Journal of Data Science 13(2015), 281-310

The Log Generalized Lindley-Weibull Distribution with Application

Broderick O. Oluyede?!, Fedelis Mutiso?, Shujiao Huang?®

'Department of Mathematical Sciences, Georgia Southern University
2Department of Biostatistics, University of Washington
$Department of Mathematics, University of Houston

Abstract: A new distribution called the log generalized Lindley-Weibull (LGLW)
distribution for modeling lifetime data is proposed. This model further generalizes
the Lindley distribution and allows for hazard rate functions that are monotonically
decreasing, monotonically increasing and bathtub shaped. A comprehensive
investigation and account of the mathematical and statistical properties including
moments, moment generating function, simulation issues and entropy are presented.
Estimates of model parameters via the method of maximum likelihood are given.
Real data examples are presented to illustrate the usefulness and applicability of
this new distribution.
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1. Introduction

The continuous one parameter Lindley distribution was introduced by Lindley (1958).
Lindley used the distribution named after him to illustrate a difference between fiducial
distribution and posterior distribution. Lindley distribution with the probability density function

(pdf)

2 -
f(x; 0) = ZEDRER) 4 > 0,0 > 0, 1)

is a two-component mixture of an exponential distribution with scale parameter 6 and
gamma distribution with shape parameter 2 and scale parameter 6. The mixing proportionis p =
6/(60 + 1). Sankaran (1970) derived the Poisson-Lindley distribution. In this case, Lindley
distribution was chosen as the mixing distribution when the parameter of the Poisson distribution
is considered random. The resulting Poisson-Lindley distribution provided a better fit to the
empirical set of data considered than the negative binomial and Hermite distributions. Recently,
Ghitany et al. (2008, 2011) studied various properties of Lindley distribution and the two-
parameter weighted Lindley distribution with applications to survival data. Bakouch et al. (2012)
introduced an extension of the Lindley distribution that offers more flexibility in the modeling of
lifetime data. Ghitany et al. (2013) presented results on the two-parameter generalization referred
to as the power Lindley distribution. See Krishna and Kumar (2011) for additional results on
reliability estimation of the Lindley distribution with progressive type Il censored sample.
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Because of having only one parameter, the Lindley distribution does not provide enough
flexibility for analyzing different types of lifetime data. To increase the flexibility for modeling
purposes it will be useful to consider further generalizations of this distribution. This paper offers
a five-parameter family of distributions which generalizes the Lindley distribution.

There are several ways of generalizing a continuous distribution G(x), and they include
Kumaraswamy-G, beta-G, McDonald-G, and gamma-G to mention a few. Kumaraswamy (1980)
distribution is given by

G@=1-(1-x¥)* 0<x<1,

for ¢ > 0 and ¢ > 0. Replacing x by G(x) on the right hand side of the equation gives the

Kumaraswamy-G family:
Gra(x) =1 — (1 - Gw(x))d).

The beta-G family of distributions (Lee et al., 2007, Famoye et al., 2005) among others is

given by
1 ¢t a—-1 b—-1
Go6() = 5 fo w11 — w)>~Tdw,

fora > 0 and b > 0. The McDonald-G family of distributions (Cordeiro et al., 2012) is given

by

1 ¢ 11 b-1
- ac ~— 1 _ -
for a,b and ¢ > 0. The Gamma-G family of distributions (Zografos and Balakrishnan, 2009,
Pinho et al., 2012) is
y(—67log(G(x)), )
I'(a) '

Gge(x) =

for a, 8 > 0, where G(x) = 1 — G(x).

We consider a further generalization of the generalized Lindley distribution via the T-X
family of distributions proposed by Alzaatreh et al. (2013) to obtain the cumulative distribution
function (cdf) of the log generalized Lindley-Weibull distribution. The generalization (Alzaatreh
et al., 2013) is given by the following cdf:

W(F(x))
GO = f k) dy,
0

where 0 < W(F(x)) < oo, is a nondecreasing function of x, k(.) is taken to be the
generalized Lindley distribution of Zakerzadeh and Dolati (2009) and F(x)is the Weibull cdf.
The corresponding pdf g, is given by
f(x)
g() = == k(W(F()).

F(x)
where W(F(x)) = —In(1 — F(x)).
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The main objective of this article is to construct and explore the properties of the five-
parameter log generalized Lindley-Weibull (LGLW) distribution. The beauty of this model is the
fact that it not only generalizes the generalized Lindley distribution but also exhibits the desirable
properties of increasing, decreasing, and bathtub shaped hazard function.

The model provides a better fit to data in the sense that it leads to more accurate results and
prediction, which should facilitate better public policy in a wide range of areas including but not
limited to medicine and environmental health, genetics, reliability, survival analysis and time-to
event data analysis.

The outline of this paper is as follows: In section 2 some generalized Lindley distributions
including the new LGLW distribution are introduced. This section also includes some properties
such as the behavior of the hazard function, reverse hazard function and sub-models of the log
generalized Lindley-Weibull distribution. Section 3 contains the moment generating function,
moments, distribution of functions of log generalized Lindley-Weibull random variables and
simulation. Measures of uncertainty are given in section 4. Section 5 contains the estimation of
parameters via the maximum likelihood estimation technique. Fisher information and asymptotic
confidence intervals are also presented in section 5. We end with applications in section 6 and
concluding remarks in section 7.

Generalizations of the Lindley Distribution

In this section, we present further generalizations of the Lindley distribution. First, we discuss
some generalizations that are in the literature, or in preparation.

