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Abstract: This paper evaluates the efficacy of a machine learning approach to data
fusion using convolved multi-output Gaussian processes in the context of
geological resource modeling. It empirically demonstrates that information
integration across multiple information sources leads to superior estimates of all the
guantities being modeled, compared to modeling them individually. Convolved
multi-output Gaussian processes provide a powerful approach for simultaneous
modeling of multiple quantities of interest while taking correlations between these
guantities into consideration. Experiments are performed on large scale data taken
from a mining context.
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1. Introduction

Gaussian processes (GPs) [Rasmussen and Williams, 2006] are powerful non-parametric
Bayesian learning techniques that can handle correlated, uncertain and incomplete data. GPs
yield a continuous domain representation of the data and hence can be sampled at any desired
resolution (multi-scale model). They model and use the spatial correlation of the given data to
estimate the values for unknown points of interest. GPs perform Kriging [Matheron, 1963,
Cressie, 1993] interpolation. As a case in point, the work [Vasudevan, Ramos, Nettleton, and
Durrant-Whyte, 2009] modeled large scale terrain using GPs. It proposed the use of the non-
stationary neural network kernel to model large scale discontinuous spatial data and empirically
demonstrated that this kernel was superior (in modeling) to the stationary squared exponential
kernel and at least as good as most standard interpolation techniques for a range of terrain (in
terms of sparsity/complexity/discontinuities). Data fusion in the context of Gaussian processes is
necessitated by the presence of multiple, multi-sensor, multi-attribute, incomplete and/or
uncertain data sets of the entity being modeled. This paper presents an empirical evaluation of a
machine learning approach to performing data fusion with Gaussian processes (based on
convolved GPs) in the context of vector valued data. The objectives are to understand (1) if
simultaneous modeling of multiple quantities of interest using GPs (i.e. modeling and using the
correlations between them and

hence performing data fusion) is better than modeling these quantities independently and (2)
if nonstationary kernels are more effective than stationary kernels for modeling geological data.
Experiments are performed on large scale data obtained from a mining context.
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2. Related Work

This section first reviews recent works in the machine learning and related communities that
addressed the problem of data fusion with Gaussian processes (GPs) and then positions the
proposed approach within the wider geostatistics literature on which many of the techniques
being presented are based.

Preliminary attempts at data fusion with GPs were shown in [El-Beltagy and Wright, 2001]
and [Murray-Smith and Pearlmutter, 2005]. The former demonstrated how a GP could be used
to model an expensive process by first modeling a GP on an approximate or cheap process and
subsequently using the many input-output data from the approximate process together with the
few samples available of the expensive process in order to learn a GP for the latter. The work
[Murray-Smith and Pearlmutter, 2005] attempted to generalize arbitrary transformations on GP
priors through linear transformations. It hinted at how this framework could be used to introduce
heteroscedasticity (random variables with nonconstant variance) and how information from
different sources could be combined. However, specifics on how the fusion could actually be
performed were beyond the scope of the work. Girolami in [Girolami, 2006] integrated
heterogeneous feature types within a Gaussian process classification setting, in a protein fold
recognition application domain. Each feature representation was represented by a separate GP.
Fusion used the idea that individual feature representations were considered independent and
hence a composite covariance function could be defined in terms of a linear sum of Gaussian
process priors. Reece et al. in [Reece, Roberts, Nicholson, and Lloyd, 2011] integrated “hard”
data obtained from sensors with “soft” information obtained from human sources within a
Gaussian process classification framework. It used heterogeneous information-types as mutually
independent sources of information that were transformed into the kernel representation (a kernel
for each kind of information) and combined using a product rule. While [Girolami, 2006] and
[Reece, Roberts, Nicholson, and Lloyd, 2011] demonstrated how multiple information-types may
be combined using kernel methods, the approach presented in this paper addresses the problem
of improving the predictions of several different (heterogeneous) quantities being simultaneously
modeled by explicitly modeling correlations between them.

Recent approaches demonstrating data fusion with Gaussian processes in the context of large
scale terrain modeling were based on heteroscedastic GPs [Vasudevan, Ramos, Nettleton, and
Durrant-Whyte, 2010a] and dependent GPs [Vasudevan, Ramos, Nettleton, and Durrant-Whyte,
2010b, 2011]. These addressed the problem of fusing multiple, multi-sensor data sets of a single
guantity of interest. This paper describes the framework for extending this concept to multiple
heterogeneous quantities of interest. The work [Vasudevan, Ramos, Nettleton, and Durrant-
Whyte, 2010a] treated the data-fusion problem as one of combining different noisy samples of a
common entity (terrain) being modeled. The GP representing the fused output was assumed to
have non-constant noise variance; the noise variance at any point was dependent on the input
data from the different data sets. In the Machine Learning community, this idea is referred to as
heteroscedastic GPs [Goldberg, Williams, and Bishop, 1998, Kersting, Plagemann, Pfaff, and
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Burgard, 2007]. Vasudevan et al in [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b,
2011] treated the data fusion problem as one of improving GP regression through modeling the
spatial correlations (auto and cross covariances) between several dependent GPs representing the
respective data sets. This idea was inspired by recent machine learning contributions in multi-
task or multi-output or dependent GP modeling including [Bonilla, Chai, and Williams, 2007]
and [Boyle and Frean, 2004], the latter being based on [Higdon, 2002]. In Kriging terminology,
this idea is akin to Co-kriging [Wackernagel, 2003, Goovaerts, 1997]. The work [Vasudevan,
2012] performed a model complexity analysis of multiple approaches to data fusion using GPs,
applied in the context of large scale terrain modeling. Melkumyan et al, in [Melkumyan and
Ramos, 2011], compared various combinations of stationary kernel including the squared
exponential (SQEXP), Matern 3/2 and a sparse covariance function [Melkumyan and Ramos,
2009] in the context of geological resource modeling. This paper evaluates a machine learning
approach to data fusion using a convolved GP model applied to a multioutput (vector valued
output) problem of geological resource modeling; multiple kernel combinations including the
best results from past works mentioned above are compared.

