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Abstract: This paper reviews zero-inflated count models and applies them
to modelling annual trends in incidences of occupational allergic asthma,
dermatitis and rhinitis in France. Based on the data collected from 2001 to
2009, the study uses the incidence rate ratios (IRR) as percentage of changes
in incidences and plots them as function of the years to obtain trends. The
investigation reveals that the trend is decreasing for asthma and rhinitis, and
increasing for dermatitis, and that there is a possible positive association
between the three diseases.
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1. Introduction

One generally means by count data those issued from the count of the number
of occurrences of an event of interest. Some examples of such data are, the number
of medical visit per month for a patient, the number of vehicles produced by a
firm per year, the number of failures of a machine during a period. It is well
known that count data may exhibit over/under-dispersion and/or contain too
many zeros than expected. These properties suggest the use of ad-hoc models
such as the so-called zero-inflated regression models or hurdle regression models,
rather than the usual Poisson regression model which assumes the equality of the
mean and the variance of the observations.

Zero-inflated models and hurdle models are reviewed for instance, in Gschlöβl
and Czado (2008) and Ridout et al. (1998). The reader can also refer to Grumu
(1997) and Hall (2000), and references therein. These models whose story goes
back at least to Mullahy (see Mullahy, 1986), have successfully been used in
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econometrics, demography, medicine, public health, epidemiology, biology and in
many other fields. One of their main interesting features is that they adjust well
to data issued from a particular mixture of two populations: one in which one has
only zero counts and another in which the counts are the realizations of a discrete
distribution. An example in public health is that of a population composed of a
group of persons at risk and of a group of persons not at risk. Zero-inflated models
would allow the occurrences of zeros in both groups while hurdle models would
allow occurrences of zeros only in the group of persons not at risk. These two
classes of models therefore assume that the data are issued from a mixture of two
processes: one generating zero counts and the other generating positive integers
data. Lambert (1992) provides a motivation application of these models and
discusses the case of zero-inflated Poisson (ZIP) models. Other papers dealing
with these count models are amongst others, Mullahy (1986), Hall and Berenhaut
(2002), Jansakul and Hinde (2001), Gupta and Gupta (2004) and Deng and Paul
(2005).

Zero-inflated and hurdle models can be summarized as follows:

P (Y = y|ω) = ωδ0(y) + (1− ω)f(y), (1.1)

where Y is the count variable, ω is the proportion of the excess of zeros, δ0(y) = 1
if y = 0, and = 0, otherwise, f(y) is the density of a count distribution.

One can easily observe that for f(0) = 0 and ω 6= 0, (1.1) is a hurdle model,
while for f(0) 6= 0 and ω 6= 0, it is a zero-inflated model. For ω = 0, one retrieves
a classical count distribution as Poisson, binomial etc. For ω > 0, (1.1) is either
a zero-inflated model or a hurdle model. For ω < 0, (1.1) is a zero-deflated model
and is no more considered as a mixture model. In the literature, f(y) is either
a binomial, a geometric, a Poisson, a negative binomial or a generalized Poisson
distributions.

Once the proportion of excess of zeros is estimated, their number can easily
be estimated. The estimation can in turn be interpreted as an estimation of the
lower bound of the number of occurrences of the event of interest that were not
counted. Indeed, an excess of zero count corresponds to an occurrence which,
for one reason or another, is not taken into account. Therefore, in epidemiology
for example, the knowledge of the proportion of excess of zeros in data on the
incidence of a given disease can help improving the analysis of these data.

In statistics, trend can be defined as the general direction of the curve de-
scribing a relationship between two variables. This notion is very familiar in the
modelization of economic and financial time series where it is known as temporal
or time trend. It is however also largely studied in genetic (see, eg, Texier and
Sellier, 1986; Zamudio et al., 2002; Bokor et al., 2007; Mourao et al., 2008; Bakir
et al., 2009), and epidemiology (see, eg, Bassetti et al., 2006; Zaghloul et al., 2008;
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Hothorn et al., 2009; McNamee et al., 2009; Bateman et al., 2010). Estimating
trend can be very useful for the sake of prediction. For example, in epidemiology,
the knowledge of the trend in the incidence of a disease can help preparing useful
materials for containing this disease. McNamee et al. (2009) has to do with the
study of temporal trends in some work-related skin and respiratory diseases in
the United Kindom. In this paper, the authors donnot use zero-inflated models.
Instead, they use a Poisson model with a gamma random effect to modelize a set
of data containing possible extra zeros.

