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Abstract:The censoring arises when exact lifetimes are only partially known, and it is useful in life 

testing experiments for time and cost restrictions. Especially, when some sample values at either or 

both extremes might have been adulterated. In present article, the Bayes estimation for unknown 

parameter of Gompertz distribution has been addressed based on three different censoring criterions. 

The performances of the procedures are illustrated by a simulation technique.  

 

1. Introduction 

Gompertz (1825) first introduced the underlying model, and its distribution and probability 

density function are defined as 

  0,0 ;  exp1);(  xexF x   
and        

  ,0,0 ;  exp );(  xeexf xx         (1.1) 

where the parameter   is known as scale parameter.  

 
Gompertz probability distribution has many useful applications in areas of technology, 

medical, biological, and natural sciences (especially in failure and survival analysis). This 

distribution also widely used in the model of human mortality and fit in the actuarial tables. 

Based on progressive first-failure censoring plan Soliman et al. (2012) studied the Bayes and 

frequentist estimators for two-parameter Gompertz distribution. Ismail (2010) discussed the 

Bayes estimation for unknown parameters of Gompertz distribution and acceleration factor under 

partially accelerated life tests under Type-I censoring. They applied Bayesian approach for 

estimation problem in case of step stress partially accelerated life tests for two stress levels and 

under Type-I censoring.  
Wu, et al. (2003) discussed about point and interval estimations for Gompertz distribution 

under Progressive Type-II censoring. Jaheen (2003) discussed about the Bayesian analysis of 

record statistic from Gompertz model. The maximum likelihood (ML) estimation for mixtures of 

two Gompertz distributions when censoring occurs has derived by Gordon (1990). Based on 

human mortality model, some parameter estimation of Gompertz population was discussed by 

Chen (1997). Anands et al. (1996) derived some adaptive Bayes estimators for the parameters of 
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Gompertz survival model. They present Bayes estimators for the parameters in terms of single 

numerical integrations. 

Bayesian analysts have pointed out that there is no clear-cut way from which one can 

conclude that one prior is better than the other. It is more frequently the case that, a prior is 

selected to restrict attention to a given natural family of priors, and one is chosen from that family, 

which seems to match best with one’s personal beliefs. However, if one has adequate information 

about the parameter, one should use informative prior; otherwise it is preferable to use non-

informative prior. The Gamma distribution is considered here as a conjugate family of prior for 

unknown parameter 
,
 having probability density function  

. 0  ,0,;   )( 1   
 

1 


    cbe
b

c cb
b

     (1.2) 

The Jeffrey’s prior is the example of non-informative prior which materializes the use of 

Bayesian estimation methods when no prior information is available. In present case, the second 

prior is considered as the non-informative (Jeffrey’s) prior and is defined as  

.0  ; )( 1  

2             (1.3) 

The selection of loss function may be crucial in Bayesian analysis also. If most commonly 

used loss function, squared error loss function (SELF) is taken as a measure of inaccuracy then 

the resulting risk is often too sensitive to assumptions about the behavior of tail of probability 

distribution. Also the use of SELF in Bayesian estimation may not be appropriate in case when 

positive and negative errors have different consequences. In addition, in some estimation 

problems overestimation is more serious than underestimation, or vice-versa. A useful and 

flexible class of asymmetric loss function (LINEX loss function (LLF)) is defined for such cases 

as 

   .ˆ  ,0  ;  1 *** *

   aaeL a      (1.4) 

Here, ̂  be any estimate corresponding to unknown parameter   and ''a  be the shape 

parameter of LLF. Negative (positive) value of 
,'' a

 gives more weight to overestimation 

(underestimation) and its magnitude reflect the degree of asymmetry. It is seen that, for 
,1a
 

LLF is quite asymmetric with overestimation being more costly than underestimation. For small 

values of 
|,| a

 LLF is almost symmetric and is not far from SELF. 

In many life testing experiments, the experimenter may not be observed the lifetimes of all 

inspected units in life test. This may be because of time limitation and/or cost or material 

resources on data collection. Also, the trimmed samples are widely utilized when some sample 

values at either or both extremes adulterated. 