The paper [A” lvarez, Rosasco, and Lawrence, 2012] presents an extensive review of kernels
for vector valued functions. Drawing parallels between regularization and Bayesian perspectives,
the linear model of corregionalization (LMC) [Wackernagel, 2003, Goovaerts, 1997] is presented
as a generalized model on which the geostatistical approaches to multivariate modeling and
subsequently machine learning / Gaussian process modeling of multivariate data are based. The
LMC incorporates a nested framework wherein outputs are first expressed as a linear combination
of spatially uncorrelated processes, each of these processes is a linear sum of uncorrelated
functions. Within this framework, kernels are broadly classified as being separable (a Sum of
Separable kernels) or non-separable (e.g. divergence-free and curl-free kernels). Separable
kernels expresses the covariance between outputs as a product of two terms one that captures the
covariance between outputs, not considering the inputs and the other that captures the covariance
between inputs, not considering the outputs. Such separation is not obtained in a nonseparable
kernel formulation. Among approaches to developing nonseparable kernels, the process
convolution (PC) approach provides a different and flexible way of modeling vector valued
(multi-output or multi-task) functions. In the PC approach, each component of a vector output is
modeled as a base process (e.g. a GP) convolved with a smoothing kernel and treated with a noise
process (e.g. a GP). This transformation of base processes (or latent functions) contrasts with the
LMC formulation. The PC approach captures the trend and complexity of the data through the
parameters of the smoothing kernel (and additional parameters as required); the LMC relies on a
repertoire of latent functions, a linear sum of which will adequately describe the data. Under
assumption of Dirac delta smoothing kernels for each output, the covariance between outputs as
obtained by the PC approach reduces to that of the LMC approach [A” lvarez, Rosasco, and
Lawrence, 2012]. This paper adopts the process convolution approach to modeling vector valued
data. The proposed approach augments the PC based covariance between input data with a
symmetric matrix of free parameters that is intended to capture the signal variance and similarities
between outputs being modeled.
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This paper reports a detailed multi-metric performance comparison experiment in a
geological resource characterization context, performed between a convolved multi-output GP,
an equivalent set of GPs (derived from the multi-output GP parameters) and a set of
independently optimized GPs, to provide for an exact and an independent comparison between
them. The objective is to quantify the benefit (if any) of simultaneous modeling of the multiple
quantities by modeling and using the correlations between them as against modeling each of these
guantities separately. This paper also compares data fusion using multiple stationary kernels and
a nonstationary kernel in the context of modeling geological data. Further discussion on the
broader issues relating to the application of the approach in practical problems and the tying
together of different prior works that have studied this approach [Vasudevan, Ramos, Nettleton,
and Durrant-Whyte, 2010b, 2011, Melkumyan and Ramos, 2011] is presented in the technical
report version of this paper [Vasudevan, Melkumyan, and Scheding, 2012].

3. Approach
3.1 Gaussian processes for scalar and vector valued functions

Gaussian processes [Rasmussen and Williams, 2006] (GPs) are stochastic processes wherein
any finite subset of random variables is jointly Gaussian distributed. They may be thought of as
a Gaussian probability distribution in function space. They are characterized by a mean function
m(x) and the covariance function k(x, x”) that together specify a distribution over functions. In
the context of geological resource modeling, each x = (east, north, depth) (3D coordinates) and f
(x) = z, the concentration of the quantity being modeled. Although not necessary, the mean
function m(x) may be assumed to be zero by scaling/shifting the data appropriately such that it
has an empirical mean of zero.

The covariance function or kernel models the relationship between the random variables
corresponding to the given data. It can take numerous forms [Rasmussen and Williams, 2006,
chap. 4]. The stationary squared exponential (or Gaussian) kernel (SQEXP) is given by

ksoexp(x,x'.X) = rr'fp . exp (—éh{ —x"Vy(x - K’_})
- 1)

where k is the covariance function or kernel; £ = diag[least, Inorth, laeptn ]2 is @ d x d diagonal
length-scale matrix (d = dimensionality of input = 3 in this case), a measure of how quickly the
modeled function changes in the east, north and depth directions; 62 is the signal variance. The
set of parameters {least, Inorth, ldeptn, o } are referred to as the kernel hyper parameters.

