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Abstract: In this paper we consider clinical trials with two treatments and
a non-normally distributed response variable. In addition, we focus on ap-
plications which include only discrete covariates and their interactions. For
such applications, the semi-parametric Area Under the ROC Curve (AUC)
regression model proposed by Dodd and Pepe (2003) can be used. However,
because a logistic regression procedure is used to obtain parameter estimates
and a bootstrapping method is needed for computing parameter standard
errors, their method may be cumbersome to implement. In this paper we
propose to use a set of AUC estimates to obtain parameter estimates and
combine DeLong’s method and the delta method for computing parameter
standard errors. Our new method avoids heavy computation associated with
the Dodd and Pepe’s method and hence is easy to implement. We conduct
simulation studies to show that the two methods yield similar results. Fi-
nally, we illustrate our new method using data from urinary incontinence
clinical trials.

Key words: AUC, discrete covariates, interaction, NAOV, ROC curve, semi-
parametric regression.

1. Introduction

The Wilcoxon-Mann-Whitney test is a widely used nonparametric method
for comparing two treatments in clinical trials. In the presence of a discrete con-
founding stratum effect, the van Elteren (vE) test (van Elteren, 1960) is used to
adjust for the stratum effect. However, the vE test does not handle the inter-
action between treatment and the stratum effect. In this case, Dodd and Pepe
(2003) proposed an area under the curve (AUC) regression model which can test
the interaction. Their method can also be applied to models with both discrete
and continuous covariates.
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The AUC regression model utilizes concepts relevant to the Receiver Oper-
ating Characteristic (ROC) curve. The ROC curve is a widely used statistical
tool for assessing the performance of a binary classifier with continuous or ordi-
nal variables. Its use has gained increased attention in various biostatistics areas
such as evaluating diagnostic tests, finding potential biomarkers, or analyzing
controlled clinical trials. The use of this statistical method has been extensively
developed since 1990’s. Pepe (2003) and Zhou et al. (2002) provide excellent
review on the ROC and its use.

A useful application of ROC curve is in diagnostic testing when one has a
continuous variable Y , which will be used to classify the subjects into either
diseased (D) or non-diseased (D̄) groups according to some classification rule:
Y > c for the threshold c. The ROC(c) curve is the function given by plotting
P (Y > c | D) vs P (Y > c | D̄) in a square from vertices (0, 0) to (1, 1) for all
possible thresholds, which displays how the true positive rate (TPR) is changed
as false positive rate (FPR) and provides a visible inspection of the accuracy of
the diagnostic test to make decision about the optimal threshold for the output
relying on the requirement for the relative importance of sensitivity and specificity
in the application (Dodd and Pepe, 2003). In the two most extreme situations,
if the distribution of Y in the diseased group is exactly overlapped with the
distribution of Y in the non-diseased group, the ROC curve will be a diagonal
line from vertices (0, 0) to (1, 1), which means that the test with output Y is
same for FPR and TPR for all thresholds and is useless in classification; if the
distributions of Y in the two groups are totally separated from each other, the
ROC curve will be a curve passing through the vertex (0, 1), which means that
the test can easily select the threshold to guarantee the best classification in
sensitivity and specificity.

The commonly used summary index for ROC curve is the area under the
ROC curve (AUC). It can be shown that AUC = P (YD > YD̄). Therefore, in the
worst case, the AUC is 0.5, that is, the ability to classify a subject into a right
group for this test is no more than by chance. While in the perfect case, the AUC
equals to 1, which represents that the probability of correct classification for a
proper threshold is 1.

The estimated AUC can be derived from the Mann-Whitney U statistic for
testing the equality of two distributions. Based on this property Dodd and Pepe
(2003) proposed an AUC regression model for data with a non-normally dis-
tributed response variable which can adjust for continuous and discrete covari-
ates. In the model, the response variable is a cross-correlated bernoulli variable.
Because the usual standard errors derived from a logistic regression model are
incorrect, they proposed to use bootstrapping method to estimate the variance
of non-parametric AUC and the model parameters. Because a logistic regression
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procedure is used to obtain parameter estimates and a bootstrapping method is
needed for computing parameter standard errors, their method may be cumber-
some to implement.

