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Abstract: We derive three likelihood-based confidence intervals for the risk
ratio of two proportion parameters using a double sampling scheme for mis-
classified binomial data. The risk ratio is also known as the relative risk.
We obtain closed-form maximum likelihood estimators of the model param-
eters by maximizing the full-likelihood function. Moreover, we develop three
confidence intervals: a naive Wald interval, a modified Wald interval, and
a Fieller-type interval. We apply the three confidence intervals to cervi-
cal cancer data. Finally, we perform two Monte Carlo simulation studies
to assess and compare the coverage probabilities and average lengths of the
three interval estimators. Unlike the other two interval estimators, the mod-
ified Wald interval always produces close-to-nominal confidence intervals for
the various simulation scenarios examined here. Hence, the modified Wald
confidence interval is preferred in practice.

Key words: Binomial data, double sampling, misclassification, relative risk,
risk ratio.

1. Introduction

Bross (1954) was the first among several researchers who have studied the
effect of misclassification on the classical proportion estimators. In general, two
types of misclassification for binary misclassified observations exist: false-positive
and false-negative binary observations. For example, visual inspection by a mid-
wife or obstetrician may erroneously classify a normal child as having Down’s
syndrome (false-positive), or one may classify a child with Down’s syndrome as
being healthy (false-negative). In many applications with misclassified binary
data, both misclassification types are present.

Because classical estimators that ignore misclassification are biased, one needs
additional data to correct the bias and achieve model identifiability. Various
methods in the statistical literature have been proposed for this purpose. For the

∗Corresponding author.



530 Dewi Rahardja and Dean M. Young

Bayesian paradigm, when an infallible classifier is unavailable or prohibitively ex-
pensive, one can use sufficiently informative priors to obtain model identifiability.
Another information-producing method is to use multiple fallible classifiers. This
article focuses on an information-addition method first proposed by Tenenbein
(1970) that includes training data obtained by double sampling.

One can apply Tenenbein’s double sampling scheme when both fallible and in-
fallible measuring devices or classifiers are available. Usually, the fallible classifier
is relatively inexpensive but may misclassify units, while the infallible classifier
is generally much more expensive but is infallible. Tenenbein’s approach was to
compromise between the two extremes by using the infallible classifier on only a
small portion of the data and using the fallible classifier on all of the data. This
approach, called double sampling, not only enables model identifiability but is
also economical.

A number of researchers have used misclassified binary data to provide point
and interval estimation methods for various functions of the proportion parame-
ters of interest. For one-sample binomial problems where only one type of error
or misclassification is present, Lie, Heuch and Irgens (1994) have used a maxi-
mum likelihood approach, where false-negative errors are corrected with multiple
fallible classifiers, whereas York, Madigan, Heuch and Lie (1995) have consid-
ered the same problem from a Bayesian approach. Using data obtained by dou-
ble sampling, Moors, van der Genugten and Strijbosch (2000) have discussed
method of moments and maximum likelihood estimation, in addition to one-
sided interval estimation. Also, Boese, Young and Stamey (2006) have derived
several likelihood-based confidence intervals (CIs) for a single proportion param-
eter, while Lee and Byun (2008) have provided Bayesian credible intervals using
noninformative priors for the same problem.

Additionally, several researchers have studied one-sample problems with both
types of binary misclassification errors. In conjunction with double sampling,
Tenenbein (1970) has proposed a maximum likelihood estimator for a single pro-
portion parameter and has derived an expression for the estimator’s asymptotic
variance. For the case when training data are unavailable in the one-sample prob-
lem, Gaba and Winkler (1992) and Viana, Ramakrishnan and Levy (1993) have
developed Bayesian approaches using sufficiently informative priors.