The non-stationary neural network (NN) kernel [Neal, 1996, Williams, 1998a,b] takes the
form

knn(x,x",X) = 0.
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where X and X~ are augmented input vectors (each point is augmented witha 1), Xisa (d + 1) x
(d + 1) diagonal length-scale matrix given by X = diag[least, Inortn, laeptn ]2 , B being a bias factor
and d being the dimensionality of the input data. The variables {8, least, Inorth, laeptn, o } CONStitute
the kernel hyper parameters. The NN kernel represents the covariance function of a neural
network with a single hidden layer between the input and output, infinitely many hidden nodes
and using a Sigmoidal transfer function [Williams, 1998a] for the hidden nodes. Hornik, in
[Hornik, 1993], showed that such neural networks are universal approximators and Neal, in [Neal,
1996], observed that the functions produced by such a network would tend to a Gaussian process.
Prior work in [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2009] found the NN kernel to
be more effective than the SQEXP kernel at modeling discontinuous data.

The Matern 3/2 kernel is another stationary kernel differing from the SQEXP kernel in that
the latter is infinitely differentiable and consequently tends to have a strong smoothing nature,
which is argued as being detrimental to modeling physical processes [Rasmussen and Williams,
2006]. It takes the form specified in Equation 3.

. /a
kxvarerns(z, ', X) = fo* H (1+ \f? A']L"-‘ip (_vfu-)
k k (3)
wherek € 1, ..., d is the dimension of the input data (d = dimensionality of input = 3 in this
case),X = [least, lnorth, laeptn] iS @ 1 X d length-scale matrix and o2 is the signal variance. The set of
parameters {least, Inorth, ldepth, ot } IS referred to as the kernel hyperparameters.

Regression using GPs uses the fact that any finite set of training (evaluation) data and test
data of a GP are jointly Gaussian distributed. Assuming noise free data, this idea is shown in
Expression 4 (hereafter referred to as Equation 4). This leads to the standard GP regression
equations yielding an estimate (the mean value, given by Equation 5) and its uncertainty

(Equation 6).
z e K(X,X) K(X X,
~ N |0,
fe K(X.. X) K(X. X.)

1<k<d

(4)
fi =KX, X)K(X.X) "z 5)
cov(f,) = K(X,,X,) — K(X,.X)K(X,X) 'K(X, X,) ©)

For n training points (X, z) = (Xi, zi )i=L.n and N« test points (X, fx), K (X, Xx) denotes the n x
n. matrix of covariances evaluated at all pairs of training and test points. The terms K (X, X), K
(X4 X+ and K (Xs, X) are defined likewise. In the event that the data being modeled is noisy, a
noise hyper parameter (o) is also learnt with the other GP hyper parameters and the covariance
matrix of the training data K(X,X) is replaced by [K(X, X) + ¢2I ] in Equations 4, 5 and 6. GP
hyper parameters may be learnt using various techniques such as cross validation [Rasmussen
and Williams, 2006], maximuma-posteriori estimation using Markov Chain Monte Carlo
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techniques [Rasmussen and Williams, 2006, Williams, 1998b] and maximizing the marginal
likelihood of the observed training data [Rasmussen and Williams, 2006, VVasudevan, Ramos,
Nettleton, and Durrant-Whyte, 2009]. This paper adopts the latter most approach based on the
intuition that it may be more suited for large data sets. The marginal likelihood to be maximized
is described in Equation 7.

log p(z|X,0) = —lz'rf\'[.\'. X) 'tz — 1 log |K(X, X)| — n log(2m)
2 2 2 )

In the geological resource modeling problem considered in this paper, the objective is to
model concentrations of multiple elements across the field of interest. The data fusion aspect of
this problem is the improved prediction of each one of these concentrations by integration or use
of all other concentrations available. If the concentration of each element is modeled using a
separate GP, the objective is to improve one GPs prediction estimates given all other GP models.
Simultaneous modeling (and consequently data fusion) of multiple concentrations can be
achieved by the use of multi-output (MOGP) or dependent GPs [Vasudevan, 2012], also known
as multi-task GP if the input points for each element are different. One way of developing such
models (specifically, kernels for vector valued functions) is through the process convolution
approach. GP regression for vector valued output is presented in the following paragraphs; the
next subsection discusses the process convolution approach and specifies the kernel functions
used.

Let the number of outputs (element concentrations) that need to be simultaneously modeled
be denoted by nt. Equations 4, 5 and 6 represent respectively the MOGP data fusion model, the
regression estimates and their uncertainties, subject to the following modifications to the basic
notation. The setz=[z1, 22,23, ...,z ] represents the output values of the selected training
data (element concentrations) from the individual nt outputs (elements) that need to be
simultaneously modeled. The term X =[ X1, X2, X3, ..., Xut ] denotes the input location values
(east, north, depth) of the selected training data for each of the outputs. Any kernel [Rasmussen
and Williams, 2006] may be used and even different kernel could be used for different data sets
using the technique demonstrated in [Melkumyan and Ramos, 2011] (for stationary kernel) or
the convolution process technique demonstrated in [Higdon, 2002, Boyle and Frean, 2004,
Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b, 2011] and in this paper (for both
stationary and nonstationary kernel). The covariance matrix of the training data

is given by

v v -
K, Kiy ... K{,
R, 1’\31
KX, X) =
K}, K,

nt 1 ntnt
where K}; = K{/ (X;,X;) + 071 and K}; = K} (X;, X;;) represent the auto-covariance of the i"
data set with itself and the cross covariance between the i and j™ data sets respectively, These
terms model the covariance between the noisy observed data points (z values). Thus, they also
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take the noise components of the individual data sets / GPs into consideration. The corresponding

noise free terms are respectively given by K¥ and KZ These are derived by using the process

convolution approach to formulating Gaussian processes; details of this follow in the next
subsection. The covariance matrix between the test points and training points is given by

