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Abstract: Identification of representative regimes of wave height and direc-
tion under different wind conditions is complicated by issues that relate to
the specification of the joint distribution of variables that are defined on
linear and circular supports and the occurrence of missing values. We take
a latent-class approach and jointly model wave and wind data by a finite
mixture of conditionally independent Gamma and von Mises distributions.
Maximum-likelihood estimates of parameters are obtained by exploiting a
suitable EM algorithm that allows for missing data. The proposed model is
validated on hourly marine data obtained from a buoy and two tide gauges
in the Adriatic Sea.
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1. Introduction

Wave regimes are specific shapes that the distribution of wave attributes (such
as wave height and direction) takes under latent environmental conditions. The
identification of relevant regimes in a particular area is often necessary to estimate
the drift of floating objects and oil spills (Huang et al, 2011), in the design of off-
shore structures (Faltinsen, 1990) and in studies of sediment transport (Jin and
Ji, 2004) and coastal erosion (Pleskachevsky et al., 2009). The description of wave
data in terms of regimes is also useful in the analysis of coastal areas and enclosed
seas, where numerical wind-wave models, traditionally used for ocean waves, can
give inaccurate results (Bertotti and Cavalieri, 2004). For these reasons, the
Assembly of the International Maritime Organization has repeatedly encouraged
the publication of wave data atlas that include a description of representative
wave regimes in specific areas, characterized by probability of occurrence, and
corresponding to dominant environmental conditions (e.g., wind conditions) over
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the area of interest. This has motivated an increasing interest in methods for
clustering wave data according to a finite number of regimes.

Traditionally, techniques of wave data clustering are based on distance-based
methods. Recent proposals require the use of a finite number of target distribu-
tions, defined as cluster centroids, and an optimization algorithm that associates
the observed data to the closest centroid (Boukhanovsky et al., 2007). Hierarchi-
cal agglomerative clustering methods (Hamilton, 2010) have been also suggested
to avoid the specification of a family of target distributions.

The limitations of distance-based based methods are well known (Fraley and
Raftery, 2002). The statistical properties of these methods are generally un-
known, precluding the possibility of formal inference on the clustering results.
This is a critical issue in marine studies, because the identification of wave regimes
without a measure of the statistical uncertainty of regime-specific parameters is
of little practical use. In addition, there is little systematic guidance associated
with distance-based methods for solving basic questions that arise in cluster anal-
ysis, such as the choice of an optimal number of clusters and the choice of an
optimal clustering algorithm.

A general framework to address these issues is provided by latent-class models
(Hagenaars and McCutcheon, 2002), which cluster multivariate data according
to a finite number of classes, approximating the joint distribution of the data
by a mixture of parametric densities, which represent the distributional shape
of the data within each cluster. From a methodological viewpoint, a latent-class
approach allows to solve the clustering problem as a missing value problem, by
treating the unknown cluster membership of each observation as a missing value,
to be estimated from the data. From a technical viewpoint, the clustering algo-
rithm reduces to likelihood maximization and the choice of the optimal number
of clusters reduces to a model selection problem in parametric inference.

In this paper we take a latent-class approach to describe sea conditions in
terms of wave regimes, by clustering multivariate environmental profiles in a
finite number of classes. Specifically, we model the data by a mixture of product
densities, i.e. a particular latent-class model where the observed variables are
assumed conditionally independent, given a latent multinomial variable. This
model is tailored to identify wave regimes in practical settings that often arises
in marine studies, where (1) environmental profiles include measurements taken
on linear and circular supports and (2) some of these observations are missing,
due to malfunctioning of the devices that provide the data.

While there is an extensive literature on modelling multivariate continuous,
categorical and mixed continuous-categorical variables by multivariate normal
models, log-linear models or a combination of both, the joint modelling of vari-
ables on linear and circular supports is still an open area of research. Recent
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attempts include multivariate circular distributions defined on toroidal supports
(Mardia et al., 2008), distributions on cylinders that are based on nonnegative
trigonometric sums (Fernández-Durán, 2007) and multivariate distributions with
specified marginals on cylinders, discs and tori (Kato and Shimizu, 2008). When
however the goal of an analysis is the identification of typical wave regimes, the
specification of the joint distribution of marine variables should aim at clustering
the data according to a finite number of classes in a way that the dependence
structure between the data is well approximated by this partitioning of the sam-
ple. Mixtures of product densities provide such clustering of the data and flexibly
accommodate for the mixed supports on which linear and circular data are taken.
Moreover, the semi-parametric nature of the model allows for a parsimonious
specification of the association structure between linear and circular measure-
ments, which is of great help in marine studies, where too little is often known
about the data generating process to assume a fully parametric specification.