The aim of present paper is to present a comparative study based on Bayes estimation for 

unknown parameter under different censoring plans. For this we consider here three different 

censoring schemes wiz, Item-Failure (Type-II), Doubly Type-II and Progressive Type-II right 

censoring. Bayes estimation has been addressed for Gompertz model under LINEX loss function. 
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The performances of the procedures are illustrating by a simulation technique. A real data (King 

et al. (1979)) example is also provided to illustrate the proposed methods. A brief conclusion is 

presented at the end. 

 
2. Bayes Estimation of Unknown Parameter under Informative Prior 

2.1. Item Failure Censoring 

In life testing, fatigue failures and other kinds of destructive test situations, the observations 

usually occurred in ordered manner such a way that weakest items failed first and then second 

one and so on. Let us suppose that n  items are put to test under the model (1.1) without 

replacement and test terminates as soon as first 
thr )( nr 

 item fails. This censoring scheme is 

known as Item–Failure censoring scheme.  

Now, )()2()1( ,...,, nxxx
 be n  ordered items assumed from model (1.1). If x  

 
)()2()1( ,...,, rxxx

 be first r  components of the observed failure items, then joint probability 

density function for these order statistics is defined as 
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Based on Bayes theorem, the posterior density is now defined as 
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Using (2.1) and (1.2) in (2.2), the posterior density is obtain as 
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The Bayes estimator IC̂
 for unknown parameter   under LLF is obtain by simplifying 

following equality 
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2.2. Doubly Type-II Censoring 

The plan of experiments with aim of reducing total duration or number of failures leads 

naturally to Type-I & Type-II censoring scheme. The main disadvantage of these censoring 

schemes is that they do not allow removal of units at points other than termination point of an 

experiment.  

In addition, sometime, some data may not be observed, a known number of observation in 

an ordered sample are missing at both ends in failure censored experiments, observations are 

smallest and largest, are random then data collected will be. In such case doubly censoring 

criterion is useful.  

Consider a life-test experiment in which n  identical units are placed on a test from the (1.1). 

The first r  units may be left censored due to negligence or problems at beginning of the 

experiment, and experiment terminates as soon as the 
ths  unit failed. Then the data 

)()1()( ,...,, srr xxx   constitute a Doubly Type-II censored sample in which 
)1( r

 smallest 

observations and 
)( sn 

 largest observations have been censored. If 
 )()1()( ,...,, srr xxxx 

 be 

the observed failure items, then the joint probability density function for these order statistics is 

defined as 
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where 
)(f

 and 
)(F

 be the corresponding probability density and distribution function 

respectively. Simplifying (2.5), we get 
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Applying Bayes theorem, the posterior density is obtained as  
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The Bayes estimator DC̂
 for unknown parameter   under LLF is given as  
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2.3. Progressive Type-II Censoring 

The progressive censoring appears to be a great importance in planned duration experiments 

in reliability studies. In many industrial experiments involving lifetimes of machines or units, 

experiments have to be terminated early and the number of failures must be limited for various 

reasons.  

Let us suppose an experiment in which n  independent and identical units nxxx ,...,, 21  are 

placed on a life test at the beginning time and first ; r  
)1( nr 

 failure times are observed. At 

the time of each failure occurring prior to the termination point, one or more surviving units are 

removed from the test. The experiment is terminated at time of 
thr  failure, and all remaining 

surviving units are removed from the test.  
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Let )()2()1( ... rxxx 
 are the lifetimes of completely observed units to fail and 

)( ; ,...,, 21 nrRRR r   are the numbers of units withdrawn at these failure times. Here, 

)( ; ,...,, 21 nrRRR r   all are predefined integers follows the relation  
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respectively (Balakrishnan & Aggarwala, 2000). 

The resulting r  ordered values, which are obtained as a consequence of this type of 

censoring, are appropriately referred to as Progressively Type-II right censored order statistics. 

Progressively Type-II right censoring scheme reduces to conventional Type-II censoring scheme 

when 
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above censoring scheme reduces to complete sample case. 