2.1 Generalized Lindley Distribution

Let V; and V, be two independent random variables distributed according to gamma(a, 6)
and gamma(a + 1, 8), respectively. That is, V;~GAM (a, 8) and V,~GAM(a + 1,6).For § = 0,

consider the random variable X = V; with probability %, and X = V, with probability eLiﬁ' Itis
easy to verify that the density function of X is given by

6
fou (6 @,0,8) = 15 fo, (5 @, 0) + G:Lﬁ founs G @ +1,0) @)
which may be written as
62(9 )(1—1( +Bx) —-0x
for(x; @, 6,B) = ’(‘ew);‘(af’i)e ,x>0,8,a,0>0 3)
where f;_(x) is the gamma pdf with parameters o and 6, that is,
_ gaxa—le—ex
fga(x, a, 9) = T , (4)

forx > 0,a,0 > 0. See Zakerzadeh and Dolati, (2009) for additional details. The distribution
contains the Lindley distribution as particular case, where a = 3 = 1. When 8 = 0, equation (3)
reduces to the density function of the gamma distribution with the parameters o and 6. The case
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a=1 and B=0, reduces to ordinary exponential distribution. In general, if
Vi~GAM (a;,6;),i = 1,2, ..., and X = v; with probability p;, and }.; p; = 1, then

6; 1 -6
fx () = X Pi gy ¥ L0 (4 00 (%) (5)
Clearly, the generalized Lindley (GL) distribution is a special case of (5).

2.2 Exponentiated Lindley Distribution

A generalization of the Lindley distribution due to Nadarajah et al. (2011) is the two
parameter Exponentiated Lindley distribution with cumulative distribution function (cdf) and
probability density function (pdf) given by

a
For (6;0,a) = [1 - =25 0%, (6)
and
2 a—1
fo(x:0,0) = g [1 =T e ] (L + e, ™

forx > 0,a > 0, and 6 > 0, respectively.

2.3 Beta-Generalized Lindley Distribution

A further generalization of the Lindley distribution, although not studied in this paper is the
beta-generalized Lindley (BGL) distribution, (Oluyede and Yang, 2014). The four parameter
beta-generalized Lindley (BGL) cdf is given by

1 G(x;0, _ _
FperL(x;a,0,a,b) = Mfo X500 pa-1(1 _ 1)b=1 g, (8)
a
where G(x;0,a) = {1 _%e—ex} , for x=0, «>00>0,a>0b>0. The

corresponding pdf is given by

af%(1 + x)e 9% 1+6+0x aa-1
fegL(x; @, 6,a,b) = ( ) { - e—ex}

B(a,b)(1 +6) 1+6
b—1

x {1 - {1 - we‘“}a} 9)

1+6

for x=>0,a>00>0,a>0b>0. If a=1, we obtained the beta-Lindley (BL)
distribution. If a = b = a = 1, we obtain the Lindley distribution. See Yang and Oluyede (2014)
for additional details on the Exponentiated Kumaraswamy Lindley distribution.

2.4 The Log Generalized Lindley-Weibull Distribution
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In this section, we introduce a new generalization of the Lindley distribution via the Weibull
model and study its mathematical and statistical properties.

2.4.1 Generalization-The Model

Based on a continuous baseline cdf F(x) and survival function F(x) = 1 — F(x), with pdf
f(x), Zografos and Balakrishnan (2009) defined the cdf

Gzp(x) = %fo_log(l_lr(x)) t5~le~tdt,5 > 0 and x € R. (10)

Along the same lines, Risti¢ and Balakrishnan (2011) proposed an alternative gamma-
generator given by the cdf and pdf

1 —log(F(x) 1 —
GRB(x):l_Wg)fo og(F@) 151, tdt,6 > 0and x € R, (11)

and

Ire(x) = Ta) [— log(F(x))] f(x),6 >0and x € R. (12)

Now, we consider a generalizations of the generalized Lindley distribution given by
Zakerzadeh and Dolati (2009) via the Weibull distribution. The generalization is given by the
following cdf (Alzaatreh et al., 2013):

1 F

Grow(x) = f o8~ Fw () fer(¥) dy, (13)

where gq1.(x) is the generalized Lindley pdf and Fy, (x) is the Weibull cdf. The pdf of the
log generalized Lindley-Weibull (LGLW) distribution is given by

(xv.0)
Irew (X a,B,0,y,¢) = £W(§]]:Z) for(=In(1 = Fw (s v,©)) ; @, B, 6),(14)

X

where the survival function Fy, (x;y,¢) = 1 — Fy(x;v,¢) = e_(?) , forx >0,y >0, and
c > 0. The well-known hazard function of the Weibull distribution is given by hy (x;y,¢) =

. c—1
Twlv9) _ ¢ (f) . It follows therefore that the five-parameter LGLW cdf is given by

Fy (x;7,0)
(%)CHZ(By)“‘l(a + By)e 0
Grew(x) = J;) (6 + O (a+ 1) dy
_ 1 B
= m{ﬂ[l"(a) —T(a,u)] + o [T(a) —T(a+1, u)]},

where I'(s,x) = fxw tS~le~tdt is the upper incomplete gamma function and u = 0 (%)C
The corresponding pdf is given by

Guaw (5.0, 6.6,v.€) =35 +Cg)ar+(1a D G)m_l e+ G)} ),

forx > 0,and 6, «a, c,y, 3 > 0. The graphs of the LGLW pdf, g;.q.w are given in Figure 1 for
selected values of the parameters «, 6, 3, v, and c. Note that the parameters 3,y, and 6 are scale
parameters, and o, c are shape parameters. The graphs show that the pdf of the LGLW
distribution can be right skewed or decreasing for the selected values of the model parameters.
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2.4.2 Some LGLW Sub-models

In this subsection, we present some sub-models of the LGLW distribution for selected values
of the parameters c, o, y, B and 6.
_ _ ) _ 9a+1xa—1(a+ﬂx)e—6x
If c=y=1, then giaw(x;a,0,p) = (o) (atD)
Lindley distribution, denoted by GENLIN(q, 6,\beta).