Wave regimes identification is additionally complicated by the occurrence of
missing values. Marine databases are often incomplete because of device mal-
functioning or maintenance-related reasons. For mixture-based data clustering,
maximum-likelihood estimation could be carried out by discarding incomplete
data profiles from the sample and using the complete cases to build up the likeli-
hood function to be maximized (CC; complete case analysis). If the joint distri-
bution of the variables of interest is correctly specified and the data are missing
at random (MAR; i.e., the conditional probability of not observing a value, given
the observed data, does not depend on the unobserved value; Rubin, 1987), CC-
based maximum-likelihood estimation is known to be (asymptotically) unbiased
but inefficient (Rotnitzky and Wypij, 1994). Loss of efficiency is due to the fact
that incomplete profiles are informative of the parameters of the joint distribution
of several variables, especially when these variables are strongly correlated. Effi-
cient maximum-likelihood estimation from MAR multivariate data often requires
data-augmentation or multiple-imputation methods (Shafer, 1997). Mixture of
product densities, instead, can be efficiently estimated by including both complete
and incomplete profiles into the likelihood, because likelihood contributions of in-
complete profiles are available in closed form and data-augmentation/imputation
methods are not necessary.

Mixtures of product densities have been already suggested in the statistical lit-
erature to cluster multivariate categorical data (Vermunt et al., 2008) and mixed
linear and categorical data (Hunt and Jorgensen, 2003) in the presence of missing
values. From a technical viewpoint, therefore, our application extends this strand
of literature to the case of linear and circular data with missing values. On the
methodological side, our proposal is an alternative to the existing distance-based
methods for wave regime identification, with three practical advantages. First,
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it is based on an EM algorithm that is less computationally demanding than
the algorithms currently in use for distance-based identification of wave regimes.
Second, missing values are efficiently handled, while distance-based methods nor-
mally require complete data information. Third, while formal inference is not
possible with a distance-based approach to clustering, mixture-based clustering
is carried out within a parametric inferential framework and, as a result, it can
be validated by using traditional methods of parametric inference.

Relevant details on the data that motivated this work are presented in Section
2, while Section 3 is devoted to maximum-likelihood estimation of mixture of
product densities in the case of missing observations. In Section 4 we specify
the Gamma-von Mises latent-class model that was exploited to examine the data
presented in Section 2. Estimation and model validation results are summarized
in Section 5. Relevant points of discussion are listed in Section 6.

2. Data

The Italian Institute for Environmental Research and Protection (ISPRA;
www.isprambiente.it) maintains a network of buoys to monitor wave direction
and height at various points of the Italian seas. A network of ISPRA tide gauges,
located along the Italian coast, additionally provide data about wind direction
and speed.

The data that we have exploited in this work include hourly measurements
of wave height and direction, taken in the period 11/18/2002-01/17/2003 by
the buoy of Ancona, which is located in the Adriatic sea at about 30 Km from
the coast (Figure 1). During the same period, hourly data on wind speed and
direction were obtained from the two nearest tide gauges, respectively located
at Ancona (about 30 Km from the buoy) and at Ravenna (about 120 Km from
the buoy). To account for the cumulative effect that wind has on waves, wind
data were smoothed by taking, for each hour, the average of wind speeds and the
circular average of wind directions, observed during the last eight hours.