K(X., X) = [Kj (Xs, X1), Kip(Xo, Xo), ..., K (X, Xone)]

where i e {1, ..., nt } is the GP that is being evaluated given all other GPS. The Matrix
K(X,X~) is defined likewise. Finally, the covariance of the test point is given by

K(X.,X,) = K, (X, X.)+a,1
assuming the i"" GP needs to be evaluated for the particular test point. The mean and variance
of the concentration estimate can thus be obtained by applying Equation 5 and 6, after
incorporating multiple outputs, multiple GP/ noise hyperparameters and deriving appropriate
auto and cross covariances functions that model the spatial correlation between the individual
data sets. Data fusion is thus achieved in the MOGP approach by correlating individual outputs
and using this correlation information to improve the prediction estimates of each of them.

3.2 Convolved GPs, auto and cross covariance functions for vector valued functions

The process convolution approach to modeling GPs, proposed in [Higdon, 2002] models a
GP as the convolution of a smoothing kernel and a Gaussian white noise process. Thus, the trend
and complexity of the data is captured by the parameters of the smoothing kernel. In the case of
vector valued outputs, each output (element concentration) can be assumed to be modeled by a
separate convolved GP; the covariance function between two outputs can be derived as a function
of the respective smoothing kernel. The work [Higdon, 2002] expressed a relationship between
the smoothing kernel and the corresponding covariance function through the Fourier transform
and noted that for stationary isotropic kernels, there existed a one-to-one relationship between
the covariance function and its smoothing kernel and that for non-isotropic and/or non-stationary
kernels, there was no unique solution to the smoothing kernel. The paper suggested that the
smoothing kernel for a covariance function could be obtained as the Inverse Fourier Transform
of the square root of the spectrum (Fourier transform) of the covariance function. The process
convolution approach to multi-output GPs has been used with the stationary SQEXP kernel in
[Boyle and Frean, 2004, A" Ivarez and Lawrence, 2009, Vasudevan, Ramos, Nettleton, and
Durrant-Whyte, 2010b, Melkumyan and Ramos, 2011] and the nonstationary NN kernel in
[Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2011, Vasudevan, 2012]. Given the
smoothing kernel of the covariance functions in consideration, the cross-covariance terms can be
derived as a kernel correlation between the respective smoothing kernels as demonstrated in
[Higdon, 2002, Boyle and Frean, 2004, Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2011,
Vasudevan, 2012, Melkumyan and Ramos, 2011]. A more detailed discussion of the approach
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can be obtained from the technical report version of this paper [Vasudevan, Melkumyan, and
Scheding, 2012] and the aforementioned references.

Assume two GPs N (0, ki ) and N(0,kj), with with length scale matrices X; and X;. Based on
[Boyle and Frean, 2004], the cross and auto covariances for the stationary SQEXP kernel are
given by Equations 8 and 9 respectively. The corresponding expressions for the nonstationary
NN kernel are derived in [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2011, Vasudevan,
2012] and given in Equations 10 and 11 respectively. For the Matern 3/2 kernel, the expressions
for the cross covariance and auto covariance are derived in [Melkumyan and Ramos, 2011] and
given in Equations 12 and 13 respectively. Based on [Melkumyan and Ramos, 2011], the cross
covariance function between a SQEXP and Mater 3/2 kernel is given by Equation 14.

K (z,2") = K;(i, §) % exp (—é[.i' — )1 y(x - J“J])

|_q' =+ ‘—‘.J'll

(8)

where

. (7 b 1 .
KE (z,2") = Ky(i,d) - ) - exp | ——(z — )T 8i(z — 2)
' ' AL 4 )

I ; o d+1 EgTEj‘H i \
hf}-(r.f] = Kg(i, j) 27T = . Enn(x,x, Xij)
Y + ;)2 (10)
where
, -1
I{L'rl.‘lr. ') = Ky(i,i) kyw(x, X', 5) (12)
S 23105 _J/ATk — 3k
) = 569 T e (e 4 e
1<k<d * ik (12)

wherek € 1, ..., d is the dimension of the input data, l; and I; are the length scales for the two
Matern 3/2 kernel based GPs i and j, lik and I are the k™ length scales (corresponding to the kth
dimensions) of these GPs and r, = |xi - Xy | is the distance in the k™ dimension between the
input data.

.-{.l' y - e . . .
K (z,x") = K(i,1) kyarepna(x,x', X;) 13)
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(14)

Where J = ‘/Z—Ellsik erf(x) = %fgce‘fz dt,k € 1, ..., d is the dimension of the input data, Ise
Mk

and lv are the respective length scales for the SQEXP and Matern 3/2 kernel based GPs i and j,
Isex and I are the k™ length scales (corresponding to the k' dimensions) of these GPs and r, =
|xx — Xy | is the distance in the kth dimension between the input data

In Equations 10 and 11, the term, knn (X, X * ,Zjj), is the NN kernel for two data x, X’ and
length scale matrix Xj . It is given by Equation 2, excluding the signal variance term (013).
Likewise, in Equation 13, kmatern (X, X’, Zi ) refers to the Matern 3/2 kernel for two data x, X’
and length scale matrix Xij , given by Equation 3 (excluding the o2 term). The K terms in
Equations 8, 9, 10 and 11 are inspired by [Bonilla, Chai, and Williams, 2007]. This term models
the similarity between individual outputs and also incorporates the signal variance. It is a
symmetric matrix of size nt x nt and is learnt along with the other GP hyperparameters. Thus, the
hyperparameters of the system that need to be learnt include (nt.(nt + 1))/2 output similarity
values, nt. 2 or nt . 3 length scale values respectively for the individual SQEXP/MATERNS or
NN kernels and nt noise values corresponding to the noise in the observed data sets. Learning
these hyper parameters by adapting the GP learning procedure described before (Equation 7) for
multiple outputs [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b, 2011].