The aim of this paper is to present zero-inflated count models, and apply
them to modelling annual trends in the incidences of some occupational allergic
diseases in France. Our study is based on the idea developed in McNamee et
al. (2009), with an application to the data collected from 2001 to 2009 by the
Réseau National de Vigilance et de Prévention des Pathologies Professionnelles
(RNV3P).

This paper is organized as follows. In Section 2, we give a survey of zero-
inflated models. In Section 3, we apply these models to the study of trends in
the incidences of occupational asthma, rhinitis and dermatitis in France.

2. Survey of the Zero-Inflated Models

2.1 The Common Count Models

We first present the count models commonly encountered in literature. The
most common one is undoubtedly the Poisson regression model. The Poisson
distribution with parameter µ > 0, denoted by P (µ) is defined by:

P (Y = y|µ) =
e−µµy

y!
, y = 0, 1, 2, · · · .

It is well known that for this distribution, the expectation equals the variance.
That is, E(Y = y|µ) = V ar(Y = y|µ) = µ. In the Poisson regression the response
Yi’s are independent, and each Yi ∼ P (µi), µi > 0, i = 1, 2, . . . , n, with mean
expressed in terms of some covariables xi and the unknown regression parameters
vector β: E(Yi = yi|xi, β) = µi(xi, β) = µi > 0. In general, µi(xi, β) = exp(xiβ),
i = 1, 2, · · · , n.

An alternative to the Poisson regression model is the negative binomial re-
gression model which takes into account a possible over-dispersion of the data.
The distribution of the negative binomial distribution with parameters r > 0 and
µ > 0, denoted by NB(r, µ) is given by:

P (Y = y|r, µ) =
Γ(y + r)

Γ(r)y!

(
r

µ+ r

)r ( µ

µ+ r

)y
, y = 0, 1, 2, · · · ,
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where for α > 0,

Γ(α) =

∫ ∞
0

xα−1e−xdx.

For this distribution, one can easily prove that E(Y = y|µ) = µ and V ar(Y =
y|r, µ) = µ (1 + µ/r) = µϕ. This last equality clearly shows that ϕ is the over-
dispersion factor. It is immediate that for r → ∞ one retrieves the Poisson
distribution with parameter µ. It would be interesting to mention that other
parametrizations use r = a−1 for a > 0.

From simple computations, one finds that if

y0 =
µr − µ− r

r
(2.1)

is not a positive integer, the negative binomial distribution has a unique mode at
[y0] (the integer part of y0), and that if k is an integer, this distribution has two
modes at y0 and y0 + 1.

In negative binomial regression, the responses Yi’s are independent, and each
Yi ∼ BN(r, µi), µi > 0, i = 1, 2, · · · , n, with mean expressed in terms of some
covariables xi and an unknown regression parameter vector β as in Poisson re-
gression: E(Yi = yi|xi, β) = µi(xi, β) = µi. Here, the over-dispersed parameter
ϕi = 1 + µi/r depends on i.

Another alternative to the Poisson regression model is the generalized Poisson
regression model. A random variable Y is said to have a generalized Poisson
distribution with parameters θ and λ > 0, and denoted by GP (θ, λ) if:

P (Y = y|θ, λ) =

 θ(θ + yλ)y−1
1

y!
exp(−θ − yλ), y = 0, 1, 2, · · · ,

0, y > m for λ < 0,

where θ > 0, max(−1,−θ/m) ≤ λ ≤ 1 and m (≥ 4) is the largest positive integer
for which θ + λm > 0 when λ < 0. It is easy to show that E(Y = y|θ, λ) =
θ/(1− λ) = θϕ and V ar(Y = y|θ, λ) = E(Y = y|θ, λ)ϕ2. One can remark that
ϕ2 represents an over-dispersion factor. For λ = 0 this distribution reduces to
the Poisson distribution P (θ). For λ > 0 it is over-dispersed, and for λ < 0 it is
under-dispersed. Here, in contrast to the negative binomial model the dispersion
factor is the same for all observations. Another important remark is that the
generalized Poisson distribution GP (θ, λ) is unimodal regardless the values of θ
and λ.

In the generalized Poisson regression model, the responses Yi’s are inde-
pendent, and each Yi ∼ GP (θi, λ), i = 1, 2, · · · , n, with E(Yi = yi|xi, β, λ) =
µi(xi, β) = µi > 0, for covariables xi and parameter β. One can also observe that
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the equality µi = θi/(1− λ) = θiϕ leads to the following new parametrization of
the distribution:

P (Yi = yi|xi, β, λ) = µi[µi + (ϕ− 1)yi]
yi−1ϕ

−yi

yi!
× exp

[
−µi + (ϕ− 1)yi

ϕ

]
.