Table 1 reports the percentages of missing data observed during the study
period. Measurements taken by buoys and tide gauges can be missing because of
devices maintenance or discontinuous functioning. Occurrence of missing values
on wave measurements is more frequent than the occurrence of missing wind
data because buoys are more exposed to transmission errors than tide gauges.
We remark that our data are in the form of hourly profiles of six observations.
As a result, different patterns of missing values occur: while about the 28% of the
data profiles include at least one missing value, the modal missingness pattern
(15.3%) includes a missing circular and a missing linear variable. During the
study period, there is a very small portion (about 0.1%) of hourly profiles with
no information.
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Figure 1: Locations of the buoy and the two tide gauges, from which the data
displayed in Figure 2 were obtained; segments indicate the three directions of
maximal fetch, i.e. the distance between the buoy and the closest coastline

Table 1: Percentages of missing values

Site Measurement (Unit) Percentages

Ancona (buoy) Wave Height (Meters) 16.3%
Wave Direction (Radians) 16.3%

Ancona (tide gauge) Wind Speed (Meter/Sec) 1.1%
Wind Direction (Radians) 2.2%

Ravenna (tide gauge) Wind Speed(Meter/Sec) 10.4%
Wind Direction (Radians) 2.3%

Univariate distributions of the available data are displayed in Figure 2. Rose
diagrams indicate the distribution of directions from which the wind and the wave
come from. As expected, waves mostly come from two modal directions (south-
east and north-east), which relate to two of the three angles at which the distance
between the buoy and the nearest coast (fetch) is maximum (Figure 1). Waves
from North-West (along the third maximum-fetch direction) are rarely observed
in wintertime, because winter winds do not typically blow from this direction.
As displayed by the circular wind distributions at the two tide gauges of Ancona
and Ravenna, two are the winds that dominate the Adriatic Sea in wintertime:
bora, a typical cold wind, blowing from West/North-West, and Sirocco, blowing
from South-East, and responsible for the storm surges in the northern part of the
Adriatic sea, and hence for the famous floods of Venice.

The histograms on the right side of Figure 2 show the distributions of wave
height, as observed at the buoy of Ancona, and wind speed, as measured at the
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two tide gauges of Ancona and Ravenna. The multi-modal shape of these distri-
butions is less apparent than that displayed by directional data. This is typical
of wave and wind data that are observed in enclosed seas, such as the Adriatic,
where the geometry of the coastline makes it difficult to separate components
of dominant wind speeds and wave heights and is responsible for the inaccu-
rate results provided by numerical wind-wave models that are normally used for
modelling ocean waves.
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Figure 2: Distribution of the available wave metric data at the buoy of Ancona
and wind data at the two nearest tide gauges (Ancona and Ravenna)



Clustering Incomplete Linear-Circular Data 591

3. Estimation of Mixtures of Product Densities from Incomplete Mixed
Data

The multivariate data described in Section 2 can be represented as n vectors
yi = (yi1, · · · , yiJ), i = 1, · · · , n, drawn from the multivariate distribution of J
variables Yj , j = 1, · · · , J , measured on different supports (e.g., linear or circular).
We assume that these vectors can be clustered into K groups (or classes) and
that the association structure between the variables Yj is well approximated by
this partitioning of the sample. Formally, we introduce a latent (unobserved)
multinomial random vector Z = (Z1, · · · , ZK) with one trial and cell probabilities
(π1, · · · , πK), and assume that the J variables Yj are conditionally independent
given Z. Within this conditional independence assumption, we specify K × J
distributions fk(y|βkj), each known up to a parameter vector βkj , and model the
multivariate distribution of vector yi as a finite mixture of J-dimensional product
densities, say

f(yi) =

K∑
k=1

πk

J∏
j=1

fk(yij |βkj), (3.1)

where fk(y|βkj) denotes the conditional distribution of Yj within the kth latent
class. We observe that (3.1) specifies a multivariate distribution without impos-
ing consistency constraints on the conditional densities fk(y|βkj), which, hence,
do not necessarily need to be member of the same parametric family. This flexi-
bility is of great help in the modelling of mixed linear and circular data. Given
the number K of classes, mixtures of product densities are furthermore strictly
identifiable, provided that the densities fk(y) =

∏J
j=1 fk(yj |βkj) are linearly in-

dependent (Teicher, 1967; Yakowitz and Spragins, 1968).

Mixture (3.1) is a particular latent-class model and is often presented in the
literature as a model-based alternative to the traditional cluster-analysis methods
that are based on distance-based procedures, such as hierarchical agglomerative
clustering or iterative relocation procedures. Typically exploited in social sci-
ence studies and marketing research, mixtures of product densities such as (3.1)
have been successfully implemented in the classification of mixed profiles that in-
clude quantitative (continuous or discrete) and categorical (nominal or ordinal)
observations.

