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Abstract: This paper discusses the selection of the smoothing parameter
necessary to implement a penalized regression using a nonconcave penalty
function. The proposed method can be derived from a Bayesian viewpoint,
and the resultant smoothing parameter is guaranteed to satisfy the sufficient
conditions for the oracle properties of a one-step estimator. The results of
simulation and application to some real data sets reveal that our proposal
works efficiently, especially for discrete outputs.
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1. Introduction

A crucial problem in statistical modeling is variable selection, which affects
the accuracy of inferences. This is especially important for the selection of ex-
planatory variables of regression analysis of recent huge data sets. Many methods
for variable selection in regression have been developed and summarized in stan-
dard textbooks, such as Chatterjee, Hadi and Price (2000). Cross validation
(CV), AIC and BIC are known to be convenient techniques, not only for variable
selection in regression but also for general model selection. However, when the
set of variables is large, these techniques have a high computational cost, since all
combinations of the variables must be calculated. The LASSO type method can
overcome this difficulty by its simultaneous implementation of estimation and
variable selection (see Tibshirani, 1996). Progress on using this simultaneous
implementation includes Fan and Li (2001), in which nonconcave penalty func-
tions play an important role. Fan and Li (2001) show such estimators possess
the oracle properties. Zou and Li (2008) discuss using local linear and quadratic
approximations to avoid the singularities of nonconcave penalty functions and
show that the obtained estimator possesses the oracle properties as well.
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On the other hand, penalized regression approaches generally include a smooth-
ing parameter. Because the estimates obviously depend on the actual value of
the smoothing parameter, the selection of the smoothing parameter ultimately
affects variable selection. This paper presents a simple selection method for the
smoothing parameter used in nonconcave penalized likelihood models. Zou and
Li (2008) utilized a conventional 5-fold CV to determine the smoothing parameter
included in the model. However it is not clear that one-step estimates obtained
through the model with a smoothing parameter determined by 5-fold CV preserve
the oracle properties. We propose a simple and effective method for the selection
of the smoothing parameter and show that the obtained smoothing parameter
satisfies the sufficient conditions for the oracle properties of one-step estimates.
The method is developed by using an appropriate prior of the parameter in the
model, the idea of which has been discussed in the field of model selection in
mixed models (Ruppert, Wand and Carroll, 2003; Yoshida, Kanba and Naito,
2010).

The paper is organized as follows. Section 2 gives a summary of the one-step
estimator discussed in Zou and Li (2008). In Section 3, our method for selection
of the smoothing parameter is proposed. Practical examples of regression models
and functions to be optimized are shown in Section 4. Section 5 reports the results
of applying the proposal to real data sets as well as simulation studies. It will
be seen that our proposed method is especially efficient for models with discrete
output, such as binary and Poisson models. Final discussions are contained in
Section 6.

2. One-Step Estimator

Let {(yi,xi) | i = 1, · · · , n} be a data set, where xi is the p-dimensional
explanatory variable and yi is the scalar response variable. Assume that yi de-
pends on xi through a linear combination xT

i β and has the density f(yi). The
conditional log-likelihood given xi is assumed to be expressed as `i(β, φ), where
φ is a dispersion parameter. In the setting of the generalized linear model, φ is
the variance of the error for the linear model, and we can take φ ≡ 1 for the
logistic and Poisson models. For simplicity, we use `(β) to stand for the log-
likelihood `(β, φ) =

∑n
i=1 `i(β, φ). Zou and Li (2008) considered the variable

selection method of maximizing the penalized log-likelihood function

Q(β) = `(β)− n
p∑
j=1

pλn(|βj |), (2.1)

where pλn is a nonconcave penalty function, such as SCAD and Lq, and λn is
the smoothing parameter. In the special case of a separable penalty function
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pλn(·) = λnp(·), for smoothing parameter λn and some function p(·), we can
obtain estimates of β by maximizing

`(β)− nλn
p∑
j=1

p(|βj |), (2.2)

with respect to β. In fact, since maximizing (2.1) and (2.2) is challenging by its
singularity involved in p(·), we aim to utilize an approximation of the penalized
log-likelihood. That is, using the Taylor expansion of the log-likelihood around
MLE β(0)