 

Based on Progressively Type-II censoring scheme the joint probability density function of 
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The progressive normalizing constant pC
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model. Simplifying (2.9) we have 
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Applying Bayes theorem, the posterior density is obtained as  
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The Bayes estimator PC̂
 for the parameter   under LLF is given as  
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3. Bayes Estimation under Non-Informative Prior 

3.1. Item Failure Censoring 

Using joint probability density function (2.1) and equation (2.2), the posterior density 

corresponding to the Jeffrey’s prior (1.3) is obtained as 
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The Bayes estimator IC
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 for unknown parameter   under LLF is obtain by simplifying 

following equality 
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3.2. Doubly Type-II Censoring 

Using joint probability density function (2.6) and equation (1.3) in equation (2.2), posterior 

density and Bayes estimator DC
ˆ̂

corresponding to unknown parameter   under LLF are given 

as 



 

268  A COMPARATIVE STUDY BASED ON BAYES ESTIMATION UNDER DIFFERENT 

CENSORING CRITERION 

 

      ;   exp   )1( ˆ| *   
1

0

1** xTCx D

rs
r

k

k

rk

DC   






  

1 

)1    (*

1

0

1 )1  (
 )1(ˆ























 
  rs

D

r

k

k

rk

xT

rs
C and 

     )1( ˆ log
1ˆ̂ )1    ( *

1

0

1*
















rs

D

r

k

k

rk

DC axTC
a


     (3.3) 

where    .   )1(ˆ

1 
)1    ( *

1

0

1*

















 

rs

D

r

k

k

rk xTC  

 

3.3. Progressive Type-II Censoring 

On similar line, the posterior density corresponding to prior (1.3) under Progressive 

censoring is obtained as  
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and the Bayes estimator PC
ˆ̂

 under LLF for unknown parameter   is 
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P
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4. Simulation Study 

A simulation is used in order to compare the performances of the proposed Bayes estimators 

in terms of risk magnitude under different censored plans. We carry out this comparison by taking 

the sample size as 20n  with the set of prior parameter 
) ,( cb ),70.0,50.0( ),00.1,00.1(

),58.1,50.2( )16.3,10(),30.2,5(
 and 

)0,0(
. Here, the criterion behind the selection of these 

prior parametric values is that the prior variance should be unity. Also, 0 cb  reflect the 

study under non-informative (Jeffrey’s) prior. Hence, all the results should be valid for both 

informative and non-informative priors. 

Tables 1-3, presents the risk of Bayes estimators obtained under LLF using Item-Failure, 

Doubly and Progressive Type-II censoring scheme respectively for selected set of values of a

)50.1 ,01.0 ,50.0(
 and  ,00.1(

 
) 500 ,50.2

. The results are based on 100,000 simulation 

runs. 
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The Gompertz distribution is a flexible distribution that can be skewed to the right and to the 

left. The Gompertz distribution is often applied to describe the distribution of adult lifespans by 

actuaries and demographers. Computer scientists have also started to model the failure rates of 

computer codes by the Gompertz distribution. Related fields of science such as biology and 

gerontology also considered the Gompertz distribution for the analysis of survival. More 

recently, In Marketing Science, it has been used as an individual-level simulation for customer 

lifetime value modeling. All the said applications, overestimation is more serious than 

underestimation. 

Hence, the positive value of shape parameter 
)0(a

 is considered here and it shows the loss 

function is quite asymmetric about 0 with overestimation being more costly than underestimation. 

 
4.1. Item-Failure Censoring Scheme 

The test is terminated when 
 15 ,10 ,5 r , as it is supposed. The risk magnitude is increase 

as prior parameter increase (except for 
) ,( cb

(10, 3.16)). A decreasing trend has seen in the 

risk magnitude when censored sample size r  increases when other parametric values are fixed 

(Table 1). Further an opposite trend in the risk magnitude also seen when ''a  increase.  

It is noted that, when the value of parameter   increases the risk magnitude first decrease 

and then increase. However, the magnitude of risk under the LLF is nominal (Table 1). 