Maximum-likelihood estimation of a mixture model is normally based on an
EM algorithm. Hunt and Jorgensen (2003) developed an EM algorithm for esti-
mating latent-class models from MAR data, in the case of mixed multi-normal
and categorical data. In the case of mixtures of product densities, such as (3.1),
their algorithm can be greatly simplified as follows.

We account for the occurrence of missing values by splitting the complete
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data vector yi = (yO(i),yM(i)) into a vector yO(i) of observed data and a vector
yM(i) of missing values, O(i) ∪M(i) = {1, · · · , J}. We furthermore introduce
a n × J matrix R, whose generic component rij = 1 if yij is missing and 0

otherwise. Accordingly, the row-sums of R, say ri· =
∑J

j=1 rij , indicate the
number of missing values within each ith profile.

If the data are MAR, i.e. the probability of a missing value does not depend
on the value that is missing, maximum likelihood estimates of model (3.1) can
be found by maximizing the marginal log-likelihood function

l(β, π) =

n∑
i=1

log

∫
yM(i)

K∑
k=1

πk

J∏
j=1

fk(yij |βkj)dyM(i)

=
n∑
i=1

log
K∑
k=1

πk

J∏
j=1

(fk(yij |βkj))1−rij

=
∑
i:ri·=0

log

K∑
k=1

πk

J∏
j=1

fk(yij |βkj) +
∑
i:ri·>0

log

K∑
k=1

πk

J∏
j=1

(fk(yij |βkj))1−rij

= lCC(β, π) + lIC(β, π), (3.2)

which is the sum of the log-likelihood contributions of the complete (CC) and
incomplete cases (IC). We observe that the log-likelihood contribution of a com-
pletely missing profile, i.e. such that ri· = J , is given by log

∑
k πk = 0. Under a

CC strategy, the log-likelihood contribution lIC is ignored, leading to inefficient
estimates.

Local maximum points of the log-likelihood (3.2) can be found by an EM
algorithm (Dempster, Laird and Rubin, 1977) that iteratively maximizes the
expectation of the complete data log-likelihood function. In the case of MAR
data drawn from a mixture of product densities, the complete log-likelihood can
be written as follows

lcomp(β,π) =
n∑
i=1

K∑
k=1

zik

log πk +
J∑
j=1

(1− rij) log fk(yij |βjk))

 , (3.3)

where (zi1, · · · , zik) is the ith realization of the multinomial random variable Z.
At the hth step of the algorithm, the expectation of lcomp(β,π) with respect
to the conditional distribution p(Z|y) is computed on the basis of the estimates
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β̂(h−1) and π̂(h−1), obtained at the previous iteration, by evaluating (E-step)

Q(π, β|π̂(h−1), β̂(h−1)) = E(lcomp(β,π))

=

n∑
i=1

K∑
k=1

log πk +

J∑
j=1

(1− rij) log fk(yij |βjk)

E(zik|β̂(h−1), π̂(h−1))

=

n∑
i=1

K∑
k=1

π̂
(h−1)
ik log πk +

J∑
j=1

n∑
i=1

K∑
k=1

π
(h−1)
ik (1− rij) log fk (yij |βjk)

= Q
(
π|β̂(h−1), π̂(h−1)

)
+

J∑
j=1

Qj
(
βkj |β̂(h−1), π̂(h−1)

)
, (3.4)

where

π̂
(h−1)
ik = E(zik|β̂(h−1), π̂(h−1))

=

∫
yM(i)

π̂
(h−1)
k

∏J
j=1 fk(yij |β̂

(h−1)
kj )dyM(i)∫

yM(i)

∑K
k=1 π̂

(h−1)
k

∏J
j=1 fk(yij |β̂

(h−1)
kj )dyM(i)

=
π̂
(h−1)
k

∏J
j=1

(
fk(yij |β̂

(h−1)
kj )

)1−rij
∑K

k=1 π̂
(h−1)
k

∏J
j=1

(
fk(yij |β̂

(h−1)
kj )

)1−rij (3.5)

indicates the conditional probability of vector yO(i) to belong to the kth latent

class. The previous E-step is followed by an M-step where vector (β̂(h−1), π̂(h−1))
is updated by a new vector (β̂(h), π̂(h)) that maximizes the expected log-likelihood
(3.4). We observe that (3.4) is the sum of J + 1 functions, which depend on
independent sets of parameters, and, as a result, the M-step can be carried out
by separately solving J + 1 maximization problems. In particular, the maximum
point of Q(π|β̂(h−1), π̂(h−1)) is available in closed form and it is equal to

π̂
(h)
k =

1

n

n∑
i=1

π̂
(h−1)
ik .

