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1 Introduction

We are very appreciative of all the thoughtful comments from the panel of the outstanding
discussants, including Drs. T. Zhou and Y. Ji (Zhou-Ji) from the University of Chicago, Dr. Kelly
R. Moran (Moran) from Duke University, Dr. Shannon Gallagher (Gallagher) from Carnegie
Mellon University, Mr. D. Dey and Dr. V. Zipunnikov (Dey-Zipunnikov) from Johns Hopkins
University, and Drs. Y. Zhu and Y.Q. Chen (Zhu-Chen) from Fred Hutchinson Cancer Research
Center. In particular, we would like to express our deep gratitude to the Journal of Data Science,
especially Editor Dr. Jun Yan, for selecting our paper for discussion. This rejoinder is planned
to respond to some major points raised in the discussions. We will begin with a summary of
this paper, and then address a set of points of interest that we identified from the discussants’
comments, including modeling, data quality, subgroup analysis and future work.

In late January, we were anxious about the outbreak of the COVID-19 pandemic in the city
of Wuhan, China, and its quick spread in the other regions of the country. The news of the
lockdown of Wuhan as an unprecedented public health intervention in our life time was indeed
shocking, which motivated us as statisticians to contribute something helpful. Although some
cash and PPE donations to the Hubei province were wonderful, it seemed to be more useful to
“donate” a statistical software that may help public health workers in China to crunch their data,
to assess various time-varying interventions, and to predict the evolution of the pandemic. Given
that the road to the containment of the pandemic was so dark at that moment – nobody knew
if the old tricks used in the past for handling infectious disease would work again, perhaps, a
prediction model may shed some light of the future direction. This was the original motivation
of our project that drove us, a group of volunteers with rigorous training in epidemiology and
statistical modeling, to develop a very basic data analytic toolbox to analyze the COVID-19
data in China. We simply wanted to make a lighter not a torch, because at the beginning of
the project we could only access very limited data in the public surveillance database. Thus, we
decided to take the following key elements into the design and the development of our health
informatics toolbox.

First, we wanted to build the toolbox that is able to make prediction and more importantly,
to calculate prediction uncertainties. Forecast is a very difficult task, which depends greatly on
data at hands and a model chosen to generate information beyond the observational time period.
The chosen model is of critical importance to deliver prediction. We chose the most basic
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Susceptible-Infected-Removed (SIR) model as the mechanistic model to build up our forecast
framework. The reason that we did not choose Susceptible-Exposure-Infected-Removed (SEIR)
model was that the incubation period has not been estimated properly due to the issue of
length-bias sampling. Given many types of factors potentially influencing the evolution of the
pandemic, a single value prediction is not going to work well. It is imperative to come up with a
way to assess prediction uncertainties. At the early phase of the pandemic the quantification of
the uncertainties may be equally important to the value of projected prevalence. This was the
reason for us to choose the Markov Chain Monte Carlo (MCMC) method in the implementation.

Second, we aimed to build the toolbox upon a statistical model to incorporate potential
sampling uncertainties. This is a fundamental difference from the existing SIR model or some
similar compartment-based models, where the underlying data generation mechanisms have been
explicitly specified. In other words, unlike a mechanistic model such as the SIR model based on
three ordinary differential equations, we chose to build a model that allows sampling uncertainties
in the process of data generation. So, the resulting framework is a statistical model rather than
a mathematical model, from which the quantification of uncertainty for both estimation and
prediction becomes feasible. This thought motivated our use of the state space model as the
statistical model to fit the data. A clear advantage of a statistical model is that the model
parameters can be estimated, rather than being specified by certain priors. Meanwhile, the
prediction uncertainty can be assessed. In addition, between SIR and SEIR models, we decided
not to include the exposure compartment (E) due to the fact that the estimated incubation period
was potentially biased due to the issue of length-bias sampling in the collection of confirmed
infected cases (Qin et al., 2020).

