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Tests of Independence with Incomplete Contingency Tables
Using Likelihood Functions
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Abstract: Kang (2006) used the log-likelihood function with Lagrangian
multipliers for estimation of cell probabilities in two-way incomplete con-
tingency tables. The constraints on cell probabilities can be incorporated
through Lagrangian multipliers for the likelihood function. The method can
be readily extended to multidimensional tables. Variances of the MLEs are
derived from the matrix of second derivatives of the log likelihood with re-
spect to cell probabilities and the Lagrange multiplier. Wald and likelihood
ratio tests of independence are derived using the estimates and estimated
variances. Simulation results, when data are missing at random, reveal that
maximum likelihood estimation (MLE) produces more efficient estimates of
population proportions than either multiple imputation (MI) based on data
augmentation or complete case (CC) analysis. Neither MLE nor MI, how-
ever, leads to an improvement over CC analysis with respect to power of tests
for independence in 2×2 tables. Thus, the partially classified marginal infor-
mation increases precision about proportions, but is not helpful for judging
independence.

Key words: Lagrangian multiplier, likelihood ratio test, missing at random,
missing value analysis, Wald statistic.

1. Introduction

It may happen that some observations are not fully cross-classified when form-
ing contingency tables from two or more categorical variables. Complete-case
(CC) analysis discards cases with missing data, thereby restricting analysis to
only counts with fully observed variables used for cross classification into a con-
tingency table.

An alternative approach involves constructing a complete table, in which all
cases are completely classified, by imputing information for the missing classi-
fication dimensions. Multiple imputation, proposed by Rubin (1978; see also
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Rubin 1987, 1996), provides a way to take advantage of commonly used tests of
independence for completely classified tables. Li et al. (1991) proposed a Wald
test statistic and Meng and Rubin (1992) proposed likelihood ratio tests with F
reference distributions. In addition to such tests of independence, one can esti-
mate joint probabilities and their standard errors using sets of, say, five imputed
contingency tables obtained from data augmentation. Finch (2010) has studied
some methods of imputation for categorical data. In this paper, we consider mul-
tiple imputation of categorical values using a Jeffrey’s prior distribution on the
unknown cell probabilities.

Instead of imputing information for missing classifications, maximum like-
lihood estimates of population proportions can be obtained from the observed
information, including both the completely and partially classified cases. Little
(1982) used a simple EM algorithm to estimate cell probabilities. Lipsitz et al.
(1998) show how to use generalized linear model software to evaluate maximum
likelihood estimates of cell probabilities using the connection between the multi-
nomial and Poisson likelihoods. Molenberghs and Goetghebeur (1997) present
estimation methods using the observe data log likelihood directly. In their ap-
proach, they use Fisher scoring, Newton-Raphson, and other algorithms. They
cite McCullagh and Nelder (1989) for their algorithms, and this source does not
utilize Lagrangian multipliers. Instead, they incorporate the constraints on prob-
abilities directly into the likelihood function.

Maximum likelihood estimates of population proportions can be obtained
from the partial log-likelihood function proposed by Chen and Fienberg (1974)
for the cell probabilities of two way incomplete contingency tables. Kang (2006)
proposed the partial log-likelihood function with a Lagrangian multiplier incor-
porating the constraint on cell probabilities.

Both the MLE method and the MI method should be appropriate when data
are missing completely at random (MCAR) or missing at random (MAR) in the
sense of Rubin (1976). The complete case method can cause bias for estimating
cell probabilities when data are in fact MAR.

Less computation is required to get the matrix of second derivatives of the log-
likelihood function with respect to cell probabilities when a Lagrangian multiplier
is used than when it is not used. In this paper, variances of MLE estimators of
population proportions are derived from the matrix of second derivatives. Wald
test of independence are derived using the variances of MLEs. Likelihood ratio
tests of independence are derived based on the likelihood function evaluated at
the MLEs.

Section 2 presents notation and the likelihood function. Section 3 reviews
MLEs and their variances proposed by Kang (2006). Section 4 derives tests of
independence for incomplete contingency tables. The performance of tests of
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independence provided by the complete-case analysis, multiple imputation, and
maximum likelihood approaches are examined through Monte Carlo simulation
studies in Section 5 considering both type I error level and power. Section 6
contains a summary.