If c=a=y=B=1, then gicLw(x;0) = %(1 + x)e~%*  which is the Lindley

distribution and is denoted by LIN(0) for x,6 > 0.
_ _0 ___yan* (A ) -1
Ifc=1andA = " then gLGLW(x) = ( ){a + ﬁ (V)} e ",

X

. This is the generalized

(B+Ay)T(a+1)
Ifc=a=B=1,thengiqw(®) = y(f;) (1 + )f/) e—e(g)_
If a =B =1, then g gLw(®) = y(cizg) (f)c_l {1 + (%)C} e_e(g)c_
If y =B =1, then g cLwx) = %xm_lw + x€)e~0%°,
If c =1, then g gLw(x) = y(ﬁ+§a+1) G)a_l {a +B ()f/)} .56,
If c = a =1, then g gw(x) = y(Zie) {1 +B ()f/)} 3_9(3)_
If =1, then gy uw(x) = - (;";) (g)c_1 {1+p (f)} 0

2.4.3 Shape

For the LGLW pdf, the first derivative of log(g.cL.w (X)) is
X\ 2 x\¢ 2
cO {(?) } B+{—c(B—-—0)a—-pB(-1+c)} (?) —ca‘+a

X C
cfa+6(7) }
Therefore, g;qLw(x) has a unique model at x,, where x, is the solution of the equation
~In{g16w ()} = 0. Thats,

c6 {(%)C}Z B+ {—c(B—-0)a—pB(-1+c)} (;)C —ca’+a

w{ers(3))

d
aln(gLGLW(x)) = -

=0,

which implies that
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cO {(){/)C}Z B+ {—c(B—80)a—pB(—1+c)} (;)C —ca’+a=0.

Solving for x in the above equation gives the mode. That is,

1

_ [te(B=6)a+p(=1+c)} |, {=c(B=8)a—B(-1+c)}>—4(Bch) (—ca®+a) ¢

%o = [ 2¢c6B + 2¢c6pB J )/-(15)

(gLGLW(x))
ax

Note that 0 In(g.qiw(x)/0x) < 0 & x > xy and dIn >0 © x < x4, Where x,

is given by equation (15) above. Whena =B =y =c =1,

1-0)+J(6-1)Z (1-8)+/(6+1)2—40
Yo = 20 = 20 ’ (16)

which is the same result for the generalized Lindley distribution given by Zakerzadeh and
Dolati (2009).

2.4.4 Hazard and Reverse Hazard Functions

In this section, we present the hazard and reverse hazard functions of the LGLW distribution.
Graphs of the hazard function for selected values of the model parameters are given in Figure 2
and 3. The hazard and reverse hazard functions of the LGLW distribution are given by

a+1 ca— P
_Grew(x) _ y(B +Cl99)l"(a 1) (%) ' {a + B (;) }e o(7)

C Gaw®) 1 {Q[F(a) —TI'(a,u)] +§[F(a) —T(a+1, u)]}’

h(x) 1
- (B+0r(@

Ireiw(x) g (%)C“_l {a +B (%)C} e-9(7)

Groow(®) ya {H[F(a) —T'(a,w)] + 'ﬁl—)) [[(a) —T(a+1, u)]}

and

Tew(x) =

!
Irew (%) and
greLw (x)

c
for 8,a,¢,y,f >0, andu=6 G) , respectively. We obtain ny g w(x) =
Nweww (x) and apply Glaser’s Lemma (1980) to the LGLW pdf:

X

grow(x) = o __ (x)ca_l {a + B G)C} e_e(‘_’)c» 17)

y(B+O)F(a+1) \y
forx > 0,c,0,a,y,B > 0. Note that

ctt (%)Ca_l (ca —1) {a +8 (%)C} e_e(g)c
Brauw (%) = Y(B + 0 (a + Dx
o (™ p (2 )
y(B+0)l(a+ Dx
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0 ()" a—nlar s (Yo ()¢
y(B+0)(a+1)x

and
X\ x\¢
cO {(?) } B+ {—c(B—0)a—p(-1+c)} ()—/) —ca’+a
NeeLw () = XN\ C
rfatp(F) ]
—q2-—
When ¢ =y = 1, we have ngLw(x) = =— jf;:;;(”ﬁx), which is the same result given

by Zakerzadeh and Dolati (2009). Now,
c~2 c
2c29{(§) } B {=c(B-80)a—B(—1+c)} (;) c

Neew (%) = 2(atp (%)C} + (et B (%)C}
co {(;)C}Z B+{—c(B—0)a—p(-1+c)} (%)C —ca’+a
e+ 6(5))

X

{C@ {(%)C}z B+{—c(B—0)a—-pB(—1+c)} (;)C —ca®+ a}ﬁ (7)0 c

2 x\°
{ath(7) )
' ad+2a?Bx+af?x?—a’?—2afx
Ifc = Y= 11 then nLGLW(x) = x2(at+Bx)?
by Zakerzadeh and Dolati (2009). The graphs of the hazard and reverse hazard functions are
given below for different values of parameters a, 6, 3,y, and c¢. For the selected values of the
parameters o, 6, 8,y, and c, the graphs of the hazard function are decreasing, increasing and

bathtub shaped.

, Which is the same result obtained

Moments and Distribution of Functions of Random Variables

This section deals with the moment generating function, moments and related functions of
LGLW distribution. The mean, standard deviation, coefficients of variation, skewness and
kurtosis can be readily computed. Distributions of functions of the LGLW random variables are
also presented.

3.1 Moments

In this section, we obtain the moments of the LGLW distribution and its sub-models. The
kt" non-central moment for the LGLW distribution is
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o k.ga+l ca+k— oy _o(X\©
E(Xk) - fo y(B 3I/- HC)QF(a +1) (;) - {a +B (;) }e H(Y) dx.

c 1 1
Lety = G) , then x = yye, and j—; = %yyz_l. Now,

() = ykcgatl . fooya+§—1e_9y iy + p fmya+§+1—1e-9y dy
B+60r@+1) " J 0 '

Let u = Oy, then 3—; =0anddy = %, so that

k0a+1

B+ Q)F(a + 1)

k
© u a+E—1 du lX+ +1-1 du

k
ko' er(a+s) ) X
T (B+0)T(a+1) [a + 50 (a + ?)] (18)
The mean of LGLW distribution is

E(X¥) =

1

_ Y0~ ¢ 1 _ 1
B0 = rgraa s (@ letpe @+ )}
If c = 1, then E(X) = #{a + B0 (a + 1)}.