For the two-sample problem with both types of binary misclassification errors,
Bayesian inference methods using sufficiently informative priors have also been
developed when training data are unavailable. For example, see Evans, Guttman,
Haitovsky and Swartz (1996) for risk-difference estimation, that is, the difference
of two proportion parameters, and Gustafson, Le and Saskin (2001) for estimation
of odds ratios. When training data is obtained through double sampling, Boese
(2003) has derived several likelihood-based CIs for the risk difference.
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So far, no inference methods for the risk ratio of two proportion parameters
have been published for two-sample misclassified binary data. Such inference
methods have applications in many fields including epidemiology and market-
ing. For example, Hildesheim, Mann, Brinton, Szklo, Reeves and Rawls (1991)
reported a study assessing the relationship between exposure to herpes simplex
virus (HSV) and invasive cervical cancer (ICC). The western blot procedure was
treated as a fallible detector of HSV and was applied to every woman in the study
to detect the exposure to HSV. A sub-sample of the women were also tested using
the refined western blot procedure, which is a relatively accurate procedure and,
thus, was treated as infallible. The estimation of the risk ratio is of interest for
this data to explore the association between exposure to HSV and having ICC.

In this article, we develop point and interval estimators for this problem. The
remainder of this paper is organized as follows. In Section 2 we describe the
data, and in Section 3 we derive three likelihood-based interval estimators of a
risk ratio using double sampling with misclassified data containing both false-
negative and false-positive observations. In Section 4 we illustrate the newly
derived interval estimators using real cervical cancer data. We examine and
compare the performance of three interval estimators in Section 5, and we give a
brief discussion in Section 6.

2. The Data

In this section we introduce notation and rigorously describe two-sample mis-
classified binomial data. The original data are obtained with a fallible classifier
that produces both false-positive and false-negative observations.

We first introduce notation necessary for describing the data. Let Fij be the
observed classification by the fallible classifier for the jth observation unit in the
ith sample, where i = 1, 2, j = 1, · · · ,Mi, and

Fij =

{
1, if the result by the fallible classifier is positive,

0, otherwise.

Let Xi =
∑

j Fij and Yi = Mi −Xi be the observed number of positive and
negative observations, respectively. The data obtained by the fallible classifier
for sample i, i = 1, 2, are displayed in Table 1.

Table 1: Data from the Fallible Classifier for Sample i, i = 1, 2

Classification 0 1 Total
Count Yi Xi Mi
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Similarly, we define the true classification of the jth observation unit in the
ith sample as

Tij =

{
1, if the classifier result is truly positive,

0, otherwise.

Clearly, the Tij may not be observable and misclassification occurs when Tij 6=
Fij .

Also, we let

pi ≡ Pr(Tij = 1),

πi ≡ Pr(Fij = 1),

φi ≡ Pr(Fij = 1|Tij = 0),

and

θi ≡ Pr(Fij = 0|Tij = 1).

Here, pi is the actual proportion parameter of interest, πi is the proportion param-
eter of the fallible classifier, φi and θi are the false-positive and the false-negative
rates, respectively, for the fallible classifier. Note that we allow the false-positive
rates and false-negative rates to be different between the two samples, i.e., we
allow φ1 6= φ2 and θ1 6= θ2. Also we remark that π1 and π2 are not additional
unique parameters because

πi = Pr(Tij = 1) Pr(Fij = 1|Tij = 1) + Pr(Tij = 0) Pr(Fij = 1|Tij = 0)

= pi(1− θi) + qiφi, (2.1)

where qi = 1 − pi. As noted in Section 1, we wish to develop point and interval
estimators of the risk ratio

r = p1/p2. (2.2)

Because πi is determined through pi, φi, and θi, i = 1, 2, effectively six param-
eters result in the model: p1, φ1, θ1, p2, φ2, θ2. However, the sufficient statistics
dimension is only two because X1 and X2 are the minimal sufficient statistics for
this model. Therefore, six parameters in model (2.1) are unidentifiable because
the dimension of the sufficient statistics is less than the number of parameters
and, therefore, additional data are needed for model identifiability. In this pa-
per we use double sampling to provide additional information. Specifically, in
addition to the original fallible data classified only by the fallible classifier, new
but smaller training data are obtained when classifying each observation unit
in this training data by both the fallible and the infallible classifiers. The dou-
ble sampling paradigm has attracted researchers’ interests due to its practicality.
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For example, Tenenbein (1972) considered parameter estimation and sample size
calculation in quality control problems. Hochberg (1977) studied a model for mis-
classified binomial data where covariates were adjusted for inference. Boese et
al. (2006) reported several likelihood-based methods for constructing confidence
intervals for a one-sample proportion.