The form of the updating equations for parameters β that maximize the re-
maining J functions Qj(βkj |β̂(h−1), π̂(h−1)) depend on the form of the densities
fk(yj |βkj). In Section 4 we derive these updates under Gamma and von Mises
densities.

The algorithm alternates the E-step and the M-step up to convergence of the
estimates, whose limit (Wu, 1983) is a local maximum point of the likelihood
function (3.2).
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4. A Gamma-Von Mises Latent-Class Model

The J = 6 variables of our case study can be clustered in two groups according
to the scale on which they are measured. A first group includes three circular
variables, say Y1 (wave direction at the Ancona buoy), Y2 (wind direction at
the Ancona tide gauge) and Y3 (wind direction at the Ravenna tide gauge). A
second group includes three variables on a linear support, say Y4 (wave height at
the Ancona buoy), Y5 (wind speed at the Ancona tide gauge) and Y6 (wind speed
at the Ravenna tide gauge).

The mixture model presented in Section 3 allows for a flexible choice of the
univariate distributions that can be placed within each latent class.

We have decided to model wave and wind directions by exploiting three von
Mises distributions, i.e.

fk(y|βkj) = VM(βkj0, βkj1) =
exp(βkj1 cos(y − βkj0))

2πI0(βkj1)
, j = 1, 2, 3, (4.1)

where the parameters βkj0 and βkj1, j = 1, 2, 3, respectively indicate the mean (or
modal) direction and the concentration of each conditional circular distribution,
given the kth latent class, and I0 is the modified Bessel function of order 0.

Wave height at the buoy and wind speeds at the two tide gauges have been
instead modeled by three Gamma distributions, i.e.

fk(y|βkj) = Gam(βkj0, βkj1) =
β
βkj1
kj0 y

βkj1−1 exp−(y/βkj0)

Γ(βkj1)
, j = 4, 5, 6, (4.2)

where parameters βkj0 and βkj1, j = 4, 5, 6, respectively indicate the scale and
shape of the conditional distributions, given the latent class.

Under the above distributional assumptions, the mixture of product densities

f(y) =
K∑
k=1

πk

J∏
j=1

fk(yj |βkj)

is a multivariate distribution on a six-dimensional hyper-cylinder. According to
the sufficient conditions stated by Teicher (1967) and Yakowitz and Spragins
(1968), identifiability of this mixture follows by the linear independence of the
families of the Gamma and the von Mises densities. Moreover, the marginal dis-
tribution of each variable on a linear support is approximated by a mixture of K
Gamma densities and the marginal distribution of each circular variable is ap-
proximated by a mixture of K von Mises densities. As a result, the J-dimensional
profiles of wave and wind data (J = 6 in our application) are clustered according
to K wind-wave regimes. Because von Mises and Gamma densities are known
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up to 2 parameters, each regime is defined on the basis of 2J parameters, which
indicate not only class-specific modal directions of waves and winds and their
average heights and speeds, but also the amount of variation of the circular and
linear measurements around these means. In particular, the association between
each variable and the remaining variables is semi-parametrically described by
conditional densities that take the following mixture form

f(yj |yl, l 6= j;β,π) =

K∑
k=1

πk
∏
h6=j fk(yh|βhk)∑K

k=1 πk
∏
h6=j fk(yh|βhk)

fk(yj |βkj). (4.3)

Class-specific parameters of the above Gamma-von Mises mixture model can
be separately updated by the EM algorithm within the M-step. In particular,
standard derivative computations show that contributions to the expected log-
likelihood function given by the circular data, Qj(βj |π̂(h−1), β̂(h−1)), j = 1, 2, 3
are separately maximized by

• an update of the modal directions, given by

β̂
(h)
kj0 = arctg

∑n
i=1(1− rij)π̂

(h−1)
ik sin yij∑n

i=1(1− rij)π̂
(h−1)
ik cos yij

, (4.4)

• and by the roots β̂
(h)
kj1 of the three equations

I0(βkj1)

I ′0(βkj1)
=

∑n
i=1(1− rij)π̂

(h−1)
ik cos(yij − β̂(h)kj0)∑n

i=1(1− rij)π̂
(h−1)
ik

, (4.5)

which are the updated concentrations of wave and wind directions on the
circle.