Third, given the sparsity of the available data, the model used for prediction should be
very basic in order to mitigate the issue of parameter identifiability. We believed that a simpler
model would typically be less sensitive to the potential problems of data quality, while allowing
to incorporate the influence of control measures as part of the policy assessment. We were
very impressed with a series of public health policies issued by the Chinese government with
great efforts towards the containment of the pandemic. Thus, allowing such time-varying control
measures to enter the SIR model was the top priority in our model. The latter was our main
focus of this new development. This thought is directly responsible for our choice of the SIR
model. Although the SIR model is the simplest one for analyzing infectious diseases, it allows
the incorporation of a disease transmission rate to link with the time-varying interventions.

Finally, as a must deliverable, we wanted to develop, test and distribute an R software for
the forecast toolbox to the public with full transparency. From the beginning, we shared fully
and openly our implementation code, the software package, and the numerical illustrations for
the effect of various control measures. We also provided consultation of free charge to various
software users from all over the world. From this point of effort, a statistical model and its
software are appealing to practitioners in the public health practice.

We are pleased to learn that this overall design of the toolbox has been reviewed positively by
the discussants, and the value of the software has also been praised. As the pandemic continues
worsening in the US, Brazil and other countries, the basic model proposed for the analysis of
the COVID-19 data in China becomes inadequate to address some important features, such as
self-immunization, including many aspects pointed out by the discussants. It is pleasing for
us to present our formal responses to some of the important issues. Our opinions may help
researchers further expand and improve the model, the estimation and prediction methods, and
the software, which may result in new methodologies that can be used for a broader range of
problems occurring in other regions of the world.
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2 Modeling

The proposed eSIR model is a state space model in that the latent process follows the SIR model
based on three ordinary differential equations. In other words, the eSIR is a statistical model,
part of which constitutes the mathematical mechanistic model (SIR). One key contribution of
the eSIR model is to include a transmission rate modifier π(t) that enables to characterize
time-varying interventions. The stronger a public health intervention the lower chance for a
susceptible individual to contract the virus from a contagious individual. In the current imple-
mentation, π(t) is pre-specified as a fixed hyper-parameter, which, we agree with Dey-Zipunnikov
and Zhu-Chen, is a limitation of our method. As pointed by Moran and Zhu-Chen, adding the
capacity of estimating this π(t) function is useful but technically challenging due to the potential
issue of parameter identifiability. Some researchers have considered estimating effective trans-
mission rate similar to the π function based on available data. For example, Sun et al. (2020)
proposed a local linear fitting regression to estimate a time-varying transmission rate nonpara-
metrically. However, this type of estimated rate cannot be used for prediction because a fast
evolution of the pandemic dynamics can prohibit the use of the estimated effective transmission
rate beyond the observational time period to be viable for the prediction at a future time. A
possible way to overcome this technical challenge of estimating both β and π(t) is to specify a
certain universal parametric function of π(t), where the related parameters may be estimated
by their respective posteriors via the MCMC method. Unfortunately, there are no well vali-
dated functional forms in the literature that may be applicable to the COVID-19 mitigation
patterns. This is certainly an important research topic worth of additional efforts. One of the
difficulties in the specification of the parametric forms of π(t) pertains to the fact that social
distancing policies and their effectiveness are indeed very heterogeneous across different regions,
with possible jump points associated with sudden dramatic policy changes. Recently, some re-
searchers (https://www.google.com/covid19/mobility/, https://www.apple.com/covid19/
mobility/, https://www.unacast.com/covid19/social-distancing-scoreboard) used mo-
bile device data in the US to track the individual compliance of social distancing, from which a
relatively accurate estimation of the policy compliance over a short period of time has been made
available for the states in the US. As suggested by Dey-Zipunnikov, these individual-level mobile
data sheds light on estimating the function π(t). See more discussion of subgroup analyses below
in Section 4.