In this paper we assume that for the ith sample, training data of size ni are
obtained using double sampling in addition to the original fallible data of size
Mi, i = 1, 2. Hence, the size of the combined data is Ni = Mi + ni for sample i.
Table 2 presents the combined data by concatenating the original and training
data. In Table 2 we use nijk to denote the number of observation units classified
as j and k by the infallible and fallible classifiers, respectively. For example, ni01
is the number of observation units in the ith sample classified as negative by
the infallible classifier but classified as positive by the fallible classifier. With the
additional training data, the dimension of the sufficient statistic for the combined
data is sufficient for estimating all parameters and, therefore, the full model is
identifiable. For future estimation methodology development, we present the cell
probabilities corresponding to Table 2 in Table 3.

Table 2: Data for Sample i

Fallible Classifier

Data Infallible Classifier 0 1 Total

Training 0 ni00 ni01 ni0·
1 ni10 ni11 ni1·

Total ni·0 ni·1 ni
Original NA Yi Xi Mi

NA: Not Available

Table 3: Cell Probabilities for Sample i

Fallible Classifier

Data Infallible Classifier 0 1 Total

Training 0 qi(1− φi) qiφi qi
1 piθi pi(1− θi) pi

Original NA 1− πi πi 1

NA: Not Available

3. The Model
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For data described in the previous section, we derive point and interval estima-
tors for the risk ratio (2.2) of two proportion parameters using double sampling
on possibly misclassified data. In particular, we derive closed-form maximum
likelihood estimators (MLEs). In addition, we obtain an asymptotic covariance
matrix of the vector of MLEs by computing the inverse of the Fisher information
matrix. Finally, we develop two closed-form Wald-based CIs and a Fieller-type
CI for the risk ratio r based on the full likelihood.

3.1 The Full Likelihood Function

Table 2 presents the data for the inference problem under consideration. For
sample i, the observed counts (ni00, ni01, ni10, ni11)

′ of the training data have
a quadrinomial distribution with total size ni and probabilities displayed in an
upper right 2× 2 submatrix in Table 3, i.e.,

(ni00, ni01, ni10, ni11)|pi, φi, θi ∼ Quad[ni, (qi(1− φi), qiφi, piθi, pi(1− θi))], (3.1)

where Quad is an abbreviation for the Quadrinomial distribution. In addition,
the observed counts (Xi, Yi) have the binomial distribution

(Xi, Yi)|pi, φi, θi ∼ Bin[Mi, (πi, 1− πi)]. (3.2)

Because (ni00, ni01, ni10, ni11)
′ and (Xi, Yi)

′ are independent for sample i and be-
cause sample 1 is independent of sample 2, the probability density function of
the data vector given the parameter vector is

f(d|η) ∝
2∏
i=1

{[qi(1− φi)]ni00(qiφi)
ni01(piθi)

ni10 [pi(1− θi)]ni11πXi
i (1− πi)Yi},(3.3)

where

d = (n100, n101, n110, n111, X1, Y1, n200, n201, n210, n211, X2, Y2)
′ (3.4)

and

η = (p1, φ1, θ1, p2, φ2, θ2)
′.

Finally, we can express the full likelihood function as

Lf (η) ∝
2∏
i=1

{[qi(1− φi)]ni00(qiφi)
ni01(piθi)

ni10 [pi(1− θi)]ni11πXi
i (1− πi)Yi}. (3.5)

3.2 MLEs Based on the Full Likelihood Function
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We now derive the maximum likelihood estimators (MLEs) of all parameters
of interest. Generally, directly maximizing (3.5) with respect to η requires such
numerical methods as the Newton-Raphson algorithm. These numerical methods
are computationally expensive and may have convergence issues. Instead of using
these numerical methods, we first perform a reparameterization of parameters η
and then derive closed-form solutions. Let