3.2 Moment Generating Function

Let X denote a random variable with pdf gy cr.w(x). The moment generating function (MGF)
of X, M(t) = E(exp(tX)), is given by

My (t) = Z.OOJ'! (Biggl):g+ 5 {al‘ (a +]E) + ﬁB‘lr‘(a +%+ 1)}
=

Note that My (t) = Z;’;O%E(Xf), where E(X)) is given by equation (18).

3.3 Distribution of Functions of Random Variables

In this section, distributions of functions of random variables are presented. Recall the LGLW

pdf is
cHa+1 ¥\ ca—1 x\€ —6(5)6
x) = . @+ <_) }e -
groLw (X) y(B+0)(a+1) <Y) { B Y
forx>0,a,8,6,y,c > 0.

Pdf of Y = (y) Lety = ( ) then x = yc and == %yy%_l. The pdf of Y = (i—()c is
given by
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a+1

— a—-1 -0y
fy(») G+orasD’ (a+ By)e ™,
fory > 0,a, 3,6 > 0, which is the GENLIN(q, 6, B).
Pdf of W = X€: Let w = x€, then x = w% and 2—; = %w%"l. The pdf of W = X€ is given
by

a+1 a—1 (W
fww) = ST Z)F(a D ;Vm_l {a +p (%)}e e(yc),

forw > 0,a,6,8,y,c> 0. If y =1, the two pdf’s above are the same.
Pdfof V=6 G)C: Letv=10 G)C thenx =y (g)% and % = %(g)%_l % . The pdf of V =
0 (%)C IS given by
() = o (g)a—l

B+0)l(a+1)
forv>0,a,0,y,B > 0.

{a + B (g)} e’?,

3.4 Simulation

The density of generalized Lindley (GL) distribution can be written in terms of the gamma
density function as

& B
f(x;0,0,B) = ﬁfg(x; a,6)+ ﬁfg(x; a+1,0). (19)

To generate a random data X;,i = 1, ..., n, from GL(«, 6, ), Zakerzadeh and Dolati (2009),
provided the following algorithm;
1. Generate U;,i = 1,...,n, from U(0,1) distribution.
2. Generate Vy;,i = 1, ...,n, from the gamma(aq, 6).
3. Generate V,;,i = 1, ..., n, from the gamma(a + 1, 6).
4., IfU; < ﬁ, then set X; = Vy;; otherwise set X; = V,;,i =1, ...,n.

Now given y and ¢, we can generate random data Y;,i =1,..,n where Y; =

1

yXi~LGLW (a, B, 6,7, 0).

2. Uncertainty Measures

The concept of entropy plays a vital role in information theory. The entropy of a random
variable is defined in terms of its probability distribution and can be shown to be a good measure
of randomness or uncertainty. In this section, we present Renyi entropy, generalized entropy and
s-entropy for the LGLW distribution.
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4.1 Generalized Entropy

Generalized entropy (GE) is widely used to measure inequality trends and differences. It is
primarily used in income distributions. Kleiber and Kotz (2003) derived Theil index for GB2
distribution and Singh-Maddala model. The generalized entropy (GE) I(a*) is defined as:

*\ va*ﬂ_a*_l *
I(a") = P +0,1, (20)
where

Var = E(Xa*) = f xa*gLGLW(x)dx
0

*

~Frorery (e (D)

and

1
- e (e o0 (o)
u_(ﬁ+9)l“(a+1) T A ey
The bottom-sensitive index is I(—1), and the top-sensitive index is 1(2). The mean
logarithmic deviation (MLD) index is given by:
1(0) = lim I(a”) = log(k) — vo, (21)

where

Vo = f log()d Gy (x) = f (10g(0)) greuw (x) dx
0 0

o a+1 ca— o e
B fo y(B +CHH)1"(a +1) (log(x)) G) 1 {“ +B (;) }e °G) ax.

Cc
Lety =106 (g) , then log(x) = log(y) — ilog(ﬂ) + %log(y). Now, we have

Vo = i f . {log(y) +~log(y) - l105;(9)}3/""%{06 + B0 yle™ dy
B+ol@+1 ), c c

s (2 Jar (e~ 1) 21 (a3 1)|

Gc

1 g1 1
+{log<ll>[?9‘1l"(a——+2)+ﬁ F’(a——+2)}
HE (o (o (o
Therefore, the MLD index reduces to

1
1(0) = log(y) + (1 — E) log(6) — log(B + 60) — log(I‘(a + 1))

+1log <F (“ + 9) * log{“ +po7 (“ * %>}

BEDRCES)
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6 Y 1 ao(a=t+1 y _ 1
‘m[{‘(’g(g>“r(“—z+1)+zf (o )}—{bg(g)ﬁe T(a-1+2)+
&_1["(“'%*'2)}],

c

(22)
and Theil index is:
I(1) = lim I(a") = L log(u)
a*—1 V1
a*—1 1 _ 1
ot r(atgatpot(erg)}
- a* 1 a* - Og(y)
F(a+7){a+ﬁ9 (a+7)}
1
+ (1 - E) log(6) — log(B + 6) —log(T'(a + 1))
1 _ 1
+log(F (a + Z)) + log{a +po1 (a + E)}
(23)
The generalized entropy for the sub-models can be readily obtained as well.