`(β) ≈ `
(
β(0)

)
+

1

2

(
β − β(0)

)T∇2`
(
β(0)

)(
β − β(0)

)
,

and the local linear approximation (LLA) of the penalty function

pλn(|βj |) ≈ pλn
(
|β(0)j |

)
+ p′λn

(
|β(0)j |

)(
|βj | − |β(0)j |

)
,

for βj ≈ β(0)j , we optimize

`(β)− n
p∑
j=1

pλn(|βj |)≈ `
(
β(0)

)
+

1

2

(
β − β(0)

)T∇2`
(
β(0)

)(
β − β(0)

)
−pλn

(
|β(0)j |

)
− p′λn

(
|β(0)j |

)(
|βj | − |β(0)j |

)
,

with respect to β. Zou and Li (2008) then defined OSE as follows:

β̂(ose) = argmin
β

1

2

(
β − β(0)

)T[−52`
(
β(0)

)](
β − β(0)

)
+ n

p∑
j=1

p′λn

(
|β(0)
j |
)
|βj |

 .(2.3)

Here, let β0 =
[
βT
10 β

T
20

]T
be the true parameter and let β20 = 0. Similarly,

let β̂(ose) =
[
β̂(ose)T1 β̂(ose)T2

]T
, corresponding to division of true parameter

β0 =
[
βT
10 β

T
20

]T
. Also, let I(β0) be the Fisher information matrix and let

I(β0) =

[
I1(β10) ∗
∗ ∗

]
,

where I1(β10) is a submatrix of I(β0) corresponding to β10.
In the special case of a penalty function which separates into a smoothing

parameter λn and a function p(·) satisfying:

Condition 1 p′(·) is continuous on (0,∞),
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Condition 2 there is some s > 0 such that p′(t) = O(t−s) as t→ 0+,

Condition 3 n(1+s)/2λn →∞ and
√
nλn → 0.

OSE has oracle properties (Zou and Li, 2008):

(a) Sparsity: P (β̂(ose)2 = 0)→ 1, as n→∞.

(b) Asymptotic normality:
√
n(β̂(ose)1−β10)→D N(0, I1(β10)

−1), as n→∞.

Zou and Li (2008) used 5-fold CV to determine λn. However, the λn de-
termined by 5-fold CV does not necessarily always satisfy Condition 3, and the
computational cost of implementing 5-fold CV itself is not cheap. A simple and
reliable selection of smoothing parameter λn is proposed in the subsequent dis-
cussion.

3. Selection of Smoothing Parameter

In this section, when pλn(·) = λnp(·), we show that λn is expressed in terms
of the parameter of a prior distribution for β.

3.1 Decision of Smoothing Parameter

Assume that the prior distribution of β = [β1, · · · , βp]T belongs to the expo-
nential family. That is, it has density

g(β; θ) = d(θ) exp

1

θ

p∑
j=1

T (βj)

 ,

where θ is a scalar parameter, d(θ) is the normalizing constant and T (·) is a
measurable function. Then the log of the joint density of (y1, · · · , yn) is

log

[{
n∏
i=1

f(yi)

}
g(β; θ)

]
= `(β) +

1

θ

p∑
j=1

T (βj) + log d(θ),

where f(yi) is the density function of yi given β. We note that maximizing
this formula with θ = 1/(nλn) and T (βj) = −p(|βj |) is the same as maximizing
the penalized likelihood (2.2). Hence, using the parameter θ, the smoothing
parameter λn can be expressed as

λn =
1

nθ
. (3.1)
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3.2 Conditions for Smoothing Parameter and Penalty Function

Here, we show that the OSE with the smoothing parameter (3.1) satisfies the
oracle properties. If Conditions 1-3 hold, then the OSE has the oracle properties.
Conditions 1 and 2 are concerned with the penalty function, and Condition 3 is
for the smoothing parameter. Hence, we verify whether the smoothing parameter
(3.1) satisfies Condition 3.