2.2 Inference in Parametric Zero-Inflated Models

Rewriting (1.1) with f(y) = f(y|φ) depending on an unknown parameter φ,
one has:

P (Y = y|ω, φ) =

{
ω + (1− ω)f(0|φ), y = 0,
(1− ω)f(y|φ), y > 0.

From simple computations, one finds that the mean and the variance of this
distribution are given by:{

E(Y |ω, φ) = (1− ω)Ef (Y |φ),

V ar(Y |ω, φ) = ω(1− ω) [Ef (Y |φ)]2 + (1− ω)V arf (Y |φ).
(2.2)

Denote µL the mean of a distribution L. It results from (2.2) that for the
zero-inflated Poisson ZIP (µP ) model, the mean equals (1 − ω)µP and the vari-
ance equals the mean times ωµP + 1. For the zero-inflated generalized Poisson
ZIGP (θ, λ) model, the expectation is (1− ω)µGP while the variance equals this
number times µGPω+1/(1− λ)2. Finally, for the zero-inflated negative binomial
ZINB(r, µ) model, the mean is (1 − ω)µNB and the variance is this quantity
times ωµBN + 1 + µNB/r. From these results, one can see that the dispersion
can result either from ω, r or λ.

Zero-inflated regression models are generally built as follows. Let Y1, · · · , Yn
be independent random variables following one of the above distributions with
expectation µL,i and proportion of excess of zeros ωi depending on individuals.
For ω = (ω1, · · · , ωn), ωi > 0, i = 1, · · · , n and µ = (µL,1, · · · , µL,n), µL,i > 0,
one can take {

ωi = G(z′iα),
µL,i = exp(x′iβ),

(2.3)

where zi and xi are the covariables and α and β the corresponding parameter
vectors, and the link function G(x) being either the logistic function or the cu-
mulative distribution function of a standard normal random variable:

G(x) =


exp(x)

1 + exp(x)
,

1√
2π

∫ x

−∞
exp

(
−u

2

2

)
du, x ∈ R.
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In many situations, ωi and µL,i are assumed to be linked by some relation which
can considerably reduce the number of parameters in the model. The most com-
mon example is that where for all i = 1, · · · , n,

log

(
ωi

1− ωi

)
= −γ log(µL,i) ⇐⇒ ωi =

µ−γL,i

1 + µ−γL,i
,

for some real parameter number γ. For positive values of γ, the zero state becomes
less likely and for negative values, excess zeros become more likely.

The form of the likelihood of (1.1) at Y = (y1, · · · , yn), for ω = (ω1, · · · , ωn),
and φ = (φ1, · · · , φn) is given by:

L(Y |ω, φ) =
∏
i:yi=0

[ωi + (1− ωi)f(0|φi)]×
∏
i:yi>0

[(1− ωi)f(yi|φi)] . (2.4)

When the ωi’s are expressed in terms of the covariates zi’s and parameter α, and
when the φi = µL,i’s are expressed in terms of the covariates xi’s and parameter
β, one obtains another parametrization of the likelihood on the basis of which
inference can be done.

Parameter estimation in these models are generally done by the maximum
likelihood method. That is, by maximizing (2.4) or its logarithm after plugging-
in (2.3). For doing this, one usually needs optimization methods such as Gauss-
Newton, Newton-Raphson or other numerical methods. A relevant paper is Lam-
bert (1992) where this estimation is considered in the case of ZIP model with the
study of its standard errors and confidence intervals. However, parameter estima-
tion by maximum likelihood method has been discussed in many papers before.
In Fahrmeir and Kaufmann (1985) is studied the consistency and the asymptotic
normality of the maximum likelihood estimator of a generalized linear model. In
Lawless (1987) is estimated the parameters of a negative binomial model by a
likelihood method and by the approach of Breslow (1984). A more recent paper
in this field is Famoye and Singh (2006) where is investigated likelihood estima-
tors in zero-inflated generalized Poisson regression models. Many other papers
dealing with maximum likelihood estimation in these models can be found in the
references given in the above cited papers.

As far as testing statistical hypotheses is concerned, the tests used in zero-
inflated models are score-type tests. The main hypothesis tested are either the
inflation of zeros, either the over-dispersion or jointly inflation of zeros and over-
dispersion. Such tests are used for instance, in Mullahy (1986) for testing a
general class of count models, and in Lawless (1987) for testing a Poisson model
against a negative binomial model. Most of the existing papers are, however,
concerned with testing the excess of zeros. Such papers are amongst others, van



Zero-Inflated Models for Trends Modelling 645

den Broek (1995) who studies a score test for testing inflation in a Poisson dis-
tribution, Deng and Paul (2000) who presents a score test of goodness-of-fit for
discrete generalized linear models against zero-inflated models, Hall and Beren-
haut (2002) where is proposed a score test for heterogeneity and over-dispersion
in zero-inflated and binomial regression models, Famoye and Singh (2006) where
is applied a score test for the excess of zeros in zero-inflated regression models,

Gupta and Gupta (2004) whose score test is applied to testing zero-inflated
generalized Poisson regression models, Deng and Paul (2000) where a score test
is used for testing the inflation of zeros, the over-dispersion and jointly inflation
of zeros and over-dispersion in zero-inflated generalized linear regression models.