4. Experiments

4.1 Data set

VRTIRE
. '
(a) Element-1 (E1) concentration (b) Element-2 (E2) concentration (c) Element-3 (E3) concentration
Figure 1: The geological resource data set. Figures 1(a), 1(b) and 1(c) respectively show the
concentrations of three elements over the region of interest. The central region of points is surrounded by
sparse sets of points which are not pre-filtered when applying the proposed algorithm.

Experiments were conducted on a large scale geological resource data set made up of real
sensor data obtained from a mine site. The data consists of 63,667 measurements from a 3478.4
m x 1764.6 m x 345.9 m region in Australia that has undergone drilling and chemical assays to
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determine its composition. The holes are generally 25-100m apart and tens to hundreds of meters
deep. Within each hole, data is collected at an interval of 2m. The measurements include the (east,
north, depth) position data along with the concentrations of three elements, Element-1, Element-
2 and Element-3, hereafter denoted as E1, E2 and E3 respectively. The names of these elements
have been withheld at the request of the sponsor of this work. These three elements are known to
be correlated and hence the objective is to use each of their GP models to improve the others’
prediction estimates by capturing the correlation between these quantities. The data set is shown
in Figure 1.

4.2 Testing procedure

The objective of the experiment was to compare the convolved multi-output GP approach
with a conventional GP approach and quantify if the data fusion in the MOGP actually improves
estimation. A second objective of the experiments was to compare the nonstationary NN kernel
with the stationary SQEXP kernel, the Matern 3/2 kernel and a combination of them (Matern 3/2
Matern 3/2 SQEXP) that proved effective in prior testing [Melkumyan and Ramos, 2011].
Towards these aims, a ten fold cross validation experiment was performed on the data set, with
each of the kernels. This was motivated by the work [Kohavi, 1995], which suggests a ten fold
stratified (similar number of samples in each fold) cross validation as the best way of testing the
estimation accuracy of machine learning methods on real world data sets.

The MOGP and simple GP approaches each require an optimization step for model learning.
The optimization step in each method can result in different local minima in each trial (and with
each kernel). Thus, to do a one-on-one comparison between the two approaches and quantify
their relative performances, an exact comparison is required. The performance comparison
experiment presented in this paper provides an exact comparison between the MOGP and GP
approaches. To do this,

* The best available MOGP parameters were found for each kernel. From this, appropriate
subsets of the parameters were chosen for the GP approach. The idea of the exact comparison
is to use separate GPs with parameters derived from the MOGP parameters and test the effect
of discarding the other correlated data sources.

« The approaches were compared on identical test points and identical training/evaluation
points selected for each of the test points.

« It is also necessary that the covariance function for the simple GP approach must be
identical to the auto-covariance function of the DGP approach. For this reason, the auto-
covariance function (for both kernels) is used as the covariance function for the GP approach
to data fusion.

In addition to this, three independently optimized GPs (denoted as GPI here after) were
optimized for E1, E2 and E3 and their estimates for the same set of test points were also compared.
Thus the effect of information integration in the context of the geological resource modeling can
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be seen in terms of both an exact comparison (MOGP vs GP) and an independent comparison
(MOGP vs GPI).

For the ten fold cross validation, a “block” sampling technique (see Figure 2) was used, a 3D
version of the “patch” sampling method used in [Vasudevan, Ramos, Nettleton, and Durrant-
Whyte, 2009]. The idea was that rather than selecting test points uniformly, blocks of data test
the robustness of the approach better as the support points to the query point are situated farther
away (outside the block) than in uniform point selection. The GP models are used to predict
(interpolate) the concentrations at all points within a test block; the larger the block size, the
farther the support data to make predictions for points within the block. The data set is gridded
into blocks of different sizes. Collections of blocks represent individual folds. In each cross
validation test, one fold was designated as a test fold and points from it were used exclusively for
testing. All other folds together constituted the evaluation data, a small subset of which were
labeled as the training data. Note that this technique of testing will naturally lead to larger errors.
For the test fold, the E1, E2 and E3 concentrations (and error metrics defined in the following
section) are estimated first using the MOGP approach, then with the GP approach for each of the
three elements using parameters derived from the MOGP parameters and finally, with an
independently optimized GP for each of the three quantities.

4 RO
— % X Q
A i
) ‘

Figure 2: Example of 3D block sampling of a geological resource data set. Blocks may be sampled
of different sizes. The red and yellow block represent block from two of the ten folds used in cross
validation testing. Test points within these blocks have “support” data away from them, outside the

blocks. This sampling method is therefore a stronger test of the robustness of an approach to estimating
the quantity of interest, as compared to uniformly sampling test points. The estimation errors however,
will be higher than that obtained for a uniformly sampled set of points.