First, suppose θ is a constant. In this case
√
nλn = (

√
nθ)−1 → 0. However,

since

n(1+s)/2λn = n(1+s)/2
1

nθ
= n(s−1)/2

1

θ
→ 0,

for 0 < s < 1, the smoothing parameter (3.1) with a constant θ does not satisfy
Condition 3 for 0 < s < 1.

To satisfy Condition 3, suppose θ is a function of n. For example, we take

θ = θ1(n) =
log(1 + n)√

n
.

Then we can see that λn = 1/(nθ1(n)) satisfies Condition 3. Also, if we take

θ = θ2(n, α) =
1

nα
, α ∈ R,

then we have n(1+s)/2λn = n(s−1)/2+α. Therefore, if we take α such that

1− s
2

< α <
1

2
, (3.2)

for 0 < s < 1, (3.1) with θ = n−α satisfies Condition 3. In particular, if we
consider an Lq penalty p(|β|) = |β|q, 0 < q < 1, then this penalty function
satisfies Conditions 1 and 2, because

p′(t) = qtq−1 = O(tq−1)

is continuous on (0,∞) and s of Condition 2 is given by s = 1− q. Hence, from
(3.2) α should satisfy

q

2
< α <

1

2
.

For example, we can take α = α1(q) = q for q < 1/2. On the other hand, we can
take α = α2(q) = q(1 − q/2) for q ∈ (0, 1). This is a point divided q/2 and 1/2
into 1− q : q.

4. Examples
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In this section, we show some models which are included in our framework.

4.1 Linear Regression Model

For linear model y = Xβ + ε, the Hessian matrix is

∇2`(β(0)) = − 1

φ
XTX.

Hence, we can get the OSE by optimizing

1

2φ
‖Xβ −Xβ(0)‖2 + nλn

p∑
j=1

q|β(0)j |
q−1|βj |,

from (2.3). We use MLE for φ.

4.2 Logistic Model

For a data set {(yi, xi1, · · · , xip)|i = 1, · · · , n}, the logistic model has joint
density

f(yi|xi,β) = π(xi)
yi{1− π(xi)}1−yi , i = 1, · · · , n,

where

π(xi) =
exp(xT

i β)

1 + exp(xT
i β)

.

The Hessian matrix is

∇2`(β(0)) = −XT diag

(
exp(Xβ(0))

{1 + exp(Xβ(0))}2

)
X ≡ −H1,

where 1 = [1, · · · , 1]T, diag(x) is a diagonal matrix with diagonal components
x1, · · · , xn for x = [x1, · · · , xn]T and

exp(Xβ(0))

{1 + exp(Xβ(0))}2
=

[
exp(xT

1β
(0))

{1 + exp(xT
1β

(0))}2
, · · · , exp(xT

nβ
(0))

{1 + exp(xT
nβ

(0))}2

]T
.

Hence, we can get the OSE by optimizing

1

2
(β − β(0))TH1(β − β(0)) + nλn

p∑
j=1

q|β(0)j |
q−1|βj |,
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from (2.3).

4.3 Poisson Model

For a data set {(yi, xi1, · · · , xip)|i = 1, · · · , n}, the Poisson model has joint
density

f(yi|xi,β) =
µ(xi)

yi exp(−µ(xi))

yi!
, i = 1, · · · , n,

where π(xi) = exp(xT
i β). Since the Hessian matrix is

∇2`(β(0)) = −XT diag
(

exp(Xβ(0))
)
X ≡ −H2,

we can get the OSE by optimizing

1

2
(β − β(0))TH2(β − β(0)) + nλn

p∑
j=1

q|β(0)j |
q−1|βj |,

from (2.3), where exp(x) = [exp(x1), · · · , exp(xn)]T for x = [x1, · · · , xn]T.

5. Implementation

In this section, we report the results of applying the proposed OSE to real data
sets. Simulation results are addressed as well. Also, we compare the models ob-
tained by AIC, BIC, LASSO, OSE(CV) and our proposed OSE, where OSE(CV)
refers to an OSE with λn, minimized with respect to 5-fold CV with q = 0.01.