In practice, there are many applications which involves only discrete covariates
and their interactions. Such applications include testing the interaction between
treatment and subgroup variable in typical subgroup analysis in clinical trials.
For such applications, we aim to alleviate the computation burden associated with
Dodd and Pepe. We propose to use a set of AUC estimates to obtain parameter
estimates and combine Delong’s method and the delta method for computing
parameter standard errors.

The remainder of this paper is organized as follows. The AUC regression
model by Dodd and Pepe is introduced in Section 2. DeLong’s method (DeLong,
DeLong and Clarke, 1998) for standard error estimation of the unadjusted AUC
is described in Section 3. Our newly proposed method for computing parame-
ter estimates and standard errors is developed in Section 4. Simulation studies
comparing Dodd and Pepe’s method and our method are presented in Section 5.
A real data example is shown in Section 6 to illustrate our new method. Some
discussions can be found in Section 7.

2. Semi-Parametric AUC Regression Model

In this section we review the semi-parametric AUC regression model proposed
by Dodd and Pepe. Assume that one needs to adjust the AUC for a covariate X,
the covariate-specific AUC can be expressed as

AUCij = P
(
Y D
i > Y D̄

j | Xi, Xj

)
,

where Y D
i is the ith response in diseased (or treatment) group with covariate value

Xi (i = 1, · · · , ND) and Y D̄
j is the jth response in non-diseased (or control) group

with covariate value Xj (j = 1, · · · , ND̄). Often one is interested in estimating

the AUC at a specified covariate level, i.e. P
(
Y D
i > Y D̄

j | Xi = Xj = X
)
.

Dodd and Pepe applied this model to the Generalized Linear Model (GLM)
framework which allows one to model the AUC with covariates, in which case
their model can be written as,

g(AUCij) = XT
ijβ, (2.1)

where g is a monotone link function such as the probit or logit link, Xij is a
vector function of Xi and Xj , and β is a vector fixed and unknown parameters
to be estimated.

Note that
E
(
I
(
Y D
i > Y D̄

j

)
| Xij

)
= AUCij .
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Thus, for estimating the parameters in the model, Dodd and Pepe proposed the
use of the logistic regression model where the response variable is a Bernoulli
variable I

(
Y D
i > Y D̄

j

)
. Dodd and Pepe demonstrated that the estimates of

parameters are found as solution to the usual score equations given by

ND∑
i

ND̄∑
j

(Iij −AUCij)
V (Iij)

∂AUCij
∂β

, (2.2)

where Iij = I(Y D
i > Y D̄

j ). Therefore, one obtains this estimate using standard
statistical software, such as SAS PROC GENMOD or PROC LOGISTIC. How-
ever, the usual standard errors of the estimates can not be used since the binary
variables Iij in equation (2.2) are not independent. Dodd and Pepe recommended
the bootstrap for obtaining the needed standard errors. Their procedure can be
summarized in the following steps in the presence of covariates:

1. Stratify the range of the covariate variable as S strata. If the covariate is
discrete, each level of the covariate becomes a stratum. While for continuous
variable, it is impossible to make each covariate value a stratum. Cluster
the adjacent values into a stratum to ensure enough fitting data in each
stratum.

2. For discrete covariate, within each stratum s (s = 1, · · · , S), generate all of
the 0 or 1 indicator data as I(Y D

is > Y D̄
js )(i = 1, · · · , nsD ; j = 1, · · · , ns

D̄
).

In this case, the model is g(AUCij) = β0 + βs.

3. If there is a continuous covariate in addition to the discrete covariate, other
parameters should be included in the model in order to fit the data obtained
by comparing two responses from different covariate values, such as I(Y D

is >

Y D̄
js ) (the ith and jth outputs are from different covariate value but in the

same stratum s). The model can be expressed as g(AUCij) = β0 + β1Xi +
β2(Xi −Xj).