Tablel: Block size tested and implications on results 10 fold cross validation with block sampling,
63667 points spread over 3478.4 m x 1764.6 m x 345.9 m

Block size Number of points | Number of points Comments on
(m) in fold with MIN | in fold with MAX cross validation test
test points test points
Wx11x2 6200 6454 Muost stratified cross validation
Least prediction error
44x 22 x 4 6183 6456 stratification | prediction error T
87x45x 0 5807 6739 stratification | prediction error T
174 x 80 x 18 5133 7549 stratification | prediction error
e x 17T x 35 4976 0662 stratification | prediction error T
606 x 353 x 70 1204 10371 Least Stratified cross validation
Highest prediction error
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Block sizes were chosen empirically, in proportion (arbitrarily rounded up or down) to the
dimensions of the whole data set and with a view of performing a stratified cross validation test.
The block sizes chosen and the resulting implications on the cross validation testing are shown
in Table 1. The smaller block size of 22m x 11m x 2m results in each fold having a similar number
of points (i.e. numbers of points in folds with min/max test points are similar) and thus results in
the most stratified cross validation test. With increasing block size, prediction error increases
(support data is farther away), stratification is reduced and hence, variance in prediction error
also increases. Uniform sampling of test

points may be considered as a limiting case of block sampling with the smallest block size
possible

4.3 Metrics

Multiple metrics have been used to understand the various methods being tested. They are
briefly described below. These are evaluated for each test point in each fold of the cross validation
test. The result would then be represented by the mean and standard deviations of all values across
all folds.

1. Squared Error (SE): This represents the squared difference between the predicted
concentration and the known concentrations for the set of test points. The mean over the
set of all test points (Mean Squared Error or MSE) is the most popular metric for the
context of this paper. Referring Equations 5 and 6, for the it test point,

SE(i) = (fu(i) — =)

2. Variance (VAR): This represents the variance (uncertainty) in the predicted
concentrations for the set of test points. a lower VAR is a good outcome, only if the SE
is also low. A model that has high SE and low VAR would be a poor model as this result
would suggest that the model is confident of its inaccurate estimates. A better outcome
would be a model with high SE and correspondingly high VAR i.e. a model that has
inaccurate predictions but is also uncertain about these predictions.

3. Negative log probability / Log loss (NLP): Inspired by [Rasmussen and Williams, 2006,
page 23], this is a measure of the extent to which the model (including the GP model,
kernel, parameters and evaluation data) explain the current test point. The lower the value
of this metric, the better the model. For the ith test point,

(fe(i) — z)?

A - 1 o (e 2 \
NLP(i) = §fc.llf;[2f|a,_;+ 0.

4.4 Results
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Figure 3 shows the predicted concentrations of E1, E2 and E3 over the entire region of
interest as well as 2D section views of this output and the uncertainty of the predictions that
constitute it; these were produced using multi-output GPs using the Neural Network kernel.
Tables 2, 3 and 4 show the results of the cross validation testing on the geological resource data
set with the Neural Network (NN), Matern 3/2 (MM), Squared Exponential (SQEXP) and Matern
3/2 Matern 3/2 Squared exponential (MS) kernels. Trends from the three tables are visualized
through numerous graphs located in the appendix and summarized below. For a more complete
set and large sized graphs, see [Vasudevan, Melkumyan, and Scheding, 2012].
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{a) Predicted E1 concentrations over entire (b) 2I) section view of the predicted E1 (c) Uncertainty in E1 predictions constitut-
region superimposed with input data concentrations ing the 2D section view

{d) Predicted E2 concentrations over entire (e) 2D section view of the predicted E2 con- (f) Uncertainty in E2 predictions constitut-
region superimposed with input data centrations ing the 2D section view

(g} Predicted E3 concentrations over entire (h) 2D section view of the predicted E3 {1 ) Uncertainty in E3 predictions constitut-
region superimposed with input data concentrations ing the 2D section view

Figure 3: Figures 3(a), 3(b) and 3(c) respectively show the predicted E1 concentrations (over the
entire region) superimposed with the input data, a 2D section-view of the output data and the
uncertainty in the predicted concentrations for the 2D view. The corresponding figures for E2 and E3
are 3(d), 3(e), 3(f) and 3(g), 3(h), 3(i) respectively. Expectedly, the uncertainty is low around regions
where input/given data exist and rapidly rises for predictions away from such areas typically, the
fringe areas. The 2D section view (Figure 3(b)) shows two red regions corresponding two regions of
high E1 concentration. The corresponding regions in Figures 3(e) and 3(h) show low E2 and E3
concentrations respectively.

1. Prediction error (SE) increases with increase in test block size.

« See Figures 4(a), 4(d), 4(f ), 4(h) for E1, 5(a), 5(d), 5(f ), 5(h) for E2 and 6(a), 6(d),
6(f),6(h) for E3.

« This behavior is expected. It happens because the support training data required for
regressing at a test point is situated farther away. Increasing the test block size also results in
reduced stratification as one fold of the cross validation may have e.g. 10,000 test points
whereas another may have only 1000 points. This results in increased standard deviation of
prediction error. A ten fold stratified cross validation is generally considered to be the most
representative of performance measure [Kohavi, 1995], however testing multiple larger block
sizes provides a better understanding of the model’s behavior and robustness.