5.1 Real Data Sets

Here, we performed a comparison of estimation methods using Ozone, Dia-
betes, Parkinson, Glass and Wine data sets. We used the 5-fold CV value to
compare the prediction ability (PA) of each method. The variables selected by
each method are also compared. All results are tabulated in Table 1.

In Table 1, EST1 stands for OSE with λn = (nθ1(n))−1 and q = 0.01 and
EST2 stands for OSE with either λn = (nθ2(n, α1(q)))

−1 or λn = (nθ2(n, α2(q)))
−1

minimizing the 5-fold CV value on an appropriate grid of q.
For the Ozone data set, we applied a linear regression model with quadratic

interaction

yi = β1xi1 + β2xi2 + β3xi3 + β4x
2
i1 + β5x

2
i2 + β6x

2
i3

+β7xi1xi2 + β8xi1xi2 + β9xi2xi3 + εi,
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Table 1: Data sets and results of comparison

No 1 2 3 4 5

Data1 Ozone Diabetes Parkinson Glass Wine

Sample size 111 442 195 214 178
Number of

9 10 22 9 13
predictor
Model Linear Linear Logistic Poisson Poisson

PA
EST1 0.104 0.211 1.39 1.86 1.01
EST2 0.101 0.193 1.39 1.43 0.36
OSE(CV) 0.102 0.081 1.39 1.92 0.44
LASSO 0.096 0.231 1.39 1.57 0.39
AIC 0.043 0.051 1.14 1.88 0.34
BIC 0.043 0.052 1.10 1.46 0.33

Selected variables
EST1 2,5-9 2-4,6,7,9,10 - 1,2,5 1,4
EST2 5,7-9, 2-7,9,10 - 1,2,5 1,4,7,8,13
OSE(CV) 5-9 3,9 1-7, 10, 12-15,17-22 1 1-13
LASSO 5,7,9 3,9 1-7, 9,10, 12-22 1 1-13
AIC 2,3,6-8 2-7, 1,4,6,7,11,13,17,20,22 2,3,4,7 1,4,7,13
BIC 2,3,6-8 2-7, 13,16,19,21 2,3,4,7 4,7

1Reference: No.1 from Hastie, Tibshirani and Friedman (2009); No.2 from Efron,
Hastie, Johnstone and Tibshirani (2004); No.3,4,5 from the data warehouse of Uni-
versity of California Irvine (http://archive.ics.uci.edu/ml)

where (xi1, xi2, xi3) = (solar radiationi,daily maximum temperaturei,wind speedi)
for i = 1, · · · , 111. We can observe from Table 1 that PAs of EST1, EST2,
OSE(CV) and LASSO are larger than those of AIC and BIC. The 7th variable
solar radiation × daily maximum temperature, should be the most important in
this model since all methods selected it. All methods here except AIC and BIC
selected the 5th variable, squared daily maximum temperature. This inclusion of
the 5th variable might be the reason their PAs are worse.

For the Diabetes data set, the PAs of AIC, BIC and OSE(CV) are smaller
than those of the other methods. EST1, EST2 and LASSO performed similarly,
with respect to PA. It is interesting that there is a significant difference between
the PA of OSE(CV) and that of LASSO although they selected the same two
variables. This might be the effect of the choice of q: for LASSO, q = 1, while
for OSE(CV), q = 0.01.

For the Parkinson data set, all methods have similar PAs. The proposed OSE
selected no variables although other methods selected several variables. This
means that EST1 and EST2 both suggest “Random Guess” in this model. This
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might be an extreme solution, but it motivates us to look at the set of explanatory
variables carefully.

For the Glass data set, the PA of EST2 is the smallest and EST2 selected
only 3 variables from 9 explanatory variables. This means that EST2 achieves a
precise prediction using only 3 variables.

For the Wine data set, there is little difference among PAs, except for EST1.
BIC selected just two variables and has the best PA. EST1 and EST2 selected
only a few variables although OSE(CV) and LASSO selected all variables. From
the sets of selected variables and the PAs, one can observe that the behavior of
EST2 is similar to that of AIC in the case of the Poisson model.