4. Use the standard logistic regression procedure to fit the data with strata as
covariate to obtain parameter estimates.

5. Bootstrap the original data within each stratum to compute the parameter
standard errors.

The above procedure involves bootstrap so it is difficult to implement. For models
with only discrete covariates and their interactions, we aim to simplify the above
model fitting procedure. We propose a new algorithm which involves computing
variance of a non-parametric AUC estimate which was first proposed by the
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DeLong, DeLong and Clarke (1998). This algorithm is described in detail in the
next section.

3. DeLong’s Method for Computing the Variance of Unadjusted AUC

Several approaches have been proposed to compute the variance of the unad-
justed AUC. See Hanley and Hajian-Tilakin (1997) for a review. Among them,
the method provided by DeLong, DeLong, and Clarke (1988) is most widely used
and has the plain analytical structure, which completely relies on the Mann-
Whitney statistic.

Bamber (1975) provided the equivalence between Mann-Whitney two-sample
rank sum statistic and the empirical estimate of AUC. When the outputs in
disease group and non-diseased group have ties, the nonparametric AUC can be
expressed as:

ÂUC =

∑ND
i=1

∑ND̄
j=1 Iij

NDND̄

, (3.1)

where

Iij =


1, Y D

i > Y D̄
j ,

1
2 , Y D

i = Y D̄
j ,

0, Y D
i < Y D̄

j .

The variance for (3.1) by DeLong’s method involves in two components which
are defined as

V D
i =

1

ND̄

ND̄∑
j=1

Iij , i = 1, · · · , ND,

and

V D̄
j =

1

ND

ND∑
i=1

Iij , j = 1, · · · , ND̄.

V D
i is the percentage of Y D̄’s that Y D

i is bigger or equal to. It measures the
relative rank of the ith output of diseased group in the non-diseased group (i.e. its
relative percentile when Y D

i is put into the non-diseased group). The explanation

for V D̄
j is similar.

An estimate of the variance of the nonparametric AUC is

V̂ (ÂUC) =
s2
D

ND
+
s2
D̄

ND̄

, (3.2)

where s2
D and s2

D̄
are the sample variances of

{
V D
i , i = 1, · · · , ND

}
and

{
V D̄
j , j =

1, · · · , ND̄

}
, respectively.
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4. A New Algorithm for Estimating Parameters and Standard Errors
for the AUC Regression Model

Our new algorithm is best described using an example. Let the covariate be
X with 2 levels specified as 0 and 1. The logistic regression model with link
function g can be expressed as

g(AUC|X) = β0 + β1X.

When X = 0,
g(ÂUC | X = 0) = g(ÂUC0) = β̂0,

and X = 1,
g(ÂUC | X = 1) = g(ÂUC1) = β̂0 + β̂1.

Thus,
β̂1 = g(ÂUC1)− g(ÂUC0),

where ÂUC0 and ÂUC1 are computed using (3.1) and subseting observations
with X = 0 and X = 1, respectively. We see that the parameter estimates are
explicit functions of the AUC estimates at each stratum. Therefore, our new
method avoids the logistic regression procedure necessary by Dodd and Pepe’s
method.

In the following we describe how to compute the standard errors for these
parameter estimates β̂0 and β̂1. Because the observations from two strata are
independent, the variance of β̂0 and β̂1 are, respectively,

V (β̂0) = V (g(ÂUC0)),

and
V (β̂1) = V (g(ÂUC1)) + V (g(ÂUC0)).

The above variance can be estimated by combining the delta method and (3.2). In
what follows we provide the variance estimates (standard errors) of the parameter
estimates for logit and probit links. When g is logit function,

V̂ (g(ÂUCi)) =
V̂ (ÂUCi)

ÂUC
2

i (1− ÂUC
2

i )
.