Analogous derivative computations show that the remaining three functions
Qj
(
βj |π̂, β̂

)
, j = 4, 5, 6, i.e. the contributions of the linear data to the expected

log-likelihood function, are separately maximized by

• an update of the shape parameters, given by

β̂
(h)
kj0 =

∑n
i=1(1− rij)π̂

(h−1)
ik yij∑n

i=1(1− rij)π̂
(h−1)
ik

,

• and by the roots β̂
(h)
kj1 of the three equations

log(βkj1)− ψ(βkj1) = log

(∑n
i=1(1− rij)π̂

(h−1)
ik yij∑n

i=1 π̂
(h−1)
ik

)

−

(∑n
i=1(1− rij)π̂

(h−1)
ik log yij∑n

i=1 π̂
(h−1)
ik

)
,
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where ψ(βkj1) is the Digamma function.

5. Results and Model Validation

The proposed model was estimated from the data illustrated in Section 2, by
considering K = 4, · · · , 10 classes. According to the BIC criterion, a model with
K = 7 classes is needed to adequately describe the data (results not reported
here and available upon request to the corresponding author).

Table 2 displays the maximum likelihood estimates and the standard errors
of the 7× 12 + 7 = 91 parameters of the model with minimum BIC. The last row
of the table indicate the estimated class probabilities π̂. While point estimates
were computed by exploiting the EM algorithm of Section 3, standard errors
were computed by taking the square root of the diagonal elements of the inverse
observed information matrix, obtained by extracting the observed information
from the complete log-likelihood (Louis, 1982). These estimates (all significant
at a 95% significance level) can be directly exploited for a variety of applications
that include for example the computation of the expected wave load to ships
and off-shore structures. In addition, these estimates have an immediate phys-
ical interpretation, which can be summarized with the help of Figure 3, which
displays the 6×7 densities that have been estimated under model (3.1). To draw
this picture, we have used seven different colors (listed in Table 2) to show the
grouping of the conditional densities according to the seven latent classes. Latent
classes can be interpreted with the help of the map in Figure 1. Components 1,
2 and 7 cluster S-E waves of high (comp. 1), medium (comp. 2) and low (comp.
7) average heights, respectively. As expected, components 1, 2 and 7 are respec-
tively associated with Sirocco winds of high, medium and low speed at both the
tide gauges considered for analysis. Components 3 and 5 cluster N-W waves of
medium (comp. 3) and low (comp. 5) height, associated with Bora winds of
medium (comp. 3) and low (comp. 5) speed, blowing from west and north-west
at the two tide gauges. Components 4 and 6 cluster waves with a direction that
is perpendicular to the coast (coastal waves) and, as expected, are of moder-
ate/medium heights. However, while waves within latent class 4 are associated
with winds blowing along the same direction as waves, waves within latent class
6 are associated with winds coming from north. We note that the occurrence
of coastal waves of moderate heights, regardless of wind and speed direction, is
responsible for numerical wind-wave models giving inaccurate results in coastal
areas. Our mixture model correctly separates coastal waves and wind-generated
waves moving along maximal fetch directions. The results additionally suggest
that regimes that generate coastal waves cannot be ignored in the analysis of
sea conditions, because the probability of occurrence of classes 4 and 6 is about
0.22. We also remark that the model seems able to separate regimes that drive
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severe and moderate conditions of the sea. Component 1 detects the distribu-
tional shape of wave height and direction of sea storms and identifies the wind
conditions under which this event occur.