2. Notation and Likelihood Function

Consider an I×J contingency table where the row factor X1 has I categories
and the column factor X2 has J categories. Assume simple random sampling
with replacement. In a complete table, where the row and column categories are
observed for every case in the sample, the counts have a multinomial distribution
with sample size N and probability vector θ. Let θij , an element of θ, denote the
population proportion for the (i, j) cell.

When information on either the row or column classification is missing, we can
construct a table of counts for the completely classified cases where xij denotes
the number of cases observed in the (i, j) cell. We can also construct one-way
tables of counts for partially classified cases. Let xim denote the number of cases
in the ith row category, i = 1, 2, · · · , I, where the column category is unknown,
and let xmj denote the number of cases in the jth column category, j = 1, 2, · · · , J ,
where the row category is unknown. Then, xim and xmj are marginally observed
counts on a single variable. Let xmm denote the number of cases where both the
row and column categories are missing. The total sample size is

N =
∑
ij

xij +
∑
i

xim +
∑
j

xmj + xmm

= xcc + x•m + xm• + xmm.

Discarding the xmm cases for which both variables are missing does not affect
any results in this paper except that it necessitates changing N to n = N −
xmm. Those cases do not contain any information about the joint distribution or
marginal distributions of X1 and X2.

The log-likelihood function for the cell probabilities θ presented by Chen and
Fienberg (1974) is the following;

l(θ) =
∑
i

∑
j

xij log θij +
∑
j

xmj log θ•j +
∑
i

xim log θi•. (2.1)

Note that the log-likelihood function in (2.1) does not include xmm.

In the general case, there are r variables, Xa, Xb, · · · , Xr with levels A,B, · · · ,
R, respectively. A cell in the cross-classified table is identified by a r-tuple
(a, b, · · · , r). Let θa,b,··· ,r and xa,b,··· ,r be the proportion and count, respectively,
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in cell (a, b, · · · , r). The complete-data log likelihood for a multinomial model is

l(θ) =
A∑
a=1

B∑
b=1

· · ·
R∑
r=1

xa,b,··· ,r log θa,b,··· ,r.

When some variables are missing, partially classified counts appear in the observed-
data log likelihood multiplying the log of aggregated probabilities for the corre-
sponding cells, as in equation 2.1. In the case that r = 3, the log likelihood of this
sort with the largest number of terms, ignoring the xmmm cases with all three
variables missing, is

l(θ) =
∑
a

∑
b

∑
c

xabc log θabc +
∑
a

∑
b

xabm log θab•

+
∑
a

∑
c

xamc log θa•c +
∑
b

∑
c

xmbc log θ•bc

+
∑
a

xamm log θa•• +
∑
b

xmbm log θ•b• +
∑
c

xmmc log θ••c. (2.2)

3. Maximum Likelihood Estimation of Cell Probability and Variances

The EM algorithm (Dempster, Laird and Rubin, 1977) can be used to get
maximum likelihood estimates (MLEs) of proportions in an incomplete contin-

gency table. In the case of an I × J table, let θ
(0)
ij be an initial estimate of θij ,

such as xij/xcc. The estimate of θij at the tth iteration of the algorithm is

θ
(t)
ij = 1/n

(
xij + xim ×

θ
(t−1)
ij

θ
(t−1)
i•

+ xmj ×
θ
(t−1)
ij

θ
(t−1)
•j

)
. (3.1)

The algorithm converges to the MLEs of θ. Little (1982) presented examples of
the algorithm for 2×2 tables. In the general case of multidimensional tables, the
EM algorithm was described by Fuchs (1982). See also Little and Rubin (2002)
and Schafer (1997).

The methodology to produce variances of MLEs (Kang, 2006) is reviewed in
this section. Since the proportions are constrained to sum to one (

∑
ij θij = 1),

the likelihood function (2.1) incorporating the constraint can be expressed with
a Lagrangian multiplier as

l(θ∗) =
∑
i

∑
j

xij log θij +
∑
j

xmj log θ•j +
∑
i

xim log θi•+ γ(1−
∑
ij

θij), (3.2)

where θ∗ = (θ′, γ)′.
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The first derivative of l(θ∗) in (3.2) with respective to θij and to γ are

∂l(θ∗)

∂θij
=
xij
θij

+
xmj
θ•j

+
xim
θi•
− γ,

∂l(θ∗)

∂γ
= 1−

∑
ij

θij .