 
4.2. Doubly Censoring Scheme 

The Risk of the Bayes estimators DC̂
 and DC

ˆ̂
 have been obtained under LLF, for the 

similar set of considered parametric values as discussed above and presented in Table 2. The left 

censoring rate is assumed to be 20%, 30%, 40%; and the right censoring rate accordingly assume 

for the fixed non-censored items 5, 10, 15 respectively. For example if the left censoring rate is 

20% and the non-censored items is prefixed into 5, then right censoring rate will be 55%.  

All the behaviors have been seen similar corresponding to the Bayes estimators obtained 

under Item-Failure criterion. The gain in risk magnitude is noted here for doubly censoring 

criterion as compared to previous one. However, the gain in magnitude is robust. 

 
4.3. Progressive Censoring Scheme 

A Progressively Type-II censored sample of size r  form given values of censoring scheme 

, ,...,2 ,1 ; riRi 
 for considered model have generated, according to an algorithm proposed by 

Balakrishnan & Aggarwala (2000). The censoring schemes for different values of r  are 

presented in Table 7 and the risk of Bayes estimators under LLF in Table 3.  
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Again it is seen that all the properties of Bayes estimators are similar as discussed above, for 

both censoring criterion. Further, it is noted also here that the magnitude of risk are smaller than 

compared to Item Failure or doubly censoring criterion. 

 
4.4 Studies with Generated Values of  

For observing the effect of the unknown parameter 
,
 we generate the value of parameter 

  by using b  and c  from prior density (1.2). Using these generated values of   and other 

parametric values considered as above, the risk of Bayes estimators obtained and presented in 

Tables 4-6 under all three considered censoring criterion. All the properties have been seen 

similar as discussed above. It is also noted that the risk magnitude of Bayes estimators is robust 

when compared to pre-assume values of parameter   case, for all considered censoring plans. 

 
5. A Real Data Example 

We illustrate the use of estimation methods given in this paper by real data considered by 

King et al. (1979) for a tumor-free days of 30 rats fed with unsaturated diet. These data are also 

presented by Lee (1992) and studied by Chen (1997) and Wu et al. (2003). They assumed a 

Gompertz distribution for tumor-free times.  

Under the different censoring plans, the censored sample size r  is taken as 18 from 30n . 

The risks magnitude of Bayes estimators under LLF are presented in Table 8, with others 

parametric values as considered in previous section. All the properties as discussed above have 

been seen similar. Also, the risks magnitude obtained here are least than compared to simulation 

study. This pattern is similar under each censoring plans. 

 
6. Conclusion 

The censoring arises when exact lifetimes are only partially known and it is useful in life 

testing experiments for time and cost restrictions. Especially when some sample values at either 

or both extremes might have been adulterated. The aim of article is to present a comparative 

study based on Bayes estimation under different censoring plans. For this we consider here Item 

failure censoring, Doubly and Progressive Type-II right censoring. The Bayes estimation has 

been addressed for underlying model under the LINEX loss function.  

Here, two different criterions for selection of values of unknown parameter has been taken, 

in which one is pre assumed value of unknown parameter and second one is the generated values 

of the unknown parameter. From the above sections we have already seen that all properties of 

Bayes estimators under all censoring plans are seen to be similar. But, one remarkable point is 

that the risk magnitude of Bayes estimators under LLF is nominal when it is taken from 
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Progressive Type-II censoring. In comparison of censoring schemes, the result under Progressive 

Type-II censoring seems to be more efficient over Item-failure or Doubly censoring scheme. 

It has been seen also that, when the shape parameter of LINEX loss ''a  increase the risk first 

increase and then stable. For higher values of 
,''a
 the changes in magnitude of the risk is robust. 