2.3 Some Existing Applications

Zero-inflated models have been applied to many genuine data sets from var-
ious sources. In Mullahy (1986) these models are applied to modelling survey
micro data on beverage consumption. In Lawless (1987) such a model is ad-
justed to a set of data from ship damage incidents (see McCullagh and Nelder,
1983). In Lambert (1992) zero-inflation models are applied to modelling defects
in manufacturing, while in van den Broek (1995) they are applied on data from
HIV-infected men (see Hoepelman et al.,1992). Using an hurdle model, Bohara
and Krieg (1996) examines the migration frequency in the United States of Amer-
ica. In Böhning et al. (1997) zero-inflated count models are used for modeling
four sets of data from dental epidemiology, traffic accidents, crime sociology and
graphic epidemiology respectively. In Deng and Paul (2000) they are adjusted
to data concerning patients who experienced frequent premature ventricular con-
tractions. In Famoye and Singh (2006) a such model is adjusted to a set of
domestic violence data with many zeros. Ridout et al. (1998) illustrate their
work with an example from horticultural research, and review a broad amount of
papers treating biological examples of data sets modelled by zero-inflation count
models. Another relevant paper is Gschlöβl and Czado (2008) where these mod-
els are applied to modelling invasive meningococcal disease in Germany. As one
can see, there is no doubt that the scope of application of these models is large.
In the next section we give more applications.

3. Modelling Trends in Occupational Allergic Diseases in France

3.1 Trends in Genetics and Epidemiology Data

Trends have been studied in many fields of genetic including cattle and threes.
On this subject some relevant works are, Texier and Sellier (1986) who estimate
genetic trends for growth and carcass traits in two French pig breeds, Zamudio et
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al. (2002) where is studied trends in wood density and radial growth with cambial
age in a radiata pine progeny test, Bokor et al. (2007) where is investigated
trends in the Hungarian racehorse populations, Mourao et al. (2008) in which
is estimated trend of meat quality traits in a male boiler line, and Bakir et al.
(2009) where trends in days yield in Holstein Friesian cattle are estimated. The
statistical tool used in these papers for the study of trends is the classical linear
model or its extension to random effects or fixed effects models. The reason is
that the response variables and the covariates are of real nature.

Trends in general, and temporal trends in particular, have also been investi-
gated in epidemiology. For instance, Hothorn et al. (2009) present some trend
tests for evaluating exposure-response relationships in epidemiological exposure
studies. Using a chi-square test, Bassetti et al. (2006) study epidemiological
trends in nosocomial candidemia in intensive care. Zaghloul et al. (2008) study
temporal trends in patient with bladder cancer who underwent definitive surgery
along an extended time of 17 years. The tools used for this study are ANOVA,
Student and chi-square tests.

The study in McNamee et al. (2009) is of a great interest to us as it is very
similar to what we wish to do. In this paper, the authors measure temporal
trends in the incidence of some work-related diseases in the United Kingdom
from 1996 to 2005 on the basis of count data with possible extra zeros counts,
collected by three groups of reporters spread all over the country. The authors
use a Poisson regression model with a gamma random effects, which is equivalent
to using a negative binomial regression. The dependent variable is the number
of case per reporter per month. The main covariates are months or seasons, the
years as categorial variables and as numerical variables. The authors considered
the effects of the calendar years in the regression as incidence rate ratio (IRR).
They next interpret these IRR as percentage of changes in incidence, and plot
them as functions of the calendar years to display annual trends. They modelize
separately trends in probability of non-response. However, we think that it could
be very interesting to treat both modelizations with one single model, by using
zero-inflated models.

3.2 The Data and the Methods

As already mentioned earlier, one of our main objectives is to model annual
trends in incidences of some occupational dermatitis and respiratory diseases in
France from 2001 to 2009. Our work is based on data collected by the RNV3P
from the 32 French centres of occupational diseases, named Centre de Consulta-
tion de Pathologies Professionnelles (CCPP). The diseases involved are allergic
asthma, dermatitis and rhinitis.