Table 2: Parameter estimates and standard errors (within brackets)

Component
Parameters 1 2 3 4 5 6 7

(red) (blue) (green) (yellow) (cyan) (magenta) (orange)

Wave Dir a mean 1.935 2.102 5.927 0.820 5.097 0.821 2.409

(radians)
(0.013) (0.020) (0.076) (0.035) (0.051) (0.036) (0.100)

concentration 99.278 16.778 1.215 9.377 6.951 6.269 0.898

(17.476) (1.862) (0.108) (1.343) (1.341) (0.784) (0.116)

Wind Dir b mean 2.339 2.864 4.632 1.195 4.534 5.701 3.411

(radians)
(0.022) (0.049) (0.018) (0.058) (0.052) (0.103) (0.063)

concentration 30.995 3.122 11.111 3.181 7.057 1.240 1.656

(5.223) (0.335) (0.964) (0.447) (1.626) (0.139) (0.122)

Wind Dir c mean 2.305 2.697 5.103 1.065 5.322 5.942 5.319

(radians)
(0.022) (0.169) (0.012) (0.020) (0.034) (0.064) (0.082)

concentration 33.105 0.632 24.259 24.716 13.778 2.467 1.064

(6.116) (0.130) (2.357) (3.908) (2.543) (0.241) (0.110)

Wave Height a shape 99.226 5.782 12.556 35.778 26.081 10.147 3.031

(meters)
(20.640) (0.701) (1.148) (5.125) (5.116) (1.360) (0.247)

scale 0.029 0.174 0.078 0.055 0.014 0.179 0.146

(0.006) (0.021) (0.007) (0.008) (0.003) (0.024) (0.014)

Wind Speed b shape 10.372 5.140 11.779 9.358 9.768 7.685 2.276

(meters/sec)
(1.756) (0.592) (0.915) (1.289) (1.630) (1.013) (0.177)

scale 0.517 0.628 0.420 0.386 0.192 0.771 0.896

(0.089) (0.070) (0.033) (0.056) (0.033) (0.099) (0.084)

Wind Speed c shape 22.656 4.497 10.517 12.732 13.004 4.159 6.232

(meters/sec)
(4.712) (0.586) (0.817) (1.683) (2.354) (0.452) (0.577)

scale 0.223 0.626 0.296 0.448 0.083 0.969 0.210

(0.045) (0.077) (0.023) (0.060) (0.015) (0.110) (0.021)

probability 0.053 0.166 0.250 0.087 0.060 0.135 0.249

(0.006) (0.013) (0.012) (0.008) (0.007) (0.010) (0.015)

a Ancona buoy - b Ancona tide gauge - c Ravenna tide gauge

Figures 4 and 5 display the classification of the multivariate profiles, as obtained
by modal allocation, i.e. assigning each profile i to the latent class k with the
highest probability π̂ik. Fiducial intervals for each single observation yij were
obtained on the basis of the estimated conditional distribution (5.1) whose ex-
pectation

E(yij |yil, l 6= j; β̂, π̂) =

K∑
k=1

π̂k
∏
h6=j fk(yih|β̂hk)∑K

k=1 π̂k
∏
h6=j fk(yih|β̂hk)

Ek(yij |β̂kj) (5.1)

was exploited to impute missing values (the black dots in Figures 4 and 5). The
model gives an adequate fit of the observed data (right-hand histograms in Figures
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4 and 5 and, simultaneously, operates an intuitively appealing classification of
complete and incomplete profiles of wind and wave measurements.
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Figure 3: Densities of wave direction and height at the Ancona buoy (top)
and wind direction and speed (middle: Ancona tide gauge; bottom: Ravenna
tide gauge), as estimated by a 7-components LC cluster model; coloured lines
indicate conditional densities and black lines indicate mixture densities
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Figure 4: Left: directional data, clustered into seven latent classes and 95%
(grey) and 99% (dark grey) fiducial intervals, as estimated by a 7-components
mixture model. Black dots indicate missing values, imputed by the expectation
of the conditional distribution of the missing values given the observed data,
as estimated by the model. Right: histograms of complete data fitted by the
model
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Figure 5: Left: linear data, clustered into seven latent classes and 95% (grey)
and 99% (dark grey) fiducial intervals, as estimated by a 7-components mixture
model. Black dots indicate missing values, imputed by the expectation of
the conditional distribution of the missing values given the observed data, as
estimated by the model. Right: histograms of complete data fitted by the
model
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Goodness of fit was also evaluated by comparing the squared cross-correlations
between the observed data and those expected by the mixture model. To com-
pute the empirical correlation between intensity observations (wind speed and
wave height), we have used the standard Pearson correlation. The empirical
correlation between circular data (wind and wave direction) was computed by
exploiting the Fisher-Lee correlation index (Fisher and Lee, 1983). Finally, we
computed the cross-correlation between linear and circular data (e.g., between
wind direction and wave height) by exploiting the Mardia’s linear-circular corre-
lation index (Mardia, 1976). Table 3 displays a reasonable matching between the
empirical correlations against their expected counterparts, under the estimated
mixture model, showing that the conditional independence assumption of model
(3.1) (coupled with the choice of 7 latent classes) explains a significant part of
data variability.