Hence, small values of shape parameter are suitable. 
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Table 1: Risk of Bayes Estimator under Item–Failure Censoring 

20n  









ICR 

ˆ̂
 

 

 ICR ̂ 
 

),( cb
 

  a  r  0,0
 

70.0,50.0
 

00.1,00.1
 

58.1,50.2
 

30.2 ,5
 

16.3 ,10
 

2.50 

0.50 

5 0.8554 0.8640 0.8719 0.8799 0.8806 0.8425 

10 0.8353 0.8438 0.8516 0.8595 0.8600 0.8229 

15 0.7874 0.7952 0.8027 0.8101 0.8107 0.7756 

1.00 

5 0.8639 0.8724 0.8806 0.8886 0.8892 0.8509 

10 0.8437 0.8521 0.8600 0.8679 0.8686 0.8309 

15 0.7951 0.8032 0.8107 0.8181 0.8186 0.7833 

1.50 

5 0.8723 0.8811 0.8892 0.8975 0.8980 0.8593 

10 0.8520 0.8604 0.8686 0.8765 0.8771 0.8393 

15 0.8031 0.8111 0.8185 0.8261 0.8267 0.7909 

5.00 

0.50 

5 0.8374 0.8458 0.8536 0.8615 0.8620 0.8248 

10 0.8179 0.8260 0.8337 0.8414 0.8419 0.8056 

15 0.7708 0.7786 0.7858 0.7930 0.7936 0.7593 

1.00 

5 0.8457 0.8541 0.8620 0.8699 0.8706 0.8329 

10 0.8259 0.8342 0.8419 0.8497 0.8503 0.8135 

15 0.7785 0.7862 0.7936 0.8009 0.8015 0.7668 

1.50 

5 0.8540 0.8625 0.8706 0.8786 0.8791 0.8412 

10 0.8341 0.8424 0.8503 0.8580 0.8587 0.8216 

15 0.7861 0.7940 0.8014 0.8087 0.8093 0.7743 

10 

0.50 

5 0.8403 0.8487 0.8566 0.8644 0.8650 0.8277 

10 0.8207 0.8288 0.8367 0.8442 0.8449 0.8084 

15 0.7735 0.7812 0.7885 0.7958 0.7964 0.7620 

1.00 

5 0.8487 0.8570 0.8650 0.8730 0.8736 0.8358 

10 0.8287 0.8371 0.8449 0.8526 0.8532 0.8163 

15 0.7812 0.7890 0.7964 0.8037 0.8042 0.7695 

1.50 5 0.8570 0.8655 0.8736 0.8815 0.8821 0.8441 
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10 0.8371 0.8453 0.8532 0.8611 0.8618 0.8244 

15 0.7889 0.7968 0.8041 0.8115 0.8122 0.7770 
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Table 2: Risk of Bayes Estimator under Doubly Censoring 

 