λi1 ≡ pi(1− θi)/πi, (3.6)

λi2 ≡ piθi/(1− πi), (3.7)

and γ ≡ (λ11, λ12, π1, λ21, λ22, π2)
′, i = 1, 2. Using (2.1), (3.6), and (3.7), we see

that (3.5) can be reexpressed as

Lf (γ) ∝
2∏
i=1

[
λni11
i1 (1− λi1)ni01λni10

i2 (1− λi2)ni00πXi+ni·1
i (1− πi)Yi+ni·0

]
.(3.8)

Therefore, the full log likelihood is

lf (γ) ∝
2∑
i=1

[ni11 log λi1 + ni01 log(1− λi1) + ni10 log λi2 + ni00 log(1− λi2)+

(Xi + ni·1) log πi + (Yi + ni·0) log(1− πi)] , (3.9)

and the corresponding score vector is

sf (γ) ≡
∂lf (γ)

∂γ

=

[
n111
λ11
− n101

1− λ11
,
n110
λ12
− n100

1− λ12
,
X1 + n1·1

π1
− Y1 + n1·0

1− π1
,

n211
λ21
− n201

1− λ21
,
n210
λ22
− n200

1− λ22
,
X2 + n2·1

π2
− Y2 + n2·0

1− π2

]′
. (3.10)

We obtain the MLE for γ by setting sf (γ) = 0 and solving for λi1, λi2, and πi,
so that

λ̂i1 =
ni11
ni·1

,

λ̂i2 =
ni10
ni·0

,

and

π̂i =
Xi + ni·1

Ni
,
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i = 1, 2. By solving (2.1), (3.6), and (3.7) and applying the invariance property
of MLEs, we find the MLEs for η are

p̂i = π̂iλ̂i1 + (1− π̂i)λ̂i2,

φ̂i = (1− λ̂i1)π̂i/q̂i,

θ̂i = λ̂i2(1− π̂i)/p̂i,

i = 1, 2, and

r̂ = p̂1/p̂2. (3.11)

3.3 The Full Likelihood Information Matrix

From (3.10), the Hessian matrix is

Hf (γ) = Diag

[
−n111
λ211
− n101

(1− λ11)2
,−n110

λ212
− n100

(1− λ12)2
,

−X1 + n1·1
π21

− Y1 + n1·0
(1− π1)2

,−n211
λ221
− n201

(1− λ21)2
,

−n210
λ222
− n200

(1− λ22)2
,−X2 + n2·1

π22
− Y2 + n2·0

(1− π2)2

]
. (3.12)

Thus, the expected Fisher information matrix is

If (γ) = Diag

[
n1π1

λ11(1− λ11)
,
n1(1− π1)
λ12(1− λ12)

,
N1

π1(1− π1)
,

n2π2
λ21(1− λ21)

,
n2(1− π2)
λ22(1− λ22)

,
N2

π2(1− π2)

]
.

Because the necessary regularity conditions are satisfied for this model, the MLE
vector γ̂ = (λ̂11, λ̂12, π̂1, λ̂21, λ̂22, π̂2)

′ has an asymptotic multivariate normal dis-
tribution with asymptotic mean γ and asymptotic covariance matrix

I−1f (γ) = Diag

[
λ11(1− λ11)

n1π1
,
λ12(1− λ12)
n1(1− π1)

,
π1(1− π1)

N1
,

λ21(1− λ21)
n2π2

,
λ22(1− λ22)
n2(1− π2)

,
π2(1− π2)

N2

]
.
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Thus, for i = 1, 2, asymptotically we have

V (λ̂i1) =
λi1(1− λi1)

niπi
,

V (λ̂i2) =
λi2(1− λi2)
ni(1− πi)

,

V (π̂i) =
πi(1− πi)

Ni
,

and that λ̂11, λ̂12, π̂1, λ̂21, λ̂22, π̂2 are asymptotically mutually independent.

