTC regularly has released reports on the nicotine and tar content of cigarettes. The 

reports indicate that nicotine levels, on average, had remained stable since 1980, after falling in the 

preceding decade. The report entitled “Tar, Nicotine, and Carbon Monoxide of the Smoke of 1206 

Varieties of Domestic Cigarettes for the year of 1998” at http://www.ftc.gov/reports/tobacco includes 

the data sets and some information about the source of the data, smoker’s behavior and beliefs about 

nicotine, tar and carbon monoxide contents in cigarettes. 

The CO data set can be found at http://home.att.net/ rdavis2/cigra.html. The data include n = 384 

records of CO measurements, in milligrams, in cigarettes of several brands. Some summary statistics 

for the CO data are: mean=11.34, median=12.00, minimum=0.05 and maximum=22.00. In each case, 

the parameters are estimated by maximum likelihood using the subroutine NLMixed in SAS. We 
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report the MLEs (and the corresponding standard errors in parentheses) of the parameters and the 

values of the AIC, CAIC and BIC statistics in Table 2. Since the values of these statistics are smaller 

for the GN and KwN distributions compared to those values for the other models, the new distribution 

 

(a)                                                                                         ( b ) 

 

x                                                                                                        x 

Figure 3: (a) Estimated densities of the GN and normal models for carbohydrates data. (b) Estimated cumulative 

functions and the empirical cdf for Carbohydrates data. 

is a very competitive model to explain these data and it is more parsimonious. The LR statistic for 

comparing the GN and normal models is w = 2{−962.9 − (−1946.4)} = 20.6(p-value =< 0.0001), which 

yields favorable support toward to the first model. 

Table 2: MLEs and information criteria. 

 

Figure 4 displays the estimated densities and estimated cumulative functions and the empirical cdf for the BN 

and normal models. So, the proposed model provides a better fit to these data. 
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(a)                                                                                                 (b) 

 

x                                                                                                 x 

Figure 4: (a) Estimated densities of the GN and normal models for carbon monoxide data. (b) Estimated cumulative 

functions and the empirical cdf for carbon monoxide data. 

11 Concluding remarks 

In this paper, we propose a new model called the gamma-normal distribution which extends the 

normal distribution. The proposed distribution is very versatile to fit real data and could be a good 

alternative to the normal and two recent generalizations of this distribution. We study some of its 

structural properties. We provide explicit expressions for the ordinary and incomplete moments, 

quantile and generating functions, mean deviations, Rényi entropy, Shannon entropy, order statistics 

and their moments. We derive a power series expansion for its quantile function which is useful to 

obtain alternative formulae for several mathematical measures. The model parameters are estimated 

by maximum likelihood and the observed information matrix is determined. The potentiality of the 

new model is illustrated by means of two examples. 

 

Appendix A: Quantile function 

We derive a power series for the QGN(u) in the following way. First, we use a known power series 

for Q−1(a,1 − u). Second, we obtain a power series for the argument 1 − exp[−Q−1(a,1 − u)]. Third, 

we consider the power series for the normal quantile function given in Steinbrecher (2002) to obtain a 

power series for QGN(u). 

We introduce the following quantities defined by Cordeiro and Lemonte (2011). Let Q−1(a,z) be 

the inverse function of 

10 5 0 −5 25 20 15 
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Normal  

10 5 0 20  15 

0.0  
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The inverse quantile function Q−1(a,1 − u) is determined in the Wolfram website 1 as 

 

, 

where w = [uΓ(a + 1)]1/a. We can write the last equation as 

,                                                    (42) 

 

where δi
′’s is given by δi = bi Γ(a + 1)i/a. Here, b0 = 0, b1 = 1 and any coefficient bi+1 (for i ≥ 1) can be 

obtained from the cubic recurrence equation 

 

. 

 

The first coefficients are b2 = 1/(a + 1), b3 = (3a + 5)/[2(a + 1)2(a + 2)], .... Now, we present some 

algebraic details for the GN quantile function, say QGN(u). The cdf of X is given by (6). By inverting 

F(x) = u, we obtain (12). The normal quantile function can be expressed as (Steinbrecher, 2002) 

 

 ,                                     (43) 

where the coefficients d′
ks are defined by dk = 0 for k = 0,2,4,... and dk = e(k−1)/2 for k = 1,3,5,... The 

quantities e′
k’s are determined recursively from 

. 

Expanding the binomial term in (43), we obtain 

. 

Changing , we have 

 

, 

 

and then , where𝜔𝑠 = ∑ (−2)𝑠−𝑘(√2𝜋)𝑘 (
𝑘
𝑠

)∞
𝑘=𝑠 𝑑𝑘 and the quantity dk was defined 

above. 

                                                           
1 http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/01/03/  
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By replacing (42) in equation (12), we can write 

. 

By expanding the exponential function and using (14), we have 

 

,         (44) 

where . Combining 

(12) and (44), we obtain 

  . 

Using the know result for QN(u) in the last equation and expanding the binomial term, we have 

. 