Let f(·) and Φ(·) be the PDF and the CDF of the standard normal distribution,
respectively. When g is probit function,

V̂ (g(ÂUCi)) =
V̂ (ÂUCi)

f2(Φ−1(ÂUCi))
.
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Therefore, consistent estimators of V (β̂0) and V (β̂1) are

V̂ (β̂0) = V̂ (g(ÂUC0)),

V̂ (β̂1) = V̂ (g(ÂUC0)) + V̂ (g(ÂUC1)),

respectively. Finally, Wald-type 100(1−α)% confidence intervals for βi, i = 1, 2,
can be constructed as

β̂i ± Zα/2
√
V̂ (β̂i),

where Zα/2 is the upper α/2th quantile of the standard normal distribution.

The above procedure can be readily generalized to models with more than one
discrete covariates and their interactions. First, computing AUC estimates using
(3.1) for each stratum resulting from all possible combinations of the covariates.
Then, by equating the model parameters to these AUC estimates through the link
function, we can solve for parameter estimates. Finally, by combining (3.2) and
the delta method we obtain standard error estimates. In spirit, this approach is
very similar to the analysis of variance model in the normal-theory linear models.
Therefore, we term our method as nonparametric analysis of variance method
(NAOV).

5. Simulation Study

We conduct simulation studies to compare the Dodd and Pepe method and our
new NAOV method for estimating model parameters and their standard errors.
In addition, we compare the two methods in terms of coverage probabilities of
the 95% confidence intervals for each parameter. Data are generated from models
with probit link and logit link, respectively. For each link function, we illustrate
the model using a discrete covariate with 3 strata.

5.1 Probit Link

When the link function is probit, data is generated such that Y D̄
ij ∼ N(µ1i, σ

2
1),

Y D
ij ∼ N(µ2i, σ

2
2), i = 1, · · · , S; j = 1, · · · , n, where µ1i = δ0 + δ2i and µ2i =

(δ0 + δ1) + (δ2i + δ3i). The parameters of the model with probit link can be
derived based on:

AUCi = Φ

(
δ1 + δ3i√
σ2

1 + σ2
2

)
. (5.1)

When i = 1, let δ3i = 0, then

AUC1 = Φ(β0)
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and when i = 2, · · · , S,

AUCi = Φ (β0 + βi−1) ,

where β0 = δ1√
σ2

1+σ2
2

and βj =
δ3(j+1)√
σ2

1+σ2
2

− β0 (j = 1, · · · , S − 1).

We choose δ0 = 0, δ1 = 0.15, δ2i = 0, δ32 = 0.5, δ33 = 1, σ1 = 1 and σ2 = 1.2
to compare the two methods. The simulation size is 1,000 and the number of
bootstrap samples is 200. Table 1 gives the comparison results for n = 30 and
n = 100. We see that both methods produce almost identical parameter estimates
and very similar standard error estimates. In addition, the coverage probabilities
of the 95% CIs are close to the nominal levels for both methods.

Table 1: Comparison of parameter estimates, standard errors, and 95% CIs
for the model with probit link with 30 or 100 samples each group each level.
Results represent 1000 realizations of the model and 200 bootstrap samples
each

Dodd and Pepe NAOV

n Parameter
True

Estimate
Standard Coverage Standard Coverage

Value Error 95% CI Error 95% CI

30 β0 0.15 0.16 0.20 0.965 0.19 0.958

β1 0.50 0.52 0.29 0.951 0.28 0.945

β2 1.00 1.03 0.32 0.970 0.30 0.951

100 β0 0.15 0.15 0.10 0.952 0.10 0.950

β1 0.50 0.50 0.15 0.937 0.15 0.939

β2 1.00 1.00 0.16 0.954 0.16 0.954

5.2 Logit Link

When logit link is used, we generate data Y D̄
i = − log(u1) + δ1i and Y D

i =
− log(u2) + δ0 + (δ1i + δ2i), where u1 ∼ exponential(1) and u2 ∼ exponential(1).
The parameters in the model can be derived based on:

AUCi = F (δ0 + δ2i), (5.2)

where F (·) is a CDF of a logistic r.v. ∼ Lo(0, π2/3) and F (x) = 1
1+e−x (see

reference from Balakrishnan and Nevzorov, 2003).