3.4 A Full Likelihood Naive Wald CI

We begin with constructing a naive Wald-type confidence interval for the
risk ratio r. Note that p̂i = π̂iλ̂i1 + (1 − π̂i)λ̂i2 and that λ̂i1, λ̂i2, and π̂i are
independent, i = 1, 2. Thus, using the delta method, we have

σ2i ≡ V (p̂i)

≈
(
∂pi
∂λi1

)2

V (λ̂i1) +

(
∂pi
∂λi2

)2

V (λ̂i2) +

(
∂pi
∂πi

)2

V (π̂i)

=
πiλi1(1− λi1)

ni
+

(1− πi)λi2(1− λi2)
ni

+
(λi1 − λi2)2πi(1− πi)

Ni
. (3.13)

The MLEs λ̂i1, λ̂i2, and π̂i are consistent estimators of λi1, λi2, and πi, respec-
tively. Because a continuous function of consistent estimators is consistent, we
have that a consistent estimator of (3.13) is

σ̂2i =
π̂iλ̂i1(1− λ̂i1)

ni
+

(1− π̂i)λ̂i2(1− λ̂i2)
ni

+
(λ̂i1 − λ̂i2)2π̂i(1− π̂i)

Ni
. (3.14)

Recall that the MLE of r is r̂ = p̂1/p̂2. Again using the delta method, we have

σ2r ≡ V (r̂) ≈
(
∂r

∂p1

)2

V (p̂1) +

(
∂r

∂p2

)2

V (p̂2)

=
σ21
p22

+
p21σ

2
2

p42
, (3.15)

and a consistent estimator of (3.15) is

σ̂2r =
σ̂21
p̂22

+
p̂21σ̂

2
2

p̂42
. (3.16)
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Therefore, an approximate 100(1− α)% naive Wald (nWald) CI for r is

r̂ ± Zα/2σ̂r, (3.17)

where Zα/2 is the upper (α/2)th quantile of the standard normal distribution.
This interval estimator is referred to as a naive Wald CI because it results from
a naive application of the Wald interval estimation method. We remark that the
lower limit of the CI can be negative, especially when sample sizes are small and
r is close to zero. In the case where the lower limit of the CI is negative, we
replace the lower limit by zero.

3.5 A Full Likelihood Modified Wald CI

To alleviate the problem with the nWald CI, we propose a modified Wald
(mWald) CI by first constructing an approximate 100(1− α)% CI for τ = log r.
Then, we exponentiate this CI to obtain an approximate 100(1 − α)% CI for
r. Hong, Meeker and Escobar (2008) also suggested using transformation of
parameters when constructing Wald-type CIs. Specifically, we let τ̂ = log r̂.
Then, using the delta method, we compute

σ2τ ≡ V (τ̂) = V (log p̂1 − log p̂2)

≈ V (p̂1)

p21
+
V (p̂2)

p22

=
σ21
p21

+
σ22
p22
. (3.18)

Clearly, a consistent estimator of (3.18) is

σ̂2τ =
σ̂21
p̂21

+
σ̂22
p̂22
. (3.19)

Then, a 100(1− α)% CI for τ is

τ̂ ± Zα/2σ̂τ . (3.20)

Finally, an approximate 100(1− α)% mWald CI for r is obtained by exponenti-
ating (3.20): [

r̂/ exp(Zα/2σ̂τ ), r̂ exp(Zα/2σ̂τ )
]
. (3.21)

Note that the mWald CI guarantees the lower limit of (3.21) is nonnegative.

3.6 A Full Likelihood Fieller-Type CI
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We next develop a CI for r based on an interval estimation concept introduced
in Fieller (1954). As noted previously, asymptotically, we have

p̂i ∼ N(pi, σ
2
i )

and p̂1 and p̂2 are independent. Because

p̂1 − rp̂2√
σ21 + r2σ22

∼ N(0, 1)

is an asymptotic pivotal quantity, we can obtain an approximate 100(1 − α)%
Fieller CI by solving

(p̂1 − rp̂2)2

σ̂21 + r2σ̂22
= Z2

α/2

for r. Let

∆ ≡ p̂21p̂22 − (p̂21 − Z2
α/2σ̂

2
1)(p̂22 − Z2

α/2σ̂
2
2).