Organization and goals of the RNV3P were described in Bonneterre et al.
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(2008). Briefly, Occupational disease Departments of French University Hospi-
tals reported since 2001 all cases of diseases thought to be in relation with work
exposures. Each occupational health report is a structured expert clinical re-
port whose principal coded items are: principal disease and co-morbid diseases
(ICD-10), principal nuisance and four other possible nuisances (INRS-CNAM),
professional position (ISCO-88, edited by ILO) and sector of professional activity
(NAF, edited by INSEE). Each association plausibility between the principal nui-
sance and nuisances was rated by an expert. The present work included all cases
of asthma (J45 to J45.9 ICD-10 codes), allergic rhinitis (J30.0 to J31.0 ICD-10
codes) and contact dermatitis (L23.0 to L23.9 ICD-10 codes) reported between
2001 and 2009 with at least probable or certain association with one occupational
exposure.

For the study of the annual trends in the incidences of these diseases, we
follow the approach developed in McNamee et al. (2009). But rather than using
a Poisson regression models with random effects, we use ZINB regression models
described in the preceding paragraph. The dependent variable is the number
of cases per centre per month. The covariates are the months labeled Jan, Feb
Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec, the years considered as
categorial variables labeled Year1, Year2, · · · , Year9, and the 32 centres labeled
C01, C02, · · · , C31, C32. The reference month is August, the reference year is
2004 and the reference centre is C18. We checked that these arbitrary choices
donnot have any incidence on the trends of our data.

3.3 Numerical Results

Each set of data contains n = 3456 observations that can be assumed to be
independent. Examining these data, it is seen that they comprise a large number
zeros : 2162 for asthma, 2156 for dermatitis and 2698 for rhinitis. See also the
histograms of Figures 1-3. Given this amount of zeros, it is natural to question
the possibility of a proportion of extra zeros amongst them. Next, one finds that
for asthma, the mean is 0.835, the variance is 2.55 and the maximal value is 22.
For dermatitis, the mean is 0.977, the variance is 3.735 and the maximal value is
21. Finally, for rhinitis, the mean is 0.349, the variance is 0.730 and the maximal
value is 12. One can see that data are overdispersed as the variances are larger
than the means.

These features of our data suggest the use of zero-inflated models for their
modelizations. Although we presented three classes of these count models, we
only used ZIP and ZINB regression models for doing this. The main reason is
that only these models are available on the software SAS that we use. But we
would like to mention also that we used R software for the study of trend tests
and plotting graphics.
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The zero-inflated link function, or the function G(x) we used was the logistic
function. The covariates in this part of the model were the months and the
centres, while in the main part, in addition to these were the years as covariates.
We made this choice because including the years in the zero-inflated part gives a
non-linear function of the years and their effects considered as IRR’s are difficult
to compute. In this situation, studying the trends in the data in the spirit of
McNamee (2009) as we want to do is not easy. Although the relation

ωi =
µ−γL,i

1 + µ−γL,i

provides more parsimonious models, it also leads to a non-linear function of the
years and can induce the difficulty mentioned earlier. Moreover, the option of
using this relation is not available on the SAS software. For these reasons, we do
not use it.
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Figure 1: Histogram and year trend for asthma
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Figure 2: Histogram and year trend for dermatitis

Figure 3: Histogram and year trend for rhinitis
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We first adjusted a ZINB regression model to each of the three sets of data.
For asthma and dermatitis, the estimated dispersion parameter was too large,
meaning that the overdispersion observed in the data likely comes from excess of
zeros rather than the heterogeneity among observations. Since in addition the p-
value of the associated Student test was significant, we decided to modelize these
sets of data by ZIP regression models, and the rhinitis data by a ZINB regression
model. For each data, the likelihood, the AIC (Akaike Information Criterion)
and the BIC (Bayesian Information Criterion) of the corresponding model (the
one with months, years and centres in the main part and months and centres
in the zero-inflated part) were both larger than those of many other competing
zero-inflated regression models. Some of the latter models did not include either
the zero-inflated part and the centres, or the zero-inflated part and the months
and centres, or the zero-inflated part and the years and centres, or some naive
models such as Poisson and Negative Binomial (without any covariate).

As a checking procedure for the suitability of the models adjusted to each data,
we plotted the residual series and their histograms. These series are obtained as
the difference between the observations and the predicted values from the zero-
inflated modelizations. Figure 4 shows that for the three diseases, more than
85 % of the residuals are within [−1, 1]. This indicates that the zero-inflated
regressions models used are good predictable models for the three sets of data.