When i = 1, let δ2i = 0, then

AUC1 = F (β0)
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and when i = 2, · · · , S,
AUCi = F (β0 + βi−1) ,

where β0 = δ0 and βj = δ2(j+1) (j = 1, · · · , S − 1).
We choose δ0 = 0.15, δ1i = 0, δ22 = 0.5 and δ23 = 1. The number of bootstrap

samples is 200. Table 2 gives the comparison results for n = 30 and n = 100
in each group in each level, respectively. We see that both methods produce
almost identical parameter estimates and very similar standard error estimates.
In addition, the coverage probabilities of the 95% CIs are close to the nominal
levels for both methods.

Table 2: Comparison of parameter estimates, standard errors, and 95% CIs for
the model with logit link with 30 or 100 samples each group each level. Results
represent 1000 realizations of the model and 200 bootstrap samples each

Dodd and Pepe NAOV

n Parameter
True

Estimate
Standard Coverage Standard Coverage

Value Error 95% CI Error 95% CI

30 β0 0.15 0.14 0.32 0.963 0.31 0.959

β1 0.50 0.53 0.46 0.958 0.45 0.947

β2 1.00 1.03 0.49 0.971 0.47 0.955

100 β0 0.15 0.15 0.17 0.956 0.17 0.952

β1 0.50 0.51 0.24 0.952 0.24 0.950

β2 1.00 1.00 0.25 0.957 0.25 0.951

6. Real Data Example

In this section we illustrate our new NAOV method using real data from
clinical trials. The purpose of the clinical trials is to investigate the efficacy
of an active drug to treat stress urinary incontinence in women by comparing
with placebo. The data are provided by a pharmaceutical company and not
publicly available. The response variable is the per cent (relative) reduction
in incontinence episode frequency (PIEF) from baseline to the last postbaseline
visit. There is a variable reflecting the disease severity at the baseline (BIEF)
with 4 strata. The variable BIEF takes values from 1 (mild) to 4 (severe). Also,
the consistency of treatment effect across another covariate of interest HORM50
needs to be considered. The variable HORM50 indicates whether a woman has
hormone replacement (yes or no). In summary, we are interested in analyzing the
joint predictive and prognostic effects of BIEF and HORM50. For this analysis a
total of 4940 subjects with nonmissing PIEF, BIEF, and HORM50 are included.
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The distribution of PIEF variable is very skewed in each group. In a nat-
ural way, we can use AUC regression model to adjust the covariate effect to
treatment effect. The overall model is logit(AUC(HORM50, BIEF)) = β0 +
β1I(HORM50 = 0) + β2I(BIEF = 1) + β3I(BIEF = 2) + β4I(BIEF = 3) +
β5I(BIEF = 1 & HORM50 = 0)+β6I(BIEF = 2 & HORM50 = 0)+β7I(BIEF =
3 & HORM50 = 0).

Table 3 shows the AUC estimates, 95% CI of the AUC, and the expression
of AUC in terms of the model parameters by the combination levels of the two
covariates. By equating the third column and the fifth column of Table 3, we
can solve for estimates for the model parameters β0, · · · , β7. These parameter
estimates are presented in the third column of Table 4. The standard errors and
95% CIs for the model parameters are computed using the procedure described in
Section 4 and displayed in the fourth and fifth columns of Table 4. By examining
these CIs we see that the main effect of HORM50 and the interaction effects are
not significant at .05 level, indicating there are no interactions between BIEF and
HORM 50 and HORM50 is not predictive of treatment effect. The CI for β3 does
not include 0, indicating BIEF is predictive of treatment effect.