20n  








DCR 

ˆ̂
   DCR ̂  

),( cb
 

  a  r  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

2.50 

0.50 

5 0.8554 0.8907 0.8996 0.9079 0.9162 0.9169 

10 0.8353 0.8698 0.8786 0.8867 0.8949 0.8955 

15 0.7874 0.8199 0.8280 0.8358 0.8435 0.8441 

1.00 

5 0.8639 0.8995 0.9084 0.9169 0.9253 0.9259 

10 0.8437 0.8785 0.8872 0.8955 0.9037 0.9044 

15 0.7951 0.8279 0.8363 0.8441 0.8518 0.8524 

1.50 

5 0.8723 0.9083 0.9174 0.9259 0.9345 0.9350 

10 0.8520 0.8871 0.8959 0.9044 0.9127 0.9133 

15 0.8031 0.8362 0.8446 0.8523 0.8602 0.8608 

5.00 

0.50 

5 0.8374 0.8719 0.8807 0.8888 0.8970 0.8976 

10 0.8179 0.8516 0.8601 0.8681 0.8761 0.8766 

15 0.7708 0.8026 0.8107 0.8182 0.8257 0.8263 

1.00 

5 0.8457 0.8806 0.8893 0.8976 0.9058 0.9065 

10 0.8259 0.8600 0.8686 0.8766 0.8847 0.8854 

15 0.7785 0.8106 0.8186 0.8263 0.8339 0.8346 

1.50 

5 0.8540 0.8892 0.8981 0.9065 0.9148 0.9154 

10 0.8341 0.8685 0.8771 0.8854 0.8934 0.8941 

15 0.7861 0.8185 0.8268 0.8345 0.8421 0.8427 

10 

0.50 

5 0.8403 0.8750 0.8837 0.8919 0.9001 0.9007 

10 0.8207 0.8546 0.8630 0.8712 0.8790 0.8797 

15 0.7735 0.8054 0.8134 0.8210 0.8286 0.8292 

1.00 

5 0.8487 0.8837 0.8924 0.9007 0.9090 0.9096 

10 0.8287 0.8629 0.8716 0.8797 0.8878 0.8884 

15 0.7812 0.8134 0.8215 0.8292 0.8368 0.8374 
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1.50 

5 0.8570 0.8923 0.9012 0.9096 0.9179 0.9185 

10 0.8371 0.8716 0.8802 0.8884 0.8966 0.8973 

15 0.7889 0.8214 0.8297 0.8373 0.8450 0.8457 
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Table 3: Risk of Bayes Estimator under Progressive Censoring 

 

  

20n  








PCR 

ˆ̂
   PCR ̂  

),( cb
 

  a  r  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

2.50 

0.50 

5 0.7890 0.7969 0.8042 0.8115 0.8122 0.7770 

10 0.7704 0.7783 0.7855 0.7928 0.7932 0.7590 

15 0.7262 0.7334 0.7404 0.7472 0.7478 0.7154 

1.00 

5 0.7968 0.8046 0.8122 0.8196 0.8202 0.7848 

10 0.7782 0.7859 0.7932 0.8005 0.8012 0.7664 

15 0.7334 0.7408 0.7478 0.7546 0.7551 0.7225 

1.50 

5 0.8045 0.8127 0.8202 0.8278 0.8282 0.7926 

10 0.7858 0.7936 0.8012 0.8085 0.8090 0.7742 

15 0.7407 0.7481 0.7550 0.7620 0.7625 0.7295 

5.00 

0.50 

5 0.7723 0.7801 0.7873 0.7946 0.7951 0.7607 

10 0.7544 0.7619 0.7690 0.7761 0.7765 0.7431 

15 0.7110 0.7182 0.7248 0.7314 0.7320 0.7003 

1.00 

5 0.7800 0.7878 0.7951 0.8023 0.8030 0.7682 

10 0.7618 0.7695 0.7765 0.7837 0.7843 0.7504 

15 0.7181 0.7252 0.7320 0.7387 0.7393 0.7072 

1.50 

5 0.7877 0.7955 0.8030 0.8104 0.8109 0.7759 

10 0.7694 0.7770 0.7843 0.7914 0.7920 0.7578 

15 0.7251 0.7323 0.7392 0.7459 0.7464 0.7141 

10 

0.50 

5 0.7750 0.7828 0.7901 0.7973 0.7978 0.7634 

10 0.7570 0.7645 0.7718 0.7787 0.7793 0.7456 

15 0.7135 0.7206 0.7273 0.7340 0.7346 0.7028 

1.00 

5 0.7828 0.7905 0.7978 0.8052 0.8058 0.7709 

10 0.7644 0.7721 0.7793 0.7864 0.7869 0.7529 

15 0.7206 0.7277 0.7346 0.7413 0.7417 0.7097 

1.50 

5 0.7905 0.7983 0.8058 0.8131 0.8136 0.7786 

10 0.7721 0.7796 0.7869 0.7942 0.7949 0.7603 

15 0.7276 0.7349 0.7416 0.7485 0.7491 0.7166 
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Table 4: Risk of Bayes Estimator Based on Generated   (Item-Failure Censoring) 

20n  








ICR 

ˆ̂
   ICR ̂  

),( cb
 

a  r  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

0.50 

5 0.7846 0.7925 0.7999 0.8073 0.8078 0.7728 

10 0.7664 0.7740 0.7812 0.7884 0.7888 0.7549 

15 0.7223 0.7296 0.7363 0.7431 0.7437 0.7115 

1.00 

5 0.7924 0.8003 0.8078 0.8151 0.8158 0.7804 

10 0.7739 0.7817 0.7888 0.7962 0.7967 0.7623 

15 0.7295 0.7367 0.7437 0.7505 0.7511 0.7185 

1.50 

5 0.8002 0.8082 0.8158 0.8233 0.8238 0.7882 

10 0.7816 0.7893 0.7967 0.8040 0.8046 0.7699 

15 0.7366 0.7440 0.7510 0.7578 0.7583 0.7255 

 