We would like to share Dey-Zipunnikov’s point of view that deaths may be a more reliable
data source (https://bit.ly/dtlivecovid). In effect, this insight motivated us to utilize both
empirical proportions of confirmed cases and the sum of deaths and recovered cases as the
observed processes in the proposed state space model. In our analyses, the number of deaths in
Hubei was low and might be inaccurate due to various logistic reasons. Therefore, using such
data alone would not be able to obtain reliable estimates of the model parameters. In contrast,
the number of confirmed infections was more informative to learn the evolution of the pandemic
in Hubei province, where public workers had aggressive door-to-door inspections to identify and
report the symptomatic infectious cases. To our knowledge, the data of confirmed cases in China
have been rather reliable and should be used in the modeling, except for the common issue of
asymptomatic self-immunized cases, which will be discussed below in Section 3. In summary, in
our view, the data of confirmed cases is equally (or perhaps more) reliable to the data of deaths
in China, both of which have been used in our proposed statistical models.

Dey-Zipunnikov applied our eSIR model to fit the Maryland data. They specified an ap-
proximate transmission rate modifier via a minimum deviation criteria; that is, the function π(t)

https://www.google.com/covid19/mobility/
https://www.apple.com/covid19/mobility/
https://www.apple.com/covid19/mobility/
https://www.unacast.com/covid19/social-distancing-scoreboard
https://bit.ly/dtlivecovid
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Figure 1: Predicted prevalence under different intervention strategies: strictly continuing, slightly
loosening and severely loosening with π(t) = 0.3, 0.4 and 0.5 when t = June 1. The blue vertical
line indicates the last observation date.

was set with a change from 1 to 0.9 on March 12. and at 0.6 on March 23. Furthermore, on June
1 several levels of future interventions were considered, including strictly controlled, or slightly
and severely loosening, corresponding to π(t) = 0.3, 0.4 and 0.5. We utilized their settings to
repeat the analysis of the Maryland data available up to May 21 that were yielded by combining
data from 1point3acres 1Point3Acres (2020) and JHU CSSE Center for Systems Science and
Engineering (2020). Such data are weekly updated in our eSIR package. Figure 1 displays the
results of this analysis. Since we have used more recent data than that used in their analysis,
our credible interval bands shown by the salmon-color shadowed areas are narrower, though the
posterior means look similar to theirs. It is easy to visualize that the eSIR model fit the observed
data quite well, judging by the closeness of the observed and fitted numbers of infections before
May 21 (or left to the blue vertical line). Based on the magnitudes of the projected infection
rates in panels A-C, these forecasts indicate that continuing the strict intervention can flatten
the infection curve.



450 Wang, L. et al.

3 Data Quality

All discussants have pointed out an obvious but rather important issue that definitely affected the
risk projection. For example, Dey-Zipunnikov listed several major challenges in data collection,
including the under-reporting of the infected and recovered cases due to the shortage of PC-PCR
tests and antibody tests, different coronavirus testing policies and strategies, and inconsistent
accounting practices in death classification, among others. Gallagher raised the under-reporting
issue of the removed cases Y R

t . Moran discussed the need of additional data to adequately assess
the compliance of social distancing.

In the development of the eSIR toolbox, we also noticed that one of the major obstacles for
making accurate prediction was the imperfect data available on the current state of the disease
when they were typically summarized via the numbers of infected and recovered cases, as well
as disease-related deaths. The concern of data quality is indeed more at the early phase of the
pandemic when both the WHO specialists and the Chinese medical practitioners had very little
knowledge and resources for disease diagnostics and data collection as well as data reporting
systems. Because of such significant limitations on data availability and data quality, we have
intended to develop a data analytic toolbox that would be passed into the hands of public health
workers who may have better data than those accessible from the public surveillance databases.
In addition, we intentionally made the prediction uncertainty as a critical part of the toolbox to
account for potential data quality issues, in the hope that the credible intervals may address some
of the variations in the data collection. These small fixes are indeed insufficient to address the
significant challenges in the process of data collection. And data quality is of critical importance
for proper statistical analyses.