Figure 4: Residuals plots
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For the estimation of the parameters of our models, we used Newton-Raphson
algorithm. This algorithm converged for each set of data, yielding reasonable
standard deviations of the estimators of the parameters. Table 1 presents the
estimates of the parameters of the zero-inflated models for the three diseases.
To save space, we do not present the associated standard deviations. It can be
seen on this table that, for the three diseases, the magnitudes of the estimates
associated with C06 and C10 are significantly different to those of the other such
covariates. A same remark can be done for the estimates associated with Inf.C04,
Inf.C05, Inf.C07, Inf.C09–Inf.C11, Inf.C22 and Inf.C25. We could not find any
explanation to this phenomenon.

The lower plots in Figures 1-3 are those of trends. On these plots, the IRR,
obtained as the coefficients of the years in the principal part of the zero-inflated
model, on the y-axis is multiplied by 100. It can be seen from the figures that the
trend in asthma and rhinitis is decreasing with calendar time, while it is nearly
constant but slightly increasing in dermatitis. Kendall τ and the associated test
used as trend detection provided more evidences to support these conclusions.
Indeed, for asthma and rhinitis respectively, we obtained τ = −0.7222222 and
−0.6666667 showing a negative association between the IRR’s and the years,
a result confirmed by the p-values 0.005886 and 0.01267. For dermatitis, τ =
0.3333333 showing a weak positive association between the IRR’s and the years,
while the p-value = 0.2595 leads to rejecting the hypothesis of association between
the IRR’s and the years. That is, for dermatitis, the IRR’s are constant over the
years.

We also computed the estimated proportions of excess of zeros. To save space,
we only present the results for rhinitis. The model used was a ZINB regression
model including months, years and centres in the main part, and months and
centres in the zero-inflated part. The results are gathered in the Table 1 from
which it can be seen that some of these proportions are too small. In other word,
the probability to have an extra zero count in some centres at some months of
the year is almost nil for rhinitis. But for many other centres as C25, C26, C27,
C30 the probability of having an extra zero in January, February and March is
very significative.

We studied the case where the proportions of zeros were functions of the
months only. That is, we considered models for which the zero-inflated part do
not include centres. The results depicted in Table 2 show that the probability of
having an excess of zeros in France for asthma is small for all months and is far
below 0.305 which is the probability of having an excess of zero in August. These
probabilities are generally higher for dermatitis with 0.31 in August and 0.214 in
December. The same observation can be made for rhinitis, with a value of 0.257
in march.
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Table 1: Rhinitis : probability of having an excess of zero for a center at a
given month

month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

centre

C01 0.011 0.039 0.435 0.017 0.005 0.020 0.008 0.0210 0.013 0.054 0.009 0.002

C02 0.001 0.006 0.096 0.002 0.001 0.003 0.001 0.003 0.002 0.008 0.001 0.000

C03 0.011 0.039 0.435 0.017 0.005 0.020 0.008 0.021 0.013 0.054 0.009 0.002

C04 0.000 0.001 0.027 0.001 0.000 0.001 0.000 0.001 0.001 0.002 0.000 0.000

C05 0.559 0.825 0.989 0.668 0.390 0.700 0.485 0.709 0.598 0.870 0.515 0.207

C06 0.012 0.044 0.470 0.020 0.006 0.023 0.009 0.024 0.014 0.062 0.010 0.003

C07 0.001 0.003 0.056 0.001 0.000 0.002 0.001 0.002 0.001 0.004 0.001 0.000

C08 0.007 0.024 0.320 0.010 0.003 0.012 0.005 0.013 0.008 0.034 0.006 0.001

C09 0.002 0.007 0.118 0.003 0.001 0.003 0.001 0.004 0.002 0.010 0.002 0.000

C10 0.005 0.019 0.273 0.008 0.003 0.010 0.004 0.010 0.006 0.027 0.004 0.001

C11 0.020 0.070 0.589 0.031 0.010 0.036 0.015 0.038 0.023 0.097 0.017 0.004

C12 0.012 0.044 0.466 0.019 0.006 0.022 0.009 0.023 0.014 0.061 0.010 0.002

C13 0.002 0.007 0.122 0.003 0.001 0.004 0.001 0.004 0.002 0.010 0.002 0.000

C14 0.132 0.361 0.915 0.195 0.071 0.219 0.102 0.226 0.151 0.445 0.113 0.030

C15 0.009 0.032 0.388 0.014 0.004 0.016 0.007 0.017 0.010 0.045 0.007 0.002

C16 0.000 0.001 0.025 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.000 0.000