4.2 Renyi Entropy

An entropy of a random variable X is a measure of variation of the uncertainty. A popular
entropy measure is Rényi entropy (1961). If X has the pdf f(.), then Rényi entropy is defined by

Ix(b) = log(f gP(x)dx), where b > 0 and b # 1. Suppose X has the LGLW pdf, then for
any real number b>0,andb # 1,

b

- o([cost i fa+B(5) ] eyptcan gy
IPerw (x) dx :j;) { Cy(ﬁ+Z)F(a-|]—/1) (;)b( )e Hb(y)}

i{ cg+1 }b b! o [ X\ gy
= , —pfla _]f (—) e \V dx.
y(B+0)(a+1) ]!(b—])!ﬁ o Y
1
=—1
Letv = Gb( ) an d — = —(;—b)c % Now, making the substitution, we have

C9a+1 b *® b y
J; ngGLW(x)dx:{y(ﬁ+9)F(a+1)} Z b= ]),/3] al~I =

c
pasboj b, ., 1
X (6b) c cF(ba—;+]+;).
Now, for any real number b > 0, and b # 1, Rényi entropy is given by

I b B b l C9a+1
r(b) = o8 (y(ﬁ YOl (a+ 1))

dx

(24)
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J
+

1 S R N I b 1
oo 3 gy ) @ Fom =L )
1-bp 8 _Oj!(b—j)!a ac( ) R c+]+c
]=
for a, B,v,c > 0. By taking the limitas b T 1 and using L’Hospital’s rule, we obtain Shannon
entropy (1948). Rényi entropy for the sub-models can be readily obtained.

4.3 s-Entropy

The s-entropy is a one parameter generalization of the Shannon entropy and is defined by
1 [ee]
Hs(grew) = 1 [1- fo giciw(x) dx],s > 0,and s # 1. (25)
Now, ifs € R, and s # 1,

C9a+1 N S i .
—yo Y Y U (T\gigSsT)
1 J=0{y(ﬁ+9)l‘(a+1)} (])ﬁ @
o s(ca=1)+cj _po(X\° :
<J ()T e
The integral in equation (26) follow directly from the result of the integral in Rényi entropy
with s in place of b. For s=1, Hs(g.¢.w) = —E[log(gLeow (X))], which is Shannon entropy
(1948).

1
Hs(Greiw) = p—t (26)

Maximum Likelihood Estimation in the LGLW Distribution

In this section, we obtain estimates of the parameters of the LGLW distribution. Methods of
maximum likelihood (ML) estimation and asymptotic confidence intervals for the model
parameters are presented.

5.1 Maximum Likelihood Estimators

Suppose x = (X4, X3, ..., Xy ) IS @ random sample of size n from the LGLW distribution. The
log-likelihood function is given by:
(o, B,v,¢,0) =nlnc+n(a+1)In6 —nlny —nIn(B + 0)
n

—nInT(a+ 1) + n(—ca+ 1) Iny + (ca — I)ZInxi

i=1

Cc Cc
+3tInfa+ B (%) }-2r,0 (%) 27)
The partial derivatives of [ with respect to the parameters are:
% —nlng - ey nelny +c¥™ Inx; + ¥, —— (28)
Ey F(a+1) Y i=1 i i=1 a+ﬁ(%)c,



294 The Log Generalized Lindley-Weibull Distribution with Application

o __ " yn (%)C
B~ B+6 i=1 a+ﬁ(%)c' (29)
oL _ _n ncatl) ¢ B(%)CC lgn i\
v vy ”H@w@ﬂ+y3ﬂgﬁ)' (%0
ol _ n(a+1) n Xi ¢
= me (3 (31
and
a1

p(5) m{s(3)) A\ .
o_n_ n . n “\yJ U\yJ_ymn d Xi
o = ¢~ halny + ¥, alnx; + X, {a+ﬁ(ﬁ)c} =10 (y) In {0 (y)} (32)
Y
The MLE of the parameters o, B,v,0 and c, say &, 3,7,0, and ¢ are obtained by solving the
L9l al Al o al al _ . .
equations P 0, 3 = 0, 3y = O'ae =0, and 70 = 0. There is no closed form solution, so these
equations must be solved numerically to obtain the MLE of the parameters a, 6, 3,y and ¢, Note
that, if o, B, y and c are known, it follows from equation (29) that

6=—" 5. (33)
. )
i= xi\C
"arp(%)
When B, 6,y, and c are known, it follows from equation (31) that
ho_ 0 LOyn (%) _
@=—7o+ 23 (2) -1 (34)
When a, 6, v, and ¢ are known, it follows from equation (31) that
g = L ——') (35)

L)
5.2 Fisher Information

Let 0 = (61, 62, 63, 64, 95) = (O(, B, e, Y, C) y and gLGLw(x; 0) the LGLW pdf If
log(grew (x; @)) is twice differentiable with respect to ©, and under certain regularity
conditions, Fisher information matrix (FIM) is the 5 x 5 matrix whose elements are:

2 .
I(B) = —Eg 2 log(aggL:;L;;(X’e)) . (36)

The second and mixed partial derivatives of the log-likelihood function used to obtain the
observed Fisher information matrix can be readily computed.

5.3 Asymptotic Confidence Intervals

_ 2%1(0)
80007
of o, 3,6,y, and c, and for test of hypothesis on these parameters. Under conditions that are

The 5 x 5 observed information matrix J(0) = can be used for interval estimation
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fulfilled for parameters in the interior of the parameter space but not on the boundary, the
asymptotic distribution of @ — @ can be approximated by N (0,](9)_1). Thus, the multivariate

normal N (0, J (5)_1) distribution can be used to construct approximate confidence intervals
and confidence regions for the parameters. In fact, the asymptotic 100(1 — n)% confidence

intervals for a, 3,08,y and ¢ are given by @& + Zn X /I(;;(@), B+ Zn x /Ilgg('é), 0 + Zn x
2 2 2
_ — _ . th ]
/19‘91 0),7£Zux [I,}(0),and é £ Zn x /1;61(0) , Where Zn is the (1 — g) quantile of the
2 2 2

standard normal distribution.