2. NN kernel based MOGP/GP models trained faster than other kernels
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« Further optimization of each of the MOGP/GP models could yield better results. The
results shown are the result of a reasonable amount of optimization applied to each kernel
and GP model. Typically, multiple attempts were performed and the best results obtained
were pursued/used. One iteration consisted of a stochastic optimization step (simulated
annealing) and/or a gradient based optimization step (Quasi Newton optimization with BFGS
Hessian update) with 10,000 training data chosen uniformly from the data. This work uses a
“blocklearning” approximation [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b]
which approximates the total marginal likelihood as a sum of a sequence of marginal
likelihoods computed over blocks of points comprising the training data. The size of the block
is defined by the computational resources available. The stochastic optimization step was the
most time consuming part; each attempt was started with completely random parameters. The
code was unoptimized MATLAB code running typically on an 8-core processor based
machine. Most times, not all the cores were used for the same process; multiple processes
also shared the same system. Note that the experiments in this paper do not use analytical
gradients for the optimization of the hyperparameters; this was a design choice made in the
interest of stability and comparability of the optimization results across kernels. The use of
analytical gradients can significantly reduce the total training time. Training time may also
be reduced significantly by various other ways including other approximations, intelligently
setting initial parameters, scaling the data etc.

Model | Kernel | Number of training attempts, iterations

Total training time for successful attempt

NN 2 attempts, 3 iterations, total training time = 78.89 hours

MM 3 attempts, 2 iterations, total training time = 222.15 hours
MOGP

SQEXP | 4 attempts, 1 iteration, total training time = 92.52 hours

MS 2 attempts, 3.5 iterations, 3 iterations took 113.69 hours

NN 3 attempts, 2 iterations, total training time = 41.07 hours

MM 2 attempts, 1 iteration, total training time = 48.91 hours

GPI

SQEXP | 2 attempts, 1 iteration, total training time = 47.67 hours

Rather than the individual training times, the relative amount of training (under similar
conditions, with different kernel) required to produce a reasonable set of parameters is of
more interest. Experience suggests that the NN kernel based MOGP/GP models converged
faster and better as compared to other kernels.

3. MOGP models based on the NN kernel outperform other kernels tested.
* See Figures 4(a), 4(b), 4(c) for E1, 5(a), 5(b), 5(c) for E2 and 6(a), 6(b), 6(c) for E3.
» The NN kernel is the best performing kernel of the four tested, across all block sizes
tested.
The MOGP based on the NN kernel produces lower SE (better estimate) and reduced
NLP (better model) estimates than other kernels tested.
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* For small block sizes, both the NN and MM kernel are competitive; in case of E3, the
MM even marginally outperforms the NN kernel for the two smallest block sizes tested.
Note however that considering all test sizes and all three elements, the observation is that
the MM kernel produces lower VAR for a higher SE, meaning that it is more confident of
its SE values which are worse/higher than those of the NN kernel. This makes its NLP higher
and the model poorer than an MOGP based on the NN kernel. Note also that as the test block
size increases, the advantage in performance of the MOGP based on the NN kernel over that
based on the MM kernel becomes more distinctive. Not only are the SE values smaller for
the NN kernel, the NLP values remain in the same range whereas those of the MM kernel
rise significantly. This proves that the MOGP-NN is better performing and more robust than
the MOGP-MM. The latter property suggests that the MOGP-NN will be able to cope better
with incomplete data sets.

* Both the MS and SQEXP kernels are not competitive with respect to the NN or MM
kernelsconsidering both the SE and NLP metrics. These kernels are discussed individually
in the following paragraphs.

4. MOGP models perform significantly better than three separate GPs (using the MOGP
parameters) or three independently optimized GPs as information fusion improves estimation.

« See Figures 4(d) and 4(e) for E1, 5(d) and 5(e) for E2 and 6(d) and 6(e) for E3.

* For the NN kernel, the MOGP metrics are always lower than the corresponding derived
GP (GP) or independent GP (GPI) metrics lower SE (better estimate) with lower NLP (better

model). This clearly demonstrates the benefits of information fusion across
heterogeneous information sources so as to improve individual predictions using the MOGP
model.

» From Tables 2, 3 and 4, the average reduction in error (i.e. improvement in
performance) of MOGP models over GP/GPI models for the smallest, intermediate and
largest test block sizes are

-E1

* 22 x 11 x 2 95.6% over GP, 96.2% over GPI

* 84 x 45 x 9 96.1% over GP, 96.0% over GPI

* 696 x 353 x 70 44.6% over GP, 38.1% over GPI

—-E2

* 22 x 11 x 2 89.6% over GP, 92.3% over GPI

* 84 x 45 x 9 91.6% over GP, 92.4% over GPI

* 696 x 353 x 70 42.1% over GP, 37.5% over GPI

—-E3
* 22 X 11 x 2 82.4% over GP, 83.5% over GPI
* 84 x 45 x 9 85.9% over GP, 85.3% over GPI
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* 696 x 353 x 70 30.9% over GP, 22.5% over GPI
These numbers demonstrate significant improvements in performance, even in very large test
block sizes, when using the MOGP-NN model for correlated data.

5. The MS kernel was uncompetitive

« See Figures 4(h) and 4(i) for E1, 5(h) and 5(i) for E2 and 6(h) and 6(i) for E3.