For the Parkinson, Glass and Wine data sets, there is little difference among
the PAs of the methods. On the other hand, the PAs of AIC and BIC are better
than other methods for the Ozone and Diabetes data sets using a linear model.
As expected, AIC and BIC performed well with linear models. Note that the
sets of variables selected by EST1 and EST2 were similar to those selected by
AIC and BIC. For logistic and Poisson regression models with discrete output,
there was little difference between the PAs of the methods, but EST1 and EST2
selected only a relatively small number of variables. Hence it can be claimed that
the proposed OSE is efficient for models with discrete output.

The proposed method does not require a grid search for the smoothing pa-
rameter and it can select variables at the same time as it estimates β. Hence, the
proposed method can be executed at little computational cost compared to AIC
and BIC, which are computationally costly because they compute for every com-
bination of the variables. This is an attractive point for the use of the proposed
OSE.

5.2 Simulation

Here, to see the behavior of proposed OSE, we carried out simulations. First
we will explain the structures of the simulations.

We utilized the following regression models:

Model 1 & Model 2 : yi = µ(xi) + εi, µ(x) = xTβj (j = 1, 2),

β1 = [3,−5, 0, · · · , 0︸ ︷︷ ︸
10−fold

]T ∈ R12, β2 = [3, 1.5, 0, 0, 2, 0, · · · , 0︸ ︷︷ ︸
7−fold

]T ∈ R12,

Model 3 & Model 4 : yi ∼ Ber (µ(xi)) , µ(x) =
exp(xTβj)

1 + exp(xTβj)
(j = 3, 4),

β3 = [0.7,−1.2, 0, · · · , 0︸ ︷︷ ︸
10−fold

]T ∈ R12, β4 = [1,−0.4, 0, 0,−0.6, 0, · · · , 0︸ ︷︷ ︸
7−fold

]T ∈ R12,
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Model 5 & Model 6 : yi ∼ P[µ(xi)], µ(x) = exp(xTβj) (j = 5, 6),

β5 = [0.7,−0.5, 0, · · · , 0︸ ︷︷ ︸
10−fold

]T ∈ R12, β6 = [1.2, 0.6, 0, 0, 0.8, 0, · · · , 0︸ ︷︷ ︸
7−fold

]T ∈ R12,

for i = 1, · · · , n. Covariates and errors are generated according to x1, · · · ,xn
i.i.d.∼

N (0,Σ) and ε1, · · · , εn
i.i.d.∼ N (0, 1), where the (i, j)-component of Σ is 0.5|i−j|.

Here we will use the model error

ME[µ̂] = E[(µ̂(x)− µ(x))2],

for the constructed prediction µ̂(·) based on the variable selection, where the ex-
pectation is taken with respect to a new observation x. The simulation algorithm
is as follows:

1. Generate {(yi,xi) | i = 1, · · · , n} from the model.

2. For MLE β(0), calculate µ̂MLE(·).

3. For the estimates of β obtained by each method, calculate µ̂(·).

4. Evaluate the prediction ability (PA) by minimizing the 5-fold CV value and
calculate the ratio of model error:

RME[µ̂] =
ME[µ̂]

ME[µ̂MLE]
.

5. Calculate Correct, the number of nonzero coefficients correctly estimated
to be nonzero and Incorrect, the number of zero coefficients incorrectly
estimated to be nonzero.

6. Repeat steps 1 through 5 a thousand times, and then calculate the MRME
(the median of RME), PA (the average of the 5-fold CV), C (the average
of Correct) and IC (the average of Incorrect).

The above algorithm was implemented for n = 50, 100, 200. Methods for
variable selection compared throughout these simulation studies are LASSO,
AIC, BIC, the proposed OSE with θ1(n) for q = 0.01, θ2(n, α1(q)) for q =
0.01, 0.25, 0.49, θ2(n, α2(q)) for q = 0.01, 0.5, 0.99, and OSE(CV) for q = 0.01
and λn minimizing the 5-fold CV value.