Table 5: Risk of Bayes Estimator Based on Generated   (Doubly Censoring) 

20n  








DCR 

ˆ̂
   DCR ̂  

),( cb
 

a  r  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

0.50 

5 0.7684 0.7761 0.7833 0.7906 0.7910 0.7569 

10 0.7505 0.7580 0.7650 0.7721 0.7726 0.7393 

15 0.7073 0.7145 0.7211 0.7277 0.7282 0.6968 

1.00 

5 0.7761 0.7838 0.7910 0.7983 0.7989 0.7643 

10 0.7579 0.7655 0.7726 0.7797 0.7803 0.7465 

15 0.7144 0.7215 0.7282 0.7349 0.7355 0.7037 

1.50 

5 0.7837 0.7915 0.7989 0.8062 0.8067 0.7719 

10 0.7654 0.7730 0.7803 0.7873 0.7880 0.7539 

15 0.7214 0.7286 0.7354 0.7421 0.7427 0.7105 
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Table 6: Risk of Bayes Estimator Based on Generated   (Progressive Censoring) 

20n  








PCR 

ˆ̂
   PCR ̂  

),( cb
 

a  r  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

0.50 

5 0.6798 0.6867 0.6930 0.6994 0.6999 0.6696 

10 0.6640 0.6706 0.6769 0.6832 0.6835 0.6541 

15 0.6258 0.6321 0.6380 0.6438 0.6443 0.6165 

1.00 

5 0.6866 0.6935 0.6999 0.7062 0.7068 0.6762 

10 0.6705 0.6773 0.6835 0.6899 0.6903 0.6606 

15 0.6321 0.6384 0.6443 0.6502 0.6507 0.6225 

1.50 

5 0.6934 0.7002 0.7068 0.7133 0.7138 0.6830 

10 0.6772 0.6839 0.6903 0.6967 0.6971 0.6671 

15 0.6383 0.6446 0.6507 0.6566 0.6570 0.6286 

 

Table 7: Different Progressive Censoring Scheme 

Case r  r1,2,...,i ; R i   

1 5 1 2 1 0 1 

2 10 1 0 0 3 0 0 1 0 0 1 

3 15 1 0 2 0 0 1 0 2 0 0 0 1 0 0 1 
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Table 8: The Risk of Bayes Estimators Based on Real Data 

Item-Failure Censoring
 

18

30





r

n
 









ICR 

ˆ̂
   ICR ̂  

),( cb
 

a  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

0.50 0.7469 0.7544 0.7614 0.7685 0.7690 0.7357 

1.00 0.7543 0.7618 0.7690 0.7760 0.7766 0.7429 

1.50 0.7617 0.7693 0.7766 0.7838 0.7842 0.7503 

Doubly Censoring
 

18

30





r

n
 









DCR 

ˆ̂
   DCR ̂  

),( cb
 

a  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

0.50 0.7137 0.7208 0.7275 0.7343 0.7347 0.7030 

1.00 0.7208 0.7280 0.7347 0.7415 0.7420 0.7099 

1.50 0.7279 0.7351 0.7420 0.7488 0.7493 0.7169 

Progressive Censoring
 

18

30





r

n
 









PCR 

ˆ̂
   PCR ̂  

),( cb
 

a  0,0  70.0,50.0  00.1,00.1  58.1,50.2  30.2 ,5  16.3 ,10  

0.50 0.6472 0.6537 0.6597 0.6658 0.6663 0.6374 

1.00 0.6536 0.6601 0.6663 0.6722 0.6728 0.6438 

1.50 0.6600 0.6666 0.6728 0.6790 0.6795 0.6502 

 

 

 
 