The likelihood ratio (LR) statistic is useful for testing the goodness-of-fit of the LGLW model
and for comparing it with other sub-models such as generalized Lindley (GL) and Lindley (L)
distributions. We can easily check if the fit using LGLW model is statistically “superior” to a fit
using the GL model for a given data set by computing w = 2{l(&,3,0,7,¢) — 1(&,5,6,1,1)},
where &, 8,0, 7, and ¢ are the unrestricted MLEs and @&, 8, and 8 are the restricted estimates.
Also, the LR statistic is asymptotically distributed under the null model as x3. Further, the LR
test rejects the null hypothesis if w > §,, where &, denotes the upper 100n% point of the X5
distribution.

Applications

The maximum likelihood estimates (MLES) of the parameters are obtained via the subroutine
NLP in SAS. The maximum likelihood estimates (MLES) of the parameters are obtained via the
subroutine NLP in SAS. The estimates (standard error in parenthesis), -2 Log Likelihood, Akaike
Information Criteria (AIC), Consistent Akaike Information Criterion (AICC), Bayesian
Information Criterion (BIC), SS and KS values are given, where AIC = 2p — 2InL, AICC =
AIC + 222 Bic = pInn — 2InL, and KS = max {GLGLW(x(D) - Q% - GLGLW(xU-))},

n-p-1 n

where L(@) = L is the value of the likelihood function evaluated at the estimated parameters, n
is the number of observations, and p is the number of estimated parameters are given in Tables
1,2 and 3.

Probability plots (Chambers et al., 1983) are also presented in Figure 4, Figure 5 and Figure

6. For the probability plot, we plotted the estimated cdf GpgLw(x(j); @ B,0,7,¢) against

Jr:f032755 j =1,2,...,n, where x;) are the ordered values of the observed data. We also computed

a measure of closeness of each plot to the diagonal line. This measure of closeness is given by
~ B A A A j—0.375\1%
the sum of squares SS = 3, [GLGLW(x(j); a,p.0,9,¢)— ( n+0.25)] )
This first data (Aarset, 1987) consists of the times to failure of 50 devices put on life test at

time 0. The data are: 0.1 0.2 1.0 1.0 1.0 1.0 1.0 20 3.0 6.0 7.0 11.012.0 18.0 18.0 18.0
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18.0 18.0 21.0 32.0 36.0 40.0 45.0 46.0 47.0 50.0 55.0 60.0 63.0 63.0 67.0 67.0 67.0 67.0 72.0
75.079.082.082.0 83.0 84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0. The results are given
in Table 1, and plots are given in Figure 4. The estimated covariance matrix for the LGLW
distribution is given by:
0.000170055 -1.71E-10 -3.18E-10 -150E-09 2.72E-06
-1.71E-10 219E-15 267E-15 151E-15 -2.73E-12
-3.18E-10 267E-15 335E-15 2.81E-15 -5.08E-12
-150E-09 151E-15 281E-15 132E-14 -239E-11

272E-06 —-2.73E-12 -508E-12 -239E-11 4.34E-08

The 95% asymptotic confidence intervals are: o € 0.087773 + 1.96(0.013041),6 €
0.000000176 + 1.96(0.00000005), 8 € 0.000000161 + 1.96(0.00000006),y €
3.597705 + 1.96(0.0000001), c € 5.089304 + 1.96(0.000208).

The LR test statistics of the hypotheses Hy: LGLW(«, 6, 1,1, ¢) vs Hy: LGLW(@, 8, B,v, ©),
Hy: LGLW(@,6,B3,v,1) vs H,:LGLW(a,6,8,y,c) and Hy:LGLW(1,6,8,y,c) Vs
H,: LGLW(a, 6, B8,v, c) are 43.2 (p-value <0.0001), 34.9 (p-value <0.0001) and 40.5 (p-value
<0.0001). We conclude LGLW(a, 6, 3,v, c) distribution is significantly better than the sub-
models. Also, LGLW(a, 6, 3, v, ) distribution gives the smallest AIC, AICC, BIC, SS and KS
values. Consequently, we conclude that the LGLW(a, 8, B, v, ¢) distribution is the “best” model
for Aarset data.

The second data set given by Murthy et al. (2004) consists of the failure times of 20
mechanical components. The data are: 0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089
0.098 0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485. The results and plots are
given in Table 2 and Figure 5. The estimated covariance matrix for the LGLW distribution is
given by:

110.73486  30.80945 -13.41218  0.02441 0.81060

| 30.80945 8.64857 -3.68959 0.00684 0.22654 |
-13.41218  -3.68959 1.66015 -0.00294 -0.09848
0.02441 0.00684 -0.00294 0.00001 0.00018
0.81060 0.22654 -0.09848 0.00018 0.00600

The LR test statistics of the hypotheses Hy: LGLW(«q, 6, 8,v,1) vs Hy: LGLW(a, 6, B,V, )
and Hy: LGLW(1, 6, B,v,¢) vs Hy: LGLW(a, 8, B,, c) are 4.9 (p-value =0.027) and 11.8 (p-value
<0.001). Therefore, we conclude that the LGLW(a, 6, B, v, ¢) distribution is significantly better
than the LGLW(a,6,B,v,1) and LGLW(1,6,8,y,c) sub-models. Also, note that the
LGLW(q, 8, B, v, ¢) distribution gives the smallest SS, KS values and second smallest AIC, AICC,
BIC values when compare to gamma distribution. We conclude that the LGLW(a, 6, B,v, )
distribution is a reasonably good model for the failure times data.
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The third example consists of prices (x 10* dollars) of 428 new vehicles for the 2004 year
(Kiplinger's Personal Finance, Dec 2003). The data are given in Table 3.