C17 0.093 0.276 0.878 0.140 0.049 0.159 0.071 0.165 0.107 0.351 0.079 0.021

C18 0.003 0.013 0.197 0.005 0.002 0.006 0.003 0.007 0.004 0.018 0.003 0.001

C19 0.006 0.024 0.316 0.010 0.003 0.012 0.005 0.012 0.007 0.033 0.005 0.001

C20 0.005 0.019 0.270 0.008 0.003 0.010 0.004 0.010 0.006 0.027 0.004 0.001

C21 0.010 0.035 0.404 0.015 0.005 0.017 0.007 0.018 0.011 0.048 0.008 0.002

C22 0.010 0.037 0.422 0.016 0.005 0.020 0.007 0.019 0.012 0.052 0.008 0.002

C23 0.001 0.005 0.093 0.002 0.001 0.003 0.001 0.003 0.002 0.007 0.001 0.000

C24 0.001 0.005 0.089 0.002 0.001 0.003 0.001 0.003 0.002 0.007 0.001 0.000

C25 0.488 0.780 0.985 0.603 0.325 0.638 0.415 0.647 0.528 0.834 0.444 0.164

C26 0.698 0.896 0.994 0.786 0.538 0.810 0.632 0.816 0.730 0.924 0.659 0.322

C27 0.793 0.934 0.996 0.859 0.659 0.876 0.740 0.880 0.818 0.953 0.762 0.441

C28 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C29 0.030 0.104 0.688 0.047 0.015 0.055 0.023 0.057 0.035 0.141 0.025 0.006

C30 0.757 0.920 0.995 0.831 0.610 0.851 0.698 0.856 0.784 0.942 0.722 0.398

C31 0.011 0.039 0.435 0.017 0.005 0.020 0.008 0.021 0.013 0.054 0.009 0.002

C32 0.001 0.003 0.056 0.001 0.000 0.002 0.001 0.002 0.001 0.004 0.001 0.000
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It is interesting to note that the values in Tables 2 and 3 can be used to
improve the incidence. For example concerning the incidence of allergic occupa-
tional asthma, from Table 3, one estimates that in France during August, if η
zeros are observed amongst the 32 centres at a given year, then about 0.305×η of
these zeros are in excess. In other words, at least 0.305× η cases of occupational
allergic asthma are missing during that August. The same reasoning can be done
to find a lower bound for missing cases for other diseases at a given month.

The Kendall and Spearman tests applied to pairs of the three sets of data
show that there is a positive association between them. Indeed, the Kendall
and Spearman coefficients vary between 0.3 to 0.5 and the tests reject the null
hypothesis that these coefficients are nil.

Table 2: Probability of having an excess of zero for a disease at a given month

month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

disease

asthma 0.018 0.061 0.065 0.000 0.065 0.001 0.000 0.305 0.000 0.012 0.000 0.040

dermatitis 0.109 0.052 0.130 0.061 0.115 0.112 0.152 0.310 0.103 0.056 0.077 0.214

rhinitis 0.150 0.154 0.257 0.000 0.000 0.149 0.000 0.000 0.000 0.000 0.000 0.127

3.4 Conclusion

We have reviewed zero-inflated count models, a class of models widely applied
to modelling count data in various fields. Using the approach of McNamee et al.
(2009), we have applied these models to modelling trends in occupational allergic
asthma, dermatitis and rhinitis in France on the basis of sets of data collected
from 2001 to 2009. From our study, it comes out that the trends are decreasing for
asthma and rhinitis and that it is almost constant for dermatitis. We checked that
whether the centres were used as covariates or not these trends did not change
nor do they depend on the reference variables choosen. We also estimated the
probabilities of obtaining excess of zeros. Although in our study they seemed to
depend on the reference variables choosen, they can help improving the incidences
of the diseases studied.

The test of Kendall and that of Spearman applied to pairs of the three sets
of data prove that there is a possible positive association between asthma, der-
matitis and rhinitis. This result suggests to study conjointly these three diseases.
However, this study is beyond the scope of this paper, and will be the subject of
a forthcoming paper.
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Table 3: Parameter estimates in the ZINB regression model for the three dis-
eases