Because

p̂21 ≥ p̂21 − Z2
α/2σ̂

2
1 and p̂22 ≥ p̂22 − Z2

α/2σ̂
2
2,

we have ∆ ≥ 0. Moreover, ∆ = 0 if and only if σ̂21 = σ̂22 = 0. This phenomenon
occurs rarely, for example, when n111 = n211 = 0. Clearly when ∆ = 0, a
100(1 − α)% Fieller CI does not exist, which is a well-known limitation of the
Fieller method. When ∆ > 0, an approximate 100(1− α)% Fieller CI for r is

p̂1p̂2 ±
√

∆

|p̂22 − Z2
α/2σ̂

2
2|
.

4. An Example

In this section we use a real data set to compute an MLE point estimate and
three CI estimates using the nWald interval, mWald interval, and Fieller interval
for the risk ratio r. This dataset, displayed in Table 4, was first described in
Hildesheim, Mann, Brinton, Szklo, Reeves and Rawls (1991) and was later used
in Boese et al. (2006). The original study explored the relationship between
exposure to herpes simplex virus (HSV) and invasive cervical cancer (ICC). A
total of 2044 women participated in this study with 732 women in the case group
and 1312 women in the control group. The western blot procedure was treated as
a fallible detector of HSV. A sub-sample of the women were also tested using the
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refined western blot procedure, which is a relatively accurate procedure and, thus,
was treated as infallible. We regard this sub-sample as the training data in the
double sampling scheme. Both false-positive and false-negative misclassification
errors of HSV using the western blot procedure occurred in this study.

Table 4: Hildesheim et al. Data

Fallible Classifier

Group Data Infallible Classifier 0 1

Case Training 0 13 3
1 5 18

Original NA 318 375
Control Training 0 33 11

1 16 16
Original NA 701 535

NA: Not Available

In this example, we have the p1 = Pr(exposed to HSV | has ICC) is the prob-
ability that a patient truly has been exposed to HSV, given that she has ICC
(case group), and p2 = Pr(exposed to HSV | does not have ICC) is the probabil-
ity that a patient truly has been exposed to HSV, given that she does not have
ICC (control group). Recall that r = p1/p2.

The MLE for r is r̂ = 1.34, and we give approximate 90% nWald, mWald,
and Fieller CIs and their corresponding interval lengths in Table 5. For this
particular example, all three interval estimators produced similar CIs. Because
the lower limits of the CIs for two of the intervals (mWald and Fieller) exceed
one, we conclude that statistical evidence indicates that a higher proportion of
women exposed to HSV in the case group than in the control group. Thus, an
association between exposure to HSV and having ICC could exist. However, the
evidence for drawing this conclusion is relatively weak because the lower limits
of the CIs are close to one.

Table 5: nWald, mWald, and Fieller CIs for the Hildesheim et al. Data

Method CI Length
nWald (0.98, 1.71) 0.73
mWald (1.02, 1.76) 0.74
Fieller (1.02, 1.78) 0.76

5. Simulations
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In this section, we describe and present the results of two Monte Carlo simu-
lation studies to assess and compare the performance of our proposed CIs under
various parameter and sample-size scenarios. The performance was evaluated in
terms of CI coverage probabilities and average lengths. In particular, we con-
sidered two-sided approximate 90% CIs. Although equal sample sizes from each
group were not required by these interval estimation methods, we assumed the
total sample size N1 = N2 = N , training data sample size n1 = n2 = n, false-
positive rate φ1 = φ2 = φ, and false-negative rate θ1 = θ2 = θ, to simplify the
simulation studies and presentation of simulation results.

We first investigated the performance of our three proposed CI methods by
varying total sample size. In this simulation, we chose the following parameter
and sample-size configurations:

1. False-positive rate: φ = .1,

2. False-negative rate: θ = .1,

3. Ratio of the training sample size versus the total sample size: s = n/N =
0.2,

4. Total sample size N : from 100 to 400 with increments of 10,

5. True proportion parameters of interest (p1, p2): (.4, .6) and (.1, .2), corre-
sponding to risk ratios of 2/3 and 1/2, respectively.