The results and plots are given in Table 4 and Figure 6. The estimated covariance matrix for
the LGLW distribution is given by:

/ 0.035560103 —4.29E—06 —4.69E—06 —0.000031261 0.001043554\

—4.29E - 06 7.66E — 10 5.69E — 10 5.50E - 09 —7.53E - 08
| —4.69E — 06 5.69E — 10 6.20E - 10 4.15E - 09 —~1.36E — 07 |
\—0.000031261 5.50E — 09 4.15E - 09 3.98E — 08 —4.91E - 07
0.001043554 —7.53E—-08 —-136E—-07 —491E-07 0.000072061

Plots of the fitted densities and the histogram, observed probability vs predicted probability,
and empirical survival function are given in Figure 6.

The LR test statistics of the hypotheses Hy: LGLW(«q, 6, 8,v,1) vs Hy: LGLW(a, 6, B,V, ¢)
and Hy: LGLW(1,6,,v,¢) vs H,: LGLW(q, 6, 8,v, ) are 46.0 (p-value <0.0001) and 12.6 (p-
value =0.0004), respectively. We conclude that the LGLW(aq,6,,y,c) distribution is
significantly better than the sub-models. Also, gamma distribution gives the smallest AIC, AICC,
BIC, SS, KS values followed by the LGLW(a, 6, B, v, ¢) distribution. Consequently, the gamma
and LGLW(a, 6, B, v, c) distributions are good models for prices of 2004 new cars and trucks data.

Concluding Remarks

In line with results on generalized distributions and following the contents of the T-X class
of distributions (Alzaatreh et al., 2013), we derive and present the mathematical and statistical
properties of a new generalized Lindley distribution called log generalized Lindley-Weibull
(LGLW) distribution. This distribution contains several sub-models including Lindley
distribution and the generalized Lindley distribution of Zakerzadeh and Dolati (2009). The hazard
rate function of the LGLW distribution can be decreasing, decreasing or bathtub shaped.
Moments and distributions of functions of random variables from the LGLW distribution are
derived. Uncertainty measures including generalized entropy, Rényi and Shannon entropies are
obtained. We discuss maximum likelihood estimation and hypotheses tests of the model
parameters. The LGLW distribution permits testing the goodness-of-fit of Lindley and
generalized Lindley distribution by taking these distributions as sub-models. Asymptotic
confidence intervals for the parameters of the LGLW distribution are given. We fit the LGLW
distribution and its sub-models to three real data sets to demonstrate the potential importance,
practical relevance and applicability of this model in lifetime analysis and other areas.
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Table 1: LGLW Estimates of Models for Aarset Data

Estimates Statistics
o4 (0] B Y c -2 Log Likelihood AIC AICC BIC SS KS
GLW(q, 6,B,v,¢) 0.0878 0.0000002 0.0000002 3.5977 5.0893 439.0 449.0 450.4 458.6 0.1055 0.1259
(0.013041) (0.00000005) (0.00000006) (0.0000001)  (0.0002)
GLW(a,6,1,1,¢) 0.3081 0.0475 1 1 0.8688 482.2 488.2 488.7 4939 0.5024 0.1893
(0.153033)  (0.043501) - - (0.181765)
GLW(a,6,B,v,1) 0.5281 0.0119 0.0241 0.4525 1 473.9 481.9 482.8 489.6 0.4273 0.1790
(0.094401)  (0.001106) (0.010042)  (0.000549) -
GLW(1,6,B8,v,0) 1 0.0258 0.0279 0.4307 0.8817 479.5 487.5 4884 495.2 0.4813 0.1849
- (0.020363) (0.017642)  (0.002066)  (0.150219)
A k
Weibull(A, k) 449125 0.9490 482.0 486.0 486.3 489.8 0.5289 0.1928
(6.902622)  (0.167396)
[od B
Gamma(a, B) 0.7991 0.0175 480.4 484.4 484.6 488.2 0.5545 0.2022
(0.163869)  (0.002753)
Table 2: LGLW Estimates of Models for Failure Times Data
Estimates Statistics
o C] B Y c -2 Log Likelihood AIC AICC BIC SS KS
GLW(a,6,B,y,c) 37.885305 12.73676 3.915639 0.005146  0.352967 -64.7 -54.7 -50.4 -49.7 0.2453 0.2165
(10.5231) (2.9408) (1.2885) (0.0023) (0.0775)
GLW(a,6,B,v,1) 3.3948 0.000001956 4.8031 5.41E-08 1 -59.8 -51.8 -49.1 -47.8 0.2707 0.2251
(1.62E-18) (3.64E-12) (1.28E-25)  (1.32E-10) -
GLW(1,6,B8,v,¢0) 1 5.3422 1.66E-07 0.3817 1.6422 -52.8 -44.8 -42.2 -40.9 0.4142 0.2641
- (0.0063) (1.109E-05) (0.1446) (0.3491)
A k
Weibull (2, k) 0.1376 1.6422 -52.8 -48.8 -48.1 -46.9 0.4142 0.2641
(0.0226) (0.329)
o B
Gamma(a, B) 4.2441 349163 -59.8 -55.8 -55.1 -53.8 0.2722 0.2253
(2.7031) (27.7806)
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Table 3: Prices of 2004 New Cars and Trucks Data

1.028
1.28
1.461
1.5568
1.72
1.876
1.956
2.031
2.1589
2.235
2.3699
2.478
2.5645
2.651
2.745
2.88
3.0315
3.184
3.318
3.448
3.594
3.7885
4.0565
4.2735
4.5445
4.9995
5.575
7.225
8.6995

1.0539
1.2884
1.4622
1.558
1.7232
1.882
1.9635
2.032
2.1595
2.2388
2.376
2.4885
2.57
2.6545
2.749
2.9282
3.0492
3.1849
3.3195
3.4495
3.5995
3.7895
4.059
4.284
4.57
5.047
5.617
7.3195
8.9765

1.076
1.2965
1.463
1.5825
1.7262
1.8825
1.9635
2.0339
2.1595
2.2395
2.3785
2.4895
2.57
2.656
2.749
2.9322
3.0795
3.189
3.326
3.4495
3.61
3.7995
4.067
4.2845
4.5707
5.0595
5.6595
7.432
9.052