For Model 1, C = 2 means the method can select two important nonzero
variables and IC = 0 means the method can delete all unnecessary variables.
Tables 2 and 3 show MRME, PA, C and IC for the linear regression model.
Similarly, Table 4 shows these values for the logistic regression model, and Tables
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5 and 6 show these values for the Poisson regression model. We compare these
values for the different methods.

In Tables 2 and 3, both the MRME and PA of BIC are the smallest of all
the methods for both Models 1 and 2. The MRMEs of the proposed OSEs
are larger than those of other methods and their PAs are also somewhat large.
We can observe from the C column of Tables 2 and 3 that all methods could
select the important nonzero variables for both Models 1 and 2, because C for
all methods was near to 2 for Model 1 and equal to 3 for Model 2. The values of
IC in Tables 2 and 3 show that the proposed OSEs could frequently delete the
unnecessary variables, since the ICs of the proposed OSEs are near to 0, but the
ICs of the other methods are slightly larger than those of the proposed OSEs.
The overall impression from considering Tables 2 and 3 is that the proposed
OSE could select important variables as well as other methods, and could delete
unnecessary variables more often than other methods. Hence it might be claimed
that the proposed OSE is accurate in the sense of avoiding false positives, see
Bühlmann and Meier (2008). Though its ability to predict and to fit data is not
satisfactory, the proposed OSEs performed well at variable selection.

Table 2: Linear regression model (n = 50)

Model Model 1 Model 2

Method MRME PA C IC MRME PA C IC

θ1(n) 0.746 1.312 2 1.76 0.552 1.237 3 1.69
θ2(n, α1(0.25)) 0.597 1.523 2 2.39 0.848 1.339 3 0.93
θ2(n, α1(0.49)) 1.348 3.507 2 0.88 4.278 2.390 3 0.17
θ2(n, α2(0.5)) 6.740 2.145 1.996 0.11 1.873 1.660 3 0.40
θ2(n, α2(0.99)) 8.543 3.680 1.984 0.09 4.617 2.487 3 0.16

OSE(CV) 0.544 1.254 2 4.05 0.554 1.250 3 2.99
LASSO 0.534 1.248 2 4.66 0.555 1.243 3 3.55

AIC 0.619 1.289 2 2.04 0.670 1.054 3 1.83
BIC 0.297 1.175 2 0.68 0.396 1.028 3 0.59

As shown in Table 4, there is little difference in MRME among the methods,
for both Model 3 and Model 4. There was also little difference in PA. Hence, the
fit and PA of methods were nearly the same. According to C and IC in Table 4,
the proposed OSE with θ2(n, α1(0.49)) and θ2(n, α2(0.99)) selected no variables.
However according to C of Model 3, the proposed OSE with θ2(n, α1(0.01)) and
θ2(n, α2(0.01)) could select two important variables, similar to AIC and BIC, but
BIC would appear to attain the best balance of C and IC values. For Model 4,
only the C of LASSO is near 3, so these methods could not select three impor-
tant variables. The values of C of the proposed OSE with θ2(n, α1(0.01)) and
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Table 3: Linear regression model (n = 200)

Model Model 1 Model 2

Method MRME PA C IC MRME PA C IC

θ1(n) 2.30 1.15 2 0.25 1.33 1.094 3 0.513
θ2(n, α1(0.25)) 4.43 1.30 2 0.05 2.39 1.169 3 0.203
θ2(n, α1(0.49)) 55.22 4.28 2 0.00 27.73 2.740 3 0.001
θ2(n, α2(0.5)) 16.41 2.03 2 0.00 8.43 1.554 3 0.018
θ2(n, α2(0.99)) 61.44 4.63 1.999 0.00 30.71 2.923 3 0.001

OSE(CV) 0.55 1.05 2 3.63 0.57 1.048 3 2.934
LASSO 0.84 1.04 2 8.62 0.56 1.046 3 3.483

AIC 0.62 1.05 2 1.64 0.67 1.054 3 1.541
BIC 0.18 1.02 2 0.20 0.28 1.028 3 0.197

θ2(n, α2(0.01)), OSE(CV), AIC and BIC are all similar, BIC having the smallest
IC. For Model 4, the values of C of the proposed OSE are similar to those of
OSE(CV), and the values of IC for the proposed OSE are smaller than the value
of IC for OSE(CV). Hence we can conclude that the proposed OSE perform better
than OSE(CV) in the models simulated.