The second partial derivatives are

∂2l(θ∗)

∂θ2ij
=
−xij
θ2ij
− xmj

θ2•j
− xim

θ2i•
,

∂2l(θ∗)

∂θij∂θis
= −xim

θ2i•
,

∂2l(θ∗)

∂θij∂θkj
= −xmj

θ2•j
,

∂2l(θ∗)

∂θij∂θks
= 0,

∂2l(θ∗)

∂θij∂γ
= −1,

∂2l(θ∗)

∂γ2
= 0.

Let I(θ∗) be the matrix of second derivatives of the log likelihood with respect
to θ∗. An estimate of the covariance matrix of θ̂∗, the MLE of θ∗, is −I−1(θ̂∗).
Let Σ̂M be a matrix omitting the last row and column of −I−1(θ̂∗). The matrix
Σ̂M gives an estimate of the covariance matrix of θ̂M , where θ̂M is the MLE of
θ. For a 2× 2 table, θ∗ = (θ11, θ12, θ21, θ22, γ)′ and I(θ∗) is

I(θ∗) = −


d11

x1m
θ21•

xm1

θ2•1
0 1

x1m
θ21•

d12 0 xm2

θ2•2
1

xm1

θ2•1
0 d21

x2m
θ22•

1

0 xm2

θ2•2

x2m
θ22•

d22 1

1 1 1 1 0

 ,

where dij =
xij
θ2ij

+
xmj

θ2•j
+ xim

θ2i•
.

The likelihood function with a Lagrangian multiplier and corresponding deriva-
tives for a three-way table are given in the Appendix.

4. Tests of Independence

A Wald test and a likelihood ratio test for independence in an incomplete
two-way contingency table are described in this section. Extensions for three-
way tables also are described.

4.1 A Wald Test Using MLE in an Incomplete Contingency Table
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For a complete two-dimensional contingency table with sample size N , the
null hypothesis of statistical independence is

H0 : θij = θi•θ•j , for all i and j. (4.1)

Defining

gab(θ) ≡

 J∑
j=1

θaj

( I∑
i=1

θib

)
− θab,

the null hypothesis of statistical independence can be expressed as

H0 : gab(θ) = 0, (4.2)

for all a = 1, 2, · · · , I and b = 1, 2, · · · , J . Let

g(θ) = (g11(θ), · · · , g1J(θ), g21(θ), · · · , g2J(θ), · · · , gIJ(θ))′.

Then (4.2) can be expressed as H0 : g(θ) = 0
¯
.

For a complete three-way table with sample size N , the null hypothesis is

H0 : θabc = θa••θ•b•θ••c, for all a, b, and c. (4.3)

Defining

gabc(θ) ≡

∑
j,k

θajk

∑
i,k

θibk

∑
i,j

θijc

− θabc,
the null hypothesis can be expressed as

H0 : gabc = 0 for all a, b, and c,

or H0 : g(θ) = 0
¯
, where g(θ) = (gabc(θ), a = 1, · · · , A, b = 1, · · · , B, c = 1, · · · , C).

The estimator, θ̂, has an approximate multivariate normal distribution with
variance Σ = Vθ/N by the Central Limit Theorem, where Vθ = (∆θ − θθ′) and
∆θ is a diagonal matrix with the elements of θ on the main diagonal. Under
H0, for a two-dimensional table, g(θ̂) has an approximate p = I × J dimensional
normal distribution with variance GΣG′, where Gp×p is the matrix of first partial
derivatives of g(θ) with respect to θij . The elements of Gp×p are

∂gab(θ)

∂θij
=


∑I

i=1 θib +
∑J

j=1 θaj − 1, for a = i, and b = j,∑I
i=1 θib, for a = i, and b 6= j,∑J
j=1 θaj , for a 6= i, and b = j,

0, for a 6= i, and b 6= j.
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A Wald statistic for testing H0 is

Q̂ = g(θ̂)′T̂−g(θ̂), (4.4)

where T̂ = (ĜΣ̂Ĝ′) is obtained by substituting θ̂ for θ and − denotes generalized
matrix inverse. For a complete table, Q̂ has a distribution converging to a central
chi-squared distribution with df = k = (I − 1)(J − 1) when H0 is true.