1.0995
1.327
1.474
1.585

1.7475

1.8892

1.9825
2.037

2.1795
2.245
2.382
2.495

2.5717
2.665
2.756

2.9345

3.0835

3.2235

3.3295
3.456

3.6395
3.838
4.072

4.2915

4.61
5.067

5.6665

7.4995
9.482

1.1155
1.327
1.481
1.604

1.7495

1.8995
1.986

2.0445

2.1825

2.2515

2.3845

2.4955
2.592
2.686
2.771
2.938
3.086

3.2245
3.336

3.4845
3.664
3.883
4.084

4.3175

4.6265

5.1535
5.727

7.4995

12.177

1.129
1.358
1.484
1.635
1.763
1.9005
1.986
2.0449
2.184
2.257
2.3895
2.5
2.5935
2.691
2.7905
2.944
3.0895
3.228
3.343
3.4895
3.6895
3.9195
4.0845
4.3365
4.647
5.212
5.9995
7.5
12.667

1.156
1.367
1.485
1.6385
1.764
1.909
1.9945
2.051
2.19
2.2595
2.3895
2.5045
2.594
2.693
2.793
2.9562
3.092
3.235
3.348
3.5105
3.6945
3.9235
4.101
4.3495
4.6995
5.2195
6.067
7.62
12.842

1.169
1.373
1.503
1.6495
1.7735
1.911
1.9999
2.0585
2.1965
2.2735
2.3955
2.5092
2.5955
2.696
2.7995
2.9595
3.095
3.2415
3.35
3.5145
3.6995
3.925
4.1045
4.3755
4.7955
5.2365
6.312
7.6765
19.2465

1.1839
1.3839
1.504
1.6497
1.775
1.9135
2.013
2.0615
2.2
2.2775
2.413
2.513
2.5995
2.699
2.8345
2.967
3.1045
3.2445
3.354
3.5495
3.7
3.9465
4.125
4.3895
4.804
5.2545
6.32
7.687

1.1905
1.4085
1.5295
1.653
1.7985
1.924
2.014
2.0939
2.201
2.3215
2.4225
2.5135
2.6
2.6992
2.837
2.9795
3.1145
3.2455
3.378
3.5515
3.7245
3.964
4.1465
4.424
4.817
5.2775
6.48
7.9165

1.1939
1.4165
1.5389
1.6695
1.8345
1.927
2.0215
2.1055
2.2035
2.329
2.4295
2.5193
2.606
2.702
2.8495
2.9865
3.123
3.2495
3.384
3.5545
3.739
3.9995
4.1475
4.4295
4.8195
5.2795
6.5
8.1795

1.2269
1.417
1.5389
1.6722
1.8435
1.9312
2.022
2.1055
2.218
2.3495
2.4345
2.5215
2.6135
2.7145
2.8495
2.9995
3.137
3.266
3.3895
3.5695
3.753
4.0095
4.1815
4.4535
4.845
5.28
6.8995
8.1995

1.236
1.43
1.546
1.6999
1.869
1.9339
2.0255
2.1087
2.2225
2.3495
2.452
2.5395
2.6189
2.72
2.8739
2.9995
3.1545
3.278
3.3995
3.5725
3.756
4.0235
4.1995
4.4925
4.909
5.2975
6.919
8.4165

1.2585
1.4385
1.5495
1.7045
1.8715
1.9479
2.029
2.141
2.226
2.356
2.4589
2.552
2.6395
2.7339
2.875
3.0245
3.1545
3.2845
3.3995
3.592
3.763
4.032
4.249
4.4995
4.969
5.4765
6.9195
8.46

1.274
1.45
1.55

1.7163
1.8739

1.949

2.03
2.1445
2.229
2.3675
2.4695

2.564

2.647

2.737

2.879

3.0295
3.1745
3.3112

3.439

3.594

3.773

4.034

4.2565
4.521
4.9995
5.4995
6.9995
8.697




300

The Log Generalized Lindley-Weibull Distribution with Application

Table 4: LGLW Estimates of Models for Prices of 2004 New Cars and Trucks Data

Estimates Statistics
[od (0] B Y c -2 Log AlC AlCC BIC SS KS
Likelihood
GLW(a, 6, B,v,¢0) 1.5404 0.0001 2.0009 0.0006 1.1998 1573.2 1583.2 1583.4 1603.5 0.9086 0.0760
(0.1886) (0.00003) (0.00003) (0.0002) (0.008)
GLW(w, 6,B,v,1) 1.3017 2.53E-07 2.00 3.61E-07 1 1619.2 1627.2 1627.3 1643.4 2.1103 0.1300
(4.73E-17) (4.29€E-10) (2.68E-24) (3.01E-10) -
GLW(1,6,B8,v,¢0) 1 2.63E-04 2.0416 0.0044 1.3407 1585.9 1593.9 1594.0 1610.1 1.0395 0.0800
- (0.0003) (0.000018) (0.005) (0.07)
A k
Weibull (2, k) 3.7120 1.8390 1638.4 1642.4 1642.4 1650.5 1.7155 0.0989
(0.11) (0.11)
A B
Gamma(a, B) 4.0703 1.2419 1555.4 1559.4 1559.5 1567.6 0.6973 0.0688
(0.35) (0.13)
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Figure 1: Plot of the pdf of LGLW distribution



302 The Log Generalized Lindley-Weibull Distribution with Application

© - — 0=1.081.0,8=1.07=10,c=10
0=1.0,0=2.0.8=1.0y=2.5.c=15
— 0=156-25p-201-2.0c=05
0=2.00=2.0 £=05=15.0=10
w — 0=256-10p-157-2.0c=2.0
0=150=05 p=107=10.0=25
"
< -
X o A
£~
N —
=
O — _/
I I I I I I
0 i 4 G 8 10

Figure 2: Plot of Hazard Function
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Figure 3: Plot of Hazard Function
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