Table 4: Logistic regression model (n = 200)

Model Model 3 Model 4

Method MRME PA C IC MRME PA C IC

θ1(n) 0.9991 1.334 0.95 0.01 1.0027 1.352 1.32 0.03
θ2(n, α1(0.01)) 0.9988 1.246 1.96 1.65 1.0007 1.246 2.49 1.75
θ2(n, α1(0.49)) 0.9998 1.386 0.00 0.00 1.0027 1.386 0.00 0.00
θ2(n, α2(0.01)) 0.9988 1.246 1.96 1.65 1.0007 1.246 2.49 1.76
θ2(n, α2(0.99)) 0.9998 1.386 0.00 0.00 1.0027 1.386 0.00 0.00

OSE(CV) 0.9996 1.277 1.96 3.43 1.0004 1.236 2.67 3.31
LASSO 1.0000 1.280 2.00 10.00 1.0000 1.278 3.00 9.00

AIC 1.0001 1.245 2.00 1.62 0.9997 1.253 2.70 1.60
BIC 0.9993 1.217 1.94 0.20 0.9989 1.240 2.33 0.28

According to Tables 5 and 6, the MRMEs of the proposed OSE are compar-
atively small for both Model 5 and Model 6. The MRME of the proposed OSE
with θ2(n, α1(0.25)) is the smallest for Model 5, and the MRME of LASSO is the
smallest for Model 6. Also, there is little difference in the PAs of the methods for
Model 5. For Model 6, the PA of the proposed OSE and OSE(CV) are relatively
small. The PAs of LASSO, AIC and BIC are larger than the proposed OSE,
which means that the proposed OSE has a good PA. For Model 5, the Cs of the
proposed OSE, OSE(CV), AIC and BIC are near to 2 and the ICs of the proposed
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OSE and BIC are near to 0. The proposed OSE with θ2(n, α1(0.25)) seems to be
the best for both n = 100 and n = 200 in that it has the best balance of C and
IC. We can see that AIC and BIC could not select the important variables well,
because for Model 6, while the ICs of AIC and BIC are also near to 0, so are the
Cs. For the Poisson regression model, the proposed OSE has a good fit and PA,
and it can select the set of important variables well.

Table 5: Poisson regression model (n = 100)

Model Model 5 Model 6

Method MRME PA C IC MRME PA C IC

θ1(n) 0.704 1.206 2 0.643 0.863 1.33 3 0.34
θ2(n, α1(0.25)) 0.631 0.625 1.99 0.146 0.784 1.56 2.99 0.32
θ2(n, α1(0.49)) 0.459 0.717 0.90 0 0.546 3.75 2.79 0.03
θ2(n, α2(0.5)) 0.521 0.661 1.79 0.004 0.672 2.33 2.97 0.08
θ2(n, α2(0.99)) 0.457 0.722 0.81 0 0.535 3.91 2.76 0.03

OSE(CV) 0.771 0.665 1.927 3.55 0.941 1.19 3 3.18
LASSO 0.488 1.639 1.559 0.033 0.31 8.51 1.57 0.01

AIC 0.977 0.622 1.967 1.448 1.03 4.72 1.11 0.06
BIC 0.966 0.613 1.967 0.295 1.03 4.71 1.11 0.01

Table 6: Poisson regression model (n = 200)

Model Model 5 Model 6

Method MRME PA C IC MRME PA C IC

θ1(n) 0.732 1.149 2 0.147 0.86 1.12 3 0.337
θ2(n, α1(0.25)) 0.685 0.620 2 0.037 0.82 1.24 3 0.096
θ2(n, α1(0.49)) 0.466 0.724 0.956 0.000 0.57 3.13 2.936 0.005
θ2(n, α2(0.5)) 0.544 0.653 1.94 0.000 0.70 1.80 2.999 0.009
θ2(n, α2(0.99)) 0.463 0.730 0.822 0.000 0.56 3.30 2.907 0.003

OSE(CV) 0.837 0.722 1.995 3.213 0.94 1.04 3 3.186
LASSO 0.486 1.729 1.525 0.001 0.27 8.76 1.486 0.000

AIC 0.988 0.618 1.921 1.380 1.04 4.88 1.002 0.002
BIC 0.981 0.613 1.921 0.199 1.04 4.88 1.002 0.000

Results of the simulations look similar to those from applying the methods to
real data sets. For linear regression models, the PAs of AIC and BIC are better
than other methods. For logistic and Poisson regression models, the PAs of all
methods are almost the same, but the proposed OSE performed variable selection
better than other methods.

6. Discussion
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We consider the penalized log-likelihood with an Lq penalty as the MAP
using the prior of β in Section 3.1. We consider how the form of prior of β affects
the selection of the smoothing parameter? To determine this, we focus on the
variance matrix of the prior of β, calculated by

V [β] = Cq(θ)Ip, Cq(θ) =
θ2/qΓ(3/q)

Γ(1/q)
,

where Γ(·) is the gamma function and Ip is the p × p identity matrix. If the
variance component Cq(θ) is small, then this means that the prior of β is tightly
distributed around the mean 0; hence β ≈ 0, and the probability that many
variables will be deleted from the model can be expected to be high. In this sense,
the proposed method may tend to be strict with respect to selecting variables.

In the case of using either θ = θ1(n) or θ = θ2(n, α), it is clear that the
variance of β decreases for increasing n. The smoothing parameter λn = (nθ)−1

also decreases as n grows for both θ = θ1(n) and θ = θ2(n, α).

We discuss here the effect of the variance of the prior and the smoothing
parameter on variable selection. Roughly speaking, the sum of values of C and
IC in Tables 2-6 is the number of variables selected by each method. In the
simulation results of the Poisson regression for Model 5 tabulated in Tables 5 and
6, the number of variables (the sum of C and IC) selected by OSE with either
θ1(200)(q = 0.01) or θ2(200, α1(0.25)) is fewer than those with n = 100. On the
other hand, the number of variables selected by OSE with either θ2(200, α1(0.49)),
θ2(200, α2(0.5)) or θ2(200, α2(0.99)) is slightly larger than those with n = 100.

We can understand these different results by considering the variance com-
ponent of the prior distribution. For θ1(n)(q = 0.01) and θ2(n, α1(0.25)), the
variance components decrease drastically as n grows from n = 100 to n = 200;
this change of variance has a more serious affect than the decrease of the smooth-
ing parameter, hence the number of variables selected is decreasing.

In the cases of θ2(n, α1(0.49)), θ2(n, α2(0.5)) and θ2(n, α2(0.99)), the change
in variance is not large, hence the decrease in the smoothing parameter from
n = 100 to n = 200 only affects variable selection: the number of variables
selected increases.

In this sense, variable selection is affected not only by the value of the smooth-
ing parameter but also by the variance of prior distribution of β.

In the case of discrete output (binary and Poisson), variable selection by
ordinary methods, such as AIC, BIC and LASSO, were not satisfactory according
to our simulation. This is because discrete output can generally be explained
by a smaller number of explanatory variables than continuous output. AIC type
methods are aimed at prediction, which means that these methods tend to include
many variables in the model. A set of variables selected by AIC might include
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redundant variables for prediction, which explains the results seen in Tables 5
and 6.

Bühlmann and Meier (2008) and Zhang (2008) proposed new methods of vari-
able selection corresponding to high-dimension low sample size (HDLSS) prob-
lems where p � n, which are called the MSA-LASSO method and the MC+
method, respectively. MSA-LASSO can be regarded as an adaptive way to search
for the best initial estimator in the one-step paradigm. These authors pointed
out that the number of false positives is perhaps more important than reducing
prediction errors in high-dimensional data analysis. As a method for having a
low probability of false positives, the proposed OSE in this paper would be worth
applying to the HDLSS setting.
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