Results for a three-dimensional table are analogous. Under H0, g(θ̂) has
dimension p′ = A × B × C. The elements of Gp′×p′ depend on the overlap in
dimensions between gabc and θijk. Examples are given below with overlap in
three, two, one, or zero dimensions:

∂gabc(θ)

∂θabc
=

∑
j,k

θajk

∑
i,k

θibk

+

∑
j,k

θajk

∑
i,j

θijc


+

∑
j,k

θajk

∑
i,k

θibk

− 1,

∂gabc(θ)

∂θabt
=

∑
j,k

θajk

∑
i,j

θijc

+

∑
i,k

θibk

∑
i,j

θijc

 ,

∂gabc(θ)

∂θast
=

∑
i,k

θibk

∑
i,j

θijc

 ,

∂gabc(θ)

∂θrst
= 0,

where r 6= a, s 6= b, and t 6= c. The degrees of freedom are df = k′ = (A− 1)(B−
1)(C − 1).

For an incomplete contingency table, g(θ̂) and Ĝ are obtained by substituting
θ̂M for θ̂. Then T̂ = (ĜΣ̂Ĝ′) is obtained by substituting Σ̂M for Σ̂ in (4.4). Thus
a Wald statistic for testing H0 is

Q̂M = g(θ̂M )′T̂−Mg(θ̂M ), (4.5)

where T̂M = (ĜΣ̂M Ĝ
′) and Ĝ is obtained by substituting θ̂M for θ. Then for a

incomplete two-way table, Q̂M has an approximate central chi-square distribution
with df = k when H0 is true. For an incomplete three-way table the analogous
statistic has df = k′ when H0 is true.

4.2 Likelihood Ratio Test
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Under the model of independence in (4.1), the MLE of θij is

θ̂0ij =

(
xi• + xim
xcc + x•m

)(
x•j + xmj
xcc + xm•

)
. (4.6)

Let L0 be the maximized value of the log-likelihood function under the null
hypothesis of (4.1) and L1 be the maximized value under H0

⋃
Ha. L0 can

be calculated directly by substituting θ̂0ij for θij in (3.2) and L1 can be obtained

by using θ̂M . Then 2L1 − 2L0 has a limiting null chi-squared distribution as n
goes to infinity when H0 is true. A size α test is implemented by rejecting H0 if
2L1 − 2L0 > χ2

k,α.
For a three-way table, under independence, the MLE of θabc is

θ̂0abc =

(
xa•• + xa•m + xam• + xamm
x••• + x••m + x•m• + x•mm

)(
x•b• + x•bm + xmb• + xmbm
x••• + x••m + xm•• + xm•m

)
·
(
x••c + x•mc + xm•c + xmmc
x••• + xm•• + x•m• + xmm•

)
.

A large-sample size α test is implemented by rejecting H0 if 2L1 − 2L0 > χ2
k′,α,

where k′ = (A− 1)(B − 1)(C − 1) and L0 and L1 are defined analogously to how
they were defined for two-way tables.

5. Simulation Comparing Methods

The performance of tests of independence on incomplete two-way tables using
maximum likelihood estimation (MLE), multiple imputation (MI), and complete
case analysis (CC) are compared through Monte Carlo simulations. Two missing
data mechanisms corresponding to the missing at random (MAR) assumption
are used in simulations. Type I error levels are estimated from 1,000 tables
simulated tables under the independence assumption. Power levels are examined
by simulating 1,000 tables under an alternative to independence.

For multiple imputation, the Wald statistic proposed by Li, Raghunathan,
and Rubin (1991) and the likelihood ratio test statistic proposed by Meng and
Rubin (1992) based on five imputed data sets were applied to test independence.
The algorithms for MI were programmed through S-PLUS 6.1 (2001) functions
for missing values.