Table 3: Observed and expected squared correlations

Wave H. Wind S. a Wind S. b Wave D. Wind D. a Wind D. b

Wave Heigth 1

(expected) (1)

Wind Speed a 0.191 1

(expected) (0.320) (1)

Wind Speed b 0.385 0.142 1

(expected) (0.517) (0.199) (1)

Wave Direction 0.199 0.111 0.168 1

(expected) (0.193) (0.117) (0.165) (1)

Wind Direction a 0.233 0.108 0.193 0.002 1

(expected) (0.222) (0.165) (0.111) (0.005) (1)

Wind Direction b 0.184 0.007 0.119 0.008 0.017 1

(expected) (0.194) (0.003) (0.156) (0.011) (0.027) (1)

a Tide gauge: Ancona - b Tide gauge: Ravenna

We also evaluated the predictive accuracy of the model by non-parametric
cross-validation (Gelman et al., 1998). More precisely, we randomly split the
sample in 10 subsamples. From each subsample, we discarded the 10% of the
observations and (1) use the remaining portion of the subsample to fit a new
model and (2) draw 5 imputations for each discarded vector of data, from the
estimated conditional distribution of the discarded values given the observed data.
If multiple imputations were of good quality, then we would expect than the actual
outcome and the multiple imputations to have the same distributions, so that if
one ranked the actual response along to the 5 imputations, then all 6 possible
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orderings (actual outcome lowest, second lowest,· · · , highest) would be equally
likely. Figure 6 displays the cumulative distribution functions of the 6 ranks of
circular and linear outcomes (overlapped to that of the uniform distribution),
showing the good predictive accuracy of the model.
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Figure 6: Rank cumulative distribution of the actual outcome with respect to
5 multiple imputations in a cross-validation experiment and cumulative distri-
bution function of a uniform distribution

6. Discussion

We propose a latent-class approach to identify wave regimes under various
wind conditions and estimate regime-specific wave parameters, such as modal
wave directions and average wave heights, in the case of incomplete data, observed
at different locations.

Using mixtures of product densities to model multivariate data allows for
a simple specification of the dependence structure between variables that are
measured on different supports (e.g. linear and circular) and, simultaneously,
provides a flexible framework within which a variety of different parametric fam-
ilies can be exploited to model the univariate distribution of each single variable,
given the latent class. We exploited von Mises and Gamma distributions, but
the estimation procedure of Section 3 can be implemented by choosing different
parametric families that can be more suitable in different case studies. By as-
suming a mixture densities, moreover, missing values are efficiently handled in a
maximum-likelihood framework.

Modelling flexibility and computational efficiency in the case of incomplete
data information come at the price of a simplifying constraint on the dependence
structure among variables, given by the conditional independence assumption.
In marine studies, this assumption can be often motivated by empirical evidence
of a number of latent sea regimes and by the need of clustering the data in a
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way that the association structure between the observed variables is well approx-
imated by this partitioning of the sample. Nevertheless, issues of goodness of
fit should be carefully addressed. Rigorous goodness-of-fit methods are however
problematic with missing values. We have obtained reassuring results by com-
puting case-wise fiducial intervals, overlaying the estimated marginal densities of
the variables on the observed histograms (Figures 4 and 5) and comparing ex-
pected and empirical squared correlations between the variables (Table 3). These
results should be interpreted with care, because empirical histograms and corre-
lations are computed after discarding the missing values and because having most
of the observed values within fiducial intervals says little about their ability to
include missing values. These issues motivated our cross-validation experiment,
whose results indicate that the proposed model was capable to explain most of
the data variability and to re-impute artificially-removed values with a reasonable
accuracy.
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