We fit another model with only BIEF main effect and the results are shown
in Table 5. The CIs indicate that β1 and β2 are significantly different from 0 at
.05 level, which means BIEF is a predictive of treatment effect. Note that β3 is
not significantly different from 0 at .05 level, possibly due to thet fact that only
a small percentage of patients are in that very severe stratum. Parameters β1 to
β3 have meaningful interpretations. For example, eβ1 is the odds ratio that the
active drug is better than placebo in the second stratum of BIEF compared with
that in the first stratum of BIEF. In this case, that odds ratio is estimated as

eβ̂1 = 1.4.

Table 3: Estimates of AUC for the example

BIEF HORM50 AUC Estimate 95% CI by DeLong AUC in terms of model parameters

1 0 .467 (.306, .629) 1/(1 + exp(−β0 − β4 − β1 − β5))

1 .531 (.393, .670) 1/(1 + exp(−β0 − β1))

2 0 .583 (.510, .657) 1/(1 + exp(−β0 − β4 − β2 − β6))

1 .519 (.447, .592) 1/(1 + exp(−β0 − β2))

3 0 .589 (.507, .671) 1/(1 + exp(−β0 − β4 − β3 − β7))

1 .713 (.628, .798) 1/(1 + exp(−β0 − β3))

4 0 .606 (.534, .679) 1/(1 + exp(−β0 − β4))

1 .667 (.604, .731) 1/(1 + exp(−β0))
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Table 4: Parameter estimates and 95% CI by NOAV with interactions for the
example

Parameter Level Estimate SE 95% CI

β0 Intercept −0.70 0.15 (−0.99,−0.41)
β1 HORM50 = 0 0.27 0.21 (−0.15, 0.68)
β2 BIEF = 1 0.57 0.32 (−0.05, 1.20)
β3 BIEF = 2 0.62 0.21 (0.21, 1.03)
β4 BIEF = 3 −0.21 0.26 (−0.72, 0.29)
β5 BIEF = 1 and HORM50 = 0 −0.01 0.53 (−1.04, 1.02)
β6 BIEF = 2 and HORM50 = 0 −0.52 0.37 (−1.24, 0.19)
β7 BIEF = 3 and HORM50 = 0 0.29 0.40 (−0.50, 1.08)

Table 5: Parameter estimates and 95% CI by NOAV with only BIEF main
effect for the example

Parameter Level Estimate SE 95% CI

β0 Intercept −0.56 0.06 (−0.67,−0.45)
β1 BIEF = 1 0.37 0.15 (0.07, 0.67)
β2 BIEF = 2 0.19 0.08 (0.03, 0.35)
β3 BIEF = 3 0.09 0.09 (−0.08, 0.27)

7. Discussion

In this article, we developed an analytical NAOV method to computing pa-
rameter estimates and standard errors for the semi-parametric AUC regression
model with only discrete covariates. The NAOV method involves only straight-
forward computations and is much easier to implement than the Dodd and Pepe
method. Simulation studies have shown that both methods yield similar results.

The NAOV method involves computing AUC estimates and standard errors
at each cell of combination levels of all the covariates. Therefore, it requires a
reasonable amount of observations at each cell. When there are empty cells, a
saturated model can not be fitted and so some terms need to be dropped from
the model. This is the same problem suffered by linear models and the Dodd and
Pepe’s method.

Note that in Tables 1 and 2, we set the true parameters values to be different
than zero. However, even when the sample size is 100, some of the 95% confidence
intervals of these parameters contain zero. This may yield a conclusion that
the parameters are not significantly away from zero. We remark that this is a
phenomenon we often encounter when the sample size is not sufficiently large.
So if we increase the sample size, then these confidence intervals will become
narrower and exclude zero.
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Note that Tables 1 and 2 are based on different models, so it may not be
appropriate to compare results between Table 1 and 2. In our experience, for the
same model, using probit or logit links gives very similar results. This is also true
from the literature for generalized linear models. In general, researchers tend to
use logit links because it is easier to interpret the parameters.

Although Dodd and Pepe’s method can be used for models with both discrete
and continuous covariates, their method involves somewhat arbitrary grouping
of observations in the presence of continuous covariates. For future research,
we intend to generalize the NAOV method to models with both discrete and
continuous covariates.
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