5.1 Type I Error Levels

The 2 × 2 incomplete contingency tables generated for this study to check
type I error level were generated with equal cell probabilities and data missing
at random (MAR). X1 and X2 were independently generated as Bernouli(0.5)
random variables with sample size 500.
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There are two cases with different missing at random mechanisms; 1,000 tables
were generated for each case. The missing mechanism for each case is as follows:

Pr(X1 is missing|X2 = 1) = m1,

P r(X1 is missing|X2 = 0) = m2, (5.1)

Pr(X2 is missing) = m3.

For the first case m1 = 0.1, m2 = 0.3, m3 = 0.2 in (5.1). In the second case m1 =
0.2, m2 = 0.4, m3 = 0.3. The percentages of cases with missing information on at
least one variable are expected to be 36% and 51% for case 1 and 2 respectively.

Table 1 shows the numbers of tables for which the independence null hypoth-
esis was falsely rejected out of 1000 tables for three nominal Type I error levels.
The results using MLE and CC seem to have appropriate Type I error levels on
both tests, but Type I error levels tend to be inflated for the MI method.

Table 1: Comparison of Type I error levels

Wald test

MLE MI CC

Case \ α 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 10 53 91 10 45 96 9 51 95
2 9 58 109 16 68 110 8 56 109

Likelihood ratio test

1 9 52 91 10 44 96 9 51 96
2 7 57 109 16 66 108 8 57 109

5.2 Power Study

An alternative to independence for 2 × 2 tables with equal probability mar-
gins was used to compare the power of the various procedures. The generated
multinomial variables have the cell probabilities

(θ11, θ12, θ21, θ22) = (0.2, 0.3, 0.3, 0.2), (5.2)

with sample size 500. The missing data mechanisms (5.1) are same as for the two
cases used previously.

Before we study power of independence test, let’s compare three methods with
checking point estimations of θ11 and θ1+θ+1 − θ11. Table 2 shows means and
standard deviations of 1,000 values for the estimates of θ11 from the generated
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1,000 tables in this subsection. The true value of θ11 is 0.2. MLE and MI methods
provide essentially unbiased estimates for the cell probabilities but CC does not.
The standard deviations of the estimates differ across methods. Complete-case
analysis provides the estimate of θ11 with the largest variance. For all methods,
variation increases as the proportion of missing values increases. MLE tends to
provide smaller standard deviations of cell proportion than MI.

Table 2: Estimation of θ11

MLE MI CC

Case Mean S.D. Mean S.D. Mean S.D.

1 0.1984 0.02063 0.1988 0.02118 0.2242 0.02377
2 0.1978 0.02193 0.1977 0.02281 0.2281 0.02697

Table 3 shows means and standard deviations of 1,000 simulated values for
the estimates of θ1+θ+1−θ11, a measure of association between the two variables.
The true value of θ1+θ+1−θ11 is 0.05. The averages of the estimates are similar for
all methods. The complete-case and MLE have similar standard deviations and
they exhibit smaller standard deviations than MI. Results on point estimation
are helpful in interpreting power simulation results.

Table 3: Estimation of θ1+θ+1 − θ11

MLE MI CC

Case Mean S.D. Mean S.D. Mean S.D.

1 0.0495 0.01376 0.0493 0.01422 0.0488 0.01358
2 0.0498 0.01608 0.0496 0.01691 0.0490 0.01585

Table 4: Power Comparison

Wald test

MLE MI CC

Case \ α 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 848 955 976 718 896 953 840 956 976
2 702 874 928 525 765 865 698 876 931

Likelihood ratio test

1 846 955 976 709 894 953 840 956 976
2 690 870 928 503 752 862 701 877 932
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The numbers in Table 4 indicate the number of tables out of 1,000 for which
the independence null hypothesis was rejected under the given α levels among
1,000 tables in each type.

Table 4 shows MLE and CC have more power than MI. MLE does not show
much improvement on the power levels of the tests of independence over complete-
case analysis. Although MLE is often more conservative than MI with respect to
Type I error levels, the test using MLE exhibited more power than MI.

6. Summary

It has been an issue to estimate the variance of MLE for the cell probabilities of
an incomplete contingency table because it