Let us focus on the under-reporting issue related to the missing data of asymptomatic
self-immunized cases. A solution to deal with this under-reporting problem is to embrace the
subpopulation of asymptomatic people into the mechanistic model. As noted by several discus-
sants, such individuals were infected but recovered with no hospitalization, and further developed
antibodies to the coronavirus. Thus, most of them have not been captured and reported in the
public databases. One effective way to learn the proportion of this latent self-immunization sub-
population is by surveys of antibody tests, which had been done recently in states NY, CA and
MA. In one of our recent papers for the analysis of the US data (Zhou et al., 2020), we developed
a new eSAIR model with the inclusion of an antibody compartment (A) that accounted for those
self-immunized individuals (see Figure 2). The extended system of differential equations takes
the form:

dθAt
dt

= α(t)θSt ,
dθSt
dt

= −α(t)θSt − βπ(t)θSt θIt ,
dθIt
dt

= βπ(t)θSt θ
I
t − γθIt , and

dθRt
dt

= γθIt , (1)

where α(t) is the self-immunization rate used to characterize the proportion of people moved
into the antibody compartment from the susceptible compartment, and θAt is the prevalence of
self-immunization at time t. In order to analyze data using this eSAIR model, the number of
individuals with antibodies to COVID-19 is required to be available, which can be obtained from
the antibody testing studies. For example, NY released results of state-wide antibody testing
surveys on April 29th. According to NY Governor, about 20% of the tested individuals in the
state already have the antibodies to COVID-19. Refer to the official website www.governor.n
y.gov/news/ for the detail of the antibody testing survey. With more antibody testing data
available, the under-reporting issue related to the subpopulation of asymptomatic infections will
be solved to a great extent. The novelty of this extension is to integrate survey data of antibody

www.governor.ny.gov/news/
www.governor.ny.gov/news/
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Figure 2: The compartment composition of the eSAIR model. Three compartments on the top
thread form the classical SIR model, including Susceptible, Infected and Removed. The eSAIR
model adds an Antibody compartment (the bottom thread) to account for the proportion of
people who are infected and self-immunized without being RT-PCR tested and recorded

into the basis SIR model.
In addition, we appreciate Zhu-Chen’s concern on the calibration method used in the paper

to smooth the bump of the confirmed cases occurring on February 12, 2020, under the assumption
of delayed data reporting. To our knowledge from the beginning of February, the local government
has implemented an aggressive door-to-door inspection program to detect and move symptomatic
cases to the field hospitals for a centralized care. This substantial public health effort was partially
responsible for a sudden spike for the daily new cases on February 12, 2020, in addition to the
change of clinical/diagnostic definition of COVID-19 cases by the Chinese Ministry of Health
according to Zhu-Chen. A more accurate assumption in our calibration method may be made
as a combination of delayed medical diagnosis and data reporting. We would follow Zhu-Chen’s
suggestion to improve the calibration method by incorporating time-varying infection rates, had
we known their comment early enough.

4 Subgroup Analysis

Several discussants raised a common point of subgroup analyses to address potential popula-
tion heterogeneity with regard to the infection dynamics, such as subgroups by age and other
demographics (Gallagher, Dey-Zipunikov, Zhu-Chen) and geographic locations (Gallagher, Dey-
Zipunnikov). Such a finer resolution analysis does require more data, some of which are beyond
the availability of the COVID-19 data. Our recent project (Zhou et al., 2020) proposed a spa-
tiotemporal epidemiological forecast model that combines a spatial cellular automata (CA) with
the eSAIR model (1) to predict the infection risk of COVID-19 for 3109 counties in the con-
tinental US. Utilizing inter-county mobility from its neighboring counties, this space-stratified
subgroup analysis model accounts for spatial variations of the infection dynamics over communi-
ties. In such county-level analysis, we introduced some county specific parameters, including the
self-immunization rate αc(t), the transmission modifier πc(t) and the inter-county connectivity
coefficient ωcc′(t) between counties c and c′. To illustrate this subgroup analysis approach, we
present a risk prediction for the counties from Maryland.

The daily time series of county-level confirmed infections, deaths and recovered cases from



452 Wang, L. et al.

Figure 3: A 7-day ahead risk prediction of COVID-19 for each county in state Maryland
from May 2, 2020. Risk is classified into 5 categories. The bins are defined by the 20th,
40th, 60th and 80th percentiles of nationwide county specific risks. The five categories
correspond to [84/10, 000, 216/10, 000), [216/10, 000, 272/10, 000), [272/10, 000, 344/10, 000),
[344/10, 000, 419/10, 000), [419/10, 000, 5567/10, 000].