» The MS kernel is not competitive with respect to the NN and MM kernels as discussed
earlier.However, the MOGP using this kernel combination proves to be better than a derived
GP and an independently optimized GP with respect to the SE metric. From the NLP
perspective, the MOGP-MS model is more competitive than the other GP models for small
block sizes. For larger block sizes, using an independently optimized GP proves to be a more
trust worthy modeling option as the increase in error is met with a corresponding increase
in uncertainty (hence low NLP) for the independent GP models. The exception to this
behavior is seen in the results for E3, the MOGP model is poor in this case. This is attributed
to do with inferior parameters relevant to the element E3 obtained from the optimization
process.

* The MS kernel performs better than the SQEXP with respect to the NLP metric and
hence can be trusted more (prediction error compensated by prediction uncertainty), but in
two of the three elements (E1 and E3), its SE was inferior to that of the SQEXP.

6. The SQEXP kernel was uncompetitive and unreliable

« See Tables 2, 3 and 4; see Figures 4(a), 4(b) 4(c), 4(f ), 4(9), 4(h) and 4(i) for E1, 5(a),
5(b),5(c), 5(f ), 5(9), 5(h) and 5(i) for E2 and 6(a), 6(b), 6(c), 6(f ), 6(g), 6(h) and 6(i) for
E3.

» The MOGP-SQEXP model performs poorly in comparison with the equivalent models
using the NN/MM Kkernels, with respect to both SE and NLP.

« For elements E1 and E3, the MOGP-SQEXP has a better SE than the corresponding
model based on the MS kernel; it has an SE better than the corresponding
derived/independent GP models but an inferior (overconfident or low uncertainty) VAR and
a fluctuating NLP trend. For element E2, the MOGP-SQEXP is worse off than both the
equivalent model based on the MS kernel as well as its corresponding GP models.

« Considering the results for E2, the NLP is directly proportional to the SE and inversely
to the prediction variance. At the smallest block size, the MOGP-SQEXP produces
relatively high SE (with respect to e.g. MOGP-NN) but very low prediction variance. This
basically suggests that the model is confident of its poor estimates a bad outcome. This
results in a high NLP and poor model. As the block size increases, the prediction variance
increases more relative to the prediction error resulting in the decreasing NLP trend. For
elements E1 and E3, the largest block size results in a stronger increase in prediction error
than the variance in the prediction resulting in an increase in NLP. Overall, the MOGP-
SQEXP model is poor.
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» The SQEXP kernel is a limiting case of the MM kernel; both are stationary kernels.
Considering the behavior of the GPI model using the SQEXP kernel and its competitive
results with respect to those of the GPI-MM kernel, it is possible that the poor performance
of the MOGP-SQEXP (as compared to the MOGP-MM) is due to poor optimization output
(a bad local minima).

7. In general, the stationary kernels tested seemed to have an inadequate increase in prediction
uncertainty with increasing test block size and worsening predictions. This leads a higher NLP
metric and a poor model that is overly confident of its worsening predictions. This behavior can
be attributed to the correlation profile of the stationary kernels tested they all share the “correlation
decreases with increasing distance of support data from point of interest” trend. This results in
stationary kernels not being able to cope with large test block sizes as the support data is farther
away (i.e. less correlated and not of much use). In contrast, the nonstationary NN kernel has a
sigmoidal profile that can handle this issue across a range of test block sizes.

8. The SE metric taken alone can be misleading. The experiments have reinforced the need
for a multimetric analysis. The SE metric only provides information on the prediction error but
it does not describe the prediction uncertainty which is very important in understanding if a model
is reliable or otherwise. The VAR and NLP metrics provided key insights on the difference in
performance between different models and kernels. A model that is very confident of its poor
predictions is unreliable (as was the case for the SQEXP kernel). Worsening predictions (due to
increasing test block size) is itself not a bad outcome, provided it is met with an equivalent
increase in prediction uncertainty.

9. Further discussion of the results in the context of broader practical issues like determining
if a MOGP model is indeed good or identifying the kind of GP model suited for a particular task,
are available in the technical report version of this paper [Vasudevan, Melkumyan, and Scheding,
2012].

5. Conclusion

This paper empirically studied the problem of geological resource modeling using a machine
learning approach to convolved multi-output Gaussian processes (MOGPs). The concentrations
of three elements were modeled and predicted over a region of interest using multi-output
Gaussian processes (MOGPs; joint modeling of multiple outputs) as well as individual GPs for
each of these quantities separately. The paper demonstrates that MOGPs perform significantly
better than individual GPs at the modeling problem as they effectively integrate heterogeneous
sources of information (concentrations of individual elements) to improve the predictions of each
of them. The benefits of information integration using the MOGP as against independent GPs for
the task of geological resource modeling have been quantified by a multi-metric, multi-kernel and
multi-test-size cross validation study that performed both an exact and an independent comparison
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between MOGPs and GPs. Multi-output Gaussian process models based on the Neural Network
kernel was shown to be a competitive and robust modeling option across a range of test block
sizes.
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Appendix: Graphs of results obtained in Table 2, 3 and 4
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Figure 4: Element E1 - key trends. Test block sizes (m) - A (22 x 11 x 2), B (44 x 22 x 4), C (84 x 45 X
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9), D (174 x 89 x 18), E (348 x 177 x 35) and F (696 x 353 x 70).
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Figure 5: Element E2 - key trends. Test block sizes (m) - A (22 x 11 x 2), B (44 x 22 x 4), C (84 x 45 x
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