covariate asthma dermatitis rhinitis

Intercept -0.979707 -1.258537 -2.249986

Jan 1.111791 0.985420 1.316493

Feb 0.880250 0.880640 1.047251

Mar 0.851777 0.900969 1.496072

Apr 0.904905 0.614507 0.875557

May 0.819898 0.730102 0.823388

Jun 0.842190 0.908627 1.125616

Jul 0.509305 0.593247 0.702703

Sep 0.723105 0.846425 0.877917

Oct 0.874790 0.922196 0.986637

Nov 0.733875 0.910171 0.998005

Dec 0.425925 0.716958 0.560845

Year1 0.450787 0.185765 0.165703

Year2 0.146011 -0.038708 -0.096014

Year3 -0.024963 -0.102079 -0.030964

Year5 -0.014721 -0.065698 -0.217263

Year6 -0.225170 -0.024604 -0.450744

Year7 -0.365657 0.045038 -0.290534

Year8 -0.165690 0.073254 -0.344327

Year9 -0.297790 0.125163 -0.424954

covariate asthma dermatitis rhinitis

C01 -3.047696 -3.078948 -3.092717

C02 -0.420887 -2.436664 -1.615570

C03 -1.141717 -1.322860 -3.092495

C04 0.684000 0.306248 0.482758

C05 -0.103260 0.484544 0.690081

C06 -17.502936 -15.088005 -14.409579

C07 -0.823076 -0.341485 -0.049405

C08 -0.153315 1.228411 -0.765911

C09 1.153255 1.924443 1.869316

C10 1.758370 1.216026 1.518678

C11 -2.354550 -0.767754 -1.880624

C12 1.332860 0.877562 0.877740

C13 0.201393 0.809156 -0.000996

C14 -1.661194 -4.000277 0.659932

C16 -0.011018 1.280620 -0.232758

C17 -0.803846 -0.263222 -0.541609

C19 0.737670 2.450919 1.792409

C20 1.164689 0.899807 2.120085

C21 -17.502936 -15.088005 -14.409579

C22 1.138160 0.576202 0.900590

C23 0.001311 0.533790 -0.335585

C24 -1.802185 0.222763 -1.616814

C25 -0.605352 -0.378977 0.105043

C26 -0.637379 1.331680 1.253878

C27 -0.337238 -2.436696 0.976638

C28 -0.324901 1.367907 1.257875

C29 -0.003114 0.239223 -0.099631

C30 -0.725295 -1.663443 0.951444

C31 -2.721147 -0.478834 -3.092875

C32 0.444477 0.303867 -1.026891
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Table 3: (continued) Parameter estimates in the ZINB regression model for the
three diseases

covariate asthma dermatitis rhinitis

Inf.Intercept -4.547223 -2.646791 -5.336620

Inf.Jan 2.085435 -2.716571 -0.214193

Inf.Feb 0.277544 -2.574969 1.092916

Inf.Mar 0.780346 -2.421854 4.328490

Inf.Apr 1.634458 -2.682575 0.381269

Inf.May 1.571425 -2.049633 -0.592925

Inf.Jun 1.674966 -2.491454 0.196325

Inf.Jul -0.943672 -3.569927 -0.294852

Inf.Sep 0.990766 -2.726050 -0.191134

Inf.Oct 1.605582 -2.219788 1.697670

Inf.Nov 0.532745 -2.503508 -0.326995

Inf.Dec -0.660543 -1.470634 -1.102771

covariate asthma dermatitis rhinitis

Inf.C01 -9.688098 4.473694 1.644198

Inf.C02 6.000903 -8.735915 -9.237750

Inf.C03 5.224409 5.591437 1.645546

Inf.C04 -12.699836 3.326036 -11.069868

Inf.C05 -11.488786 4.121598 5.496389

Inf.C06 0.769032 0.812916 0.428650

Inf.C07 -11.879021 5.714358 -9.679150

Inf.C08 0.794309 3.607984 0.348175

Inf.C09 -13.566292 3.012326 -0.904151

Inf.C10 -9.557529 0.542236 0.236747

Inf.C11 -9.950199 5.430408 2.892105

Inf.C12 -0.785730 -9.430988 1.020637

Inf.C13 2.208660 1.979180 -2.521335

Inf.C14 4.853400 3.578441 7.690012

Inf.C15 1.060731 3.586312 0.399955

Inf.C16 2.324613 3.045433 -11.113364

Inf.C17 3.338467 5.570161 3.209204

Inf.C19 -0.339438 -1.669922 0.259195

Inf.C20 0.121854 0.590708 0.106787

Inf.C21 0.769032 0.812915 0.428650

Inf.C22 -11.390083 2.056207 0.596772

Inf.C23 -0.729031 -9.599535 -10.095248

Inf.C24 1.454150 5.302691 -9.296044

Inf.C25 -10.602014 4.141802 5.788889

Inf.C26 3.092357 5.743366 6.330742

Inf.C27 3.398302 -7.862529 7.030108

Inf.C28 3.108387 3.896271 -10.934018

Inf.C29 2.670329 5.496420 1.596821

Inf.C30 2.716523 -7.847316 6.680408

Inf.C31 2.439725 6.470694 1.643237

Inf.C32 5.948762 7.839955 -10.127791

Dispersion - - 9.936703
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