Now, using (14), we obtain 

, 

Where ℎ𝑗,𝑟 = (𝑟𝑝0)−1 ∑ [𝑚(𝑗 + 1) − 𝑟]𝑝𝑚ℎ𝑗,𝑟−𝑚
𝑟
𝑚=0 . Finally, 

 
 

Where p�̅� = ∑ ∑ (−1)𝑗𝜔𝑠
𝑠
𝑗=0 (

𝑠
𝑗)∞

𝑠=0 . 

Appendix B: Moments 

Here, we use equation (14) and the power series  given in Section 5. We have 

 

Inserting (11) (with µ = 0 and σ = 1) in the last equation gives 

 

From the power series for Φ(x) and equation (14), we have 

 dx, 
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where dr is defined in Section 3 and the quantities cr,j are obtained from (15) using the ai’s of the 

power series for Φ(x). Setting z = x2/2, we obtain 

 

  , 

where γ(·,·) is the gamma incomplete function. 

The second representation for Tn(y) is based on the integral dx, which is 

determined for q > 0 and q < 0. We define 

 

. 

For q < 0 and q > 0, we have 

A(j,q) = (−1)j G(j) + (−1)j+1H(j,q) and A(j,q) = (−1)j G(j) + H(j,q), 

respectively, where the integral dx can be easily determined as (Whittaker 

and Watson, 1990) 

, 

where Nk,m(x) is the Whittaker function (Abramowitz and Stegun, 1972, p. 505; Whittaker and Watson 1990, pp. 

339-351) given, in terms of the confluent hypergeometric function F1(𝑎; 𝑏; 𝑧) = ∑
(𝑎)𝑘

(𝑏)𝑘

∞
𝑘=0

𝑧𝑘

𝑘!
, or in terms of the 

Kummer’s function U(a,b;z) = z−a 2F0(a,1 + a − b;−z−1), where (a)k was defined inSection 5. We have 

 

 

Combining (11) and (21), we can write 

cr,j xjdx 

, 

where  and c0,0 = 1 and the quantities a′
i’s 

are defined in Section 5. 

Computing the last integral, we can write 

, 

where A(·,·) is determined as before and sr(a) is given by (10). 

The third representation for Tn(y) is based on the normal quantile function. We have 
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The last integral can be rewritten according to the normal quantile function QN(u) given in 

Section4.Thus, using equations (14) and (13), we have 

 

 

where and the quantities wm’s are 

given in Section 4. Finally, we obtain 

. 

Appendix C: Generating function 

Here, we present the algebraic details of the second representation for M(t) based on the quantile 

power series of X. Using (16) with µ = 0 and σ = 1, we obtain 

 

Where p�̅�=∑ ∑ (−1)𝑗 (
𝑠
𝑗) 𝜔𝑠, 𝜔𝑠 = ∑ (√2𝜋)

𝑘
(−2)𝑠−𝑘∞

𝑘=𝑠 𝑑𝑘(
𝑘
𝑠

)𝑠
𝑗=0

∞
𝑠=0  and ℎ𝑗,𝑖 = (𝑖p0)−1 ∑ [𝑚(𝑗 + 1)𝑖

𝑚=0 − i]pm 

hj,i−m. Other quantities are well-defined in Section 4. 

Expanding the exponential function, we have 

, 

where  , the quantities gj’s 

are given by gj = pj hj,r and the other quantities pj and hj,r are defined before. 

Appendix D: Rényi entropy 

The Rényi entropy of a random variable with pdf f(x) is defined as 

 

for γ > 0 and γ = ̸1. We provide details about the Rényi entropy for γ positive integer first and then for 

positive real. 

First, assuming γ = n = 2,3,..., µ = 0 and σ = 1, we can write from (11) and (21) 
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Letting y = √nx and using equation (29), we have 

where  m′j   is 

the jth moment of the normal distribution. The quantities dr’s are defined in Section 3 and the av’s and 

cr,j’s are given in Section 5. 

 

We can write IR(γ) = (1 − γ)−1 E{f(Z)γ−1}. Let δ = E(Z). For γ real positive, we can write 

E{f(Z)γ−1} = δγ−1 E{1 + θ[f(Z) − δ]}γ−1, 

where θ = δ−1. From the generalized binomial expansion, we obtain 

 

, 

where . Further, we have 

. 

We now calculate E{[f(Z)]n} for n ≥ 2. From equation (11) and using the binomial expansion, we can 

write 

 

where ψn,j = E{Zj ϕ(Z)n}. Then, 

. 

 
Setting √(n + 1)x = y, we can easily determine the last integral and write ρn as 

 

. 
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By expanding the binomial term in (31), we can obtain an explicit expression for IR(γ), which holds for 

any γ real positive and γ ≠ 1, given by 

  , 

where ρj is determined from (32). 

Appendix E: The observed information matrix 

The elements of the observed information matrix J(θ) for the three parameters (a,µ,σ) are given by: 

, 

where zi = (xi
σ

−µ) and ψ′(·) is the trigamma function. 
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