Maryland are obtained from two data sources: Harvard Dataverse (China Data Lab, 2020)
and 1point3acres (1Point3Acres, 2020). We set the state-level self-immunization rate αMD(t)
as a jump function with a single mass point on April 29, when the New York governor Mr.
Andrew Cuomo released the results of a statewide antibody test survey (www.governor.ny.
gov/news/). The jump size for state Maryland is calibrated proportionally with that of New
York with respect to the state-specific basic reproduction number. That is, αMD =

R0,MD

R0,NY
αNY

under the assumption that the higher R0 the larger number of infections, and thus more people
having antibody in state Maryland. The county-level social distancing index is obtained from the
published values by the Transportation Institute at the University of Maryland (Zhang et al.,
2020) derived from the cell phone mobile data. The connectivity coefficient ωcc′(t) is set as
µcc′ exp{−ηr(c, c′)}, where µc,c′ is the inter-county mobility factor characterizing the decrease
of human encounters in terms of their potential movements between counties (Unacast, 2020),
and r(c, c′) is a certain travel distance between two counties in terms of both geodesic distance
(Karney, 2013) and “air distance” based on the accessibility to nearby airports. The county-level
7-day-ahead projected risks in the state of Maryland from May 2, 2020 are shown in Figure 3,
with the heterogeneity of infection risks between counties illustrated.

www.governor.ny.gov/news/
www.governor.ny.gov/news/
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5 Future Work

The eSIR model was proposed to address very basic needs for the assessment of time-varying
interventions and risk projection with limited data. As the COVID-19 pandemic continues
worsening in the world, especially in Brazil and the US, more data will become available in the
public databases, and thus various extensions of the eSIR are going to be of great interest and
in need. First and foremost, the underlying mechanistic model may be expanded to include
more compartments. Besides the Antibody (or Asymptomatic) compartment in Figure 2, as
recommended by Dey-Zipunnikov, adding both exposure and hospitalization compartments is
useful (e.g. https://arxiv.org/pdf/2004.04735.pdf). As pointed out in Section 1, the utility of
exposure compartment is dependent on the accurate estimation of incubation period, which is
not settled in the current literature due to the biased length sampling issue (Qin et al., 2020).
The hospitalization compartment may be challenged by multiple complicating factors, including
patient’s health insurance, medical sources, and availability of specialized hospitals for infectious
diseases and so on. Most extensions in the literature are undertaken over mechanistic models
in that prior choices of system parameters must be made in order to overcome the issue of
identifiability. We do not want to pursue this type of analysis since working on statistical models
that allow available data to learn a proposed dynamic system is our primary research interest.

Another extension of the eSIR model suggested by Zhou-Ji is to generalize the latent process
with more general Markov processes in that some more flexible functions of transmission rate
modifiers may be formulated and estimated via sequential MCMC sampling schemes from data.
This direction of research will facilitate the integration of statistical methods with mechanistic
models proposed by applied mathematicians and epidemiologists. We see a bright future of such
collaboration to conquer this lethal infectious disease.

A valuable work that has not been considered in the literature is to set up constraints on the
dynamic system. For example, one may constrain the transmission rate modifier π(t) to cap the
number of hospitalized individuals below the available ICU beds. This is so-called “flattening the
curve” strategy. In addition, to design when, where and how many surveys for antibody tests are
absolutely needed as a piece of information to enhance our understanding on the evolution of self-
immunized cases. It is the time that statisticians can stand up to contribute their quantitative
expertise and wisdom to produce new models and software to help fight against this pandemic.
Together we believe that we can and will go through it.

In closing, we feel greatly privileged to receive such insightful reviews from the discussants
and to have an opportunity to respond. We also thank their understanding for any possible
omissions in this rejoinder given the number of brilliant comments and suggestions. We learned
a lot from all the discussants.
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