For each configuration of p1, p2, φ, θ, n/N , and N , we simulated K = 10, 000
data sets. To simulate a data set, for i = 1, 2, we sampled (ni00, ni01, ni10, ni11)

′

using (3.1) and (Xi, Yi) using (3.2). Then, we created the complete data d using
(3.4). After a data set was created, we computed the three competing CIs for r.
Once the K CIs were available for each type of CI, we computed the coverage
probabilities (CPs) and the average lengths (ALs). Finally, we plotted the CPs
and ALs versus sample sizes N for each type of CI.

Figures 1 and 2 display curves of CPs and ALs of the three CI estima-
tors versus N for (p1, p2) = (.4, .6) and (p1, p2) = (.1, .2), respectively. When
(p1, p2) = (.4, .6), the corresponding binomial distributions are approximately
symmetric about their means and, therefore, we expected the proposed CIs to
perform well. Not surprisingly, Figure 1 demonstrates that both the nWald and
mWald CIs had similar, close-to-nominal CPs, regardless of the sample sizes.
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Figure 1: Coverage probabilities and average lengths versus total sample size
N where (p1, p2) = (.4, .6). The false-positive rate is φ = .1, the false-negative
rate is θ = .1, and s = n/N = 0.2

100 200 300 400

0.
80

0.
85

0.
90

0.
95

N

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

nWald
mWald
Fieller

100 200 300 400

1
2

3
4

5
6

7
8

N

A
ve

ra
ge

 L
en

gt
h

nWald
mWald
Fieller

Figure 2: Coverage probabilities and average lengths versus total sample size
N where (p1, p2) = (.1, .2). The false-positive rate is φ = .1, the false-negative
rate is θ = .1, and s = n/N = 0.2



Confidence Intervals for the Risk Ratio 543

The Fieller CIs had reasonable CPs for small samples (N < 200) and close-
to-nominal CPs for large samples (N ≥ 200). The ALs were similar for all
three CIs with the nWald CIs being the narrowest and the Fieller CIs being the
widest. On the other hand, when (p1, p2) = (.1, .2), the corresponding binomial
distributions were skewed and, therefore, not very well-behaved. Therefore, in
this case, we did not expect the proposed CIs to perform as well for small sample
sizes (N < 200). In fact, Figure 2 shows that both the nWald and Fieller CIs had
very poor coverage for small samples (N < 200). However, the coverage for nWald
and Fieller CIs was close to nominal when sample sizes were large (N > 300).
Impressively, the mWald CIs had good coverage properties for all of the sample
sizes considered here. For the comparison of ALs, we expected that the nWald
CIs would be narrower than mWald CIs on average because naive Wald intervals
commonly tend to be consistently too narrow. The Fieller CIs were generally
the widest and were much wider than the other two interval estimators when the
sample sizes were small. This property is very undesirable, especially with the
fact that the Fieller CIs had low coverage probabilities.
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Figure 3: Coverage probabilities and average lengths versus risk ratio r where
p1 = .5. The false-positive rate is φ = .1, the false-negative rate is θ = .1, the
total sample size N = 200, and s = n/N = 0.2
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Figure 4: Coverage probabilities and average lengths versus the risk ratio r,
where p1 = .2. The false-positive rate is φ = .1, the false-negative rate is θ = .1,
the total sample size N = 200, and s = n/N = 0.2

Secondly, we studied the performance of the nWald, mWald, and Fieller CIs
by varying the risk ratio r. In these simulations, we chose the following parameter
configurations:

1. False-positive rate: φ = .1,

2. False-negative rate: θ = .1,

3. Ratio of the training sample size versus the total sample size: s = n/N =
0.2,

4. Total sample size: N = 200.

We considered two simulation configurations for p1 and p2 with fixed values of
p1 = .5 and p1 = .2 for the first and second simulation configurations, respectively.
For each simulation configuration, we chose 9 values of p2, {p2,1, · · · , p2,9}, in an
increasing order, such that log(r1) and log(r9) were symmetric about 0, and
{log(r1), · · · , log(r9)} were equally spaced, where rt = p1/p2,t, t = 1, · · · , 9. We
let p2,9 = .9 for both configurations. Using the assumption that log(r1) and
log(r9) are symmetric about 0, we obtained p2,1 ≈ 0.278 and p2,1 ≈ 0.044 for the
two configurations, respectively. Note that in this way, we ensured that the values
of the parameters {p2,1, · · · , p2,9} were between 0 and 1. For each simulation
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configuration, we then determined p2,2, · · · , p2,8 such that {log(r1), · · · , log(r9)}
were equally spaced.

For each simulation scenario with known p1, p2, φ, θ, n/N , and N , we simu-
lated K = 10, 000 data sets. The simulation of one data set was described previ-
ously in this section. Once the K CIs for each interval method were obtained, we
calculated the coverage probabilities (CPs) and average lengths (ALs). Finally,
we plotted the CPs and ALs versus r for each CI method.

Figures 3 and 4 display plots of the CPs and ALs of all CI methods versus log r
for both configurations of p1 and p2, respectively. Figure 3 shows that both the
nWald and the mWald CIs had close-to-nominal coverage for the range of log r
studied here. The Fieller CI also had close-to-nominal coverage for the range
of log r, although the coverage was consistently slightly below the nominal level.
Figure 3 also displays that the Fieller CI was slightly wider than the other two
CIs. Figure 4 shows that the mWald CI had close-to-nominal coverage for the
range of log r studied here. The nWald CI had close-to-nominal coverage when
log r ∈ (− log .5, log .5) but much below-nominal coverage otherwise. The Fieller
CI had below-nominal coverage when log r < .5 and above-nominal coverage when
log r > .5. Figure 4 also displays that the mWald CI was slightly wider than the
nWald CI. The Fieller CI was the widest and was much wider than the other two
CIs when log r > .5.

6. Discussion

In this article, we have considered interval estimation of the risk ratio of two
binomial proportion parameters using two-sample misclassified binomial data.
Because the original full likelihood function was difficult to work with, we have
performed a reparameterization of the parameters. The transformed parameters
in the new likelihood function were separable and, therefore, the maximum like-
lihood estimation was straightforward. As a result, we have derived closed-form
formulas for the MLE and the nWald, the mWald, and the Fieller CIs, for the
risk ratio.The nWald CI was computed using a naive application of the Wald
method; the mWald CI was based on a modified Wald method that guarantees
nonnegative CI limits; and the Fieller CI was constructed using an asymptotic
pivotal quantity. All three CIs are easy to compute and require little computing
resources.

To illustrate, all three CIs were applied to a cervical cancer data set. As
expected, they produced similar CIs because the cervical cancer data have a
large sample size. To compare and evaluate these three CIs, we conducted several
Monte Carlo simulation studies to examine the CPs and ALs of all three CIs for r
under various parameter-configuration scenarios. Because the CI estimators were
developed based on asymptotic theory, we expected all three methods to perform
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well for large samples. This assumption was confirmed in our simulations because
the CPs were close to the nominal level for large samples and the ALs decreased
as sample sizes increased.

Substantial differences in performance occurred among these three CIs. We
remark that the mWald CIs had CPs close to nominal level under various param-
eter and sample-size scenarios. Compared with the mWald CIs, the nWald CIs
were narrower but tended to have CPs less than the nominal level, especially when
p1 and p2 were close to zero or one and the sample sizes were small (N < 200).
The Fieller CIs generally were the widest and sometimes were much wider than
the other two intervals. The behavior of the Fieller CIs was somewhat erratic
because the CPs could be above or below the nominal levels, especially when p1
and p2 were close to zero or one and the sample sizes were small (N < 200).
In summary, the mWald CIs consistently had nominal coverage and performed
the best among three CI methods for parameter and sample-size configurations
considered here and, therefore, are preferred to the nWald and Fieller intervals
for the parameter and sample-size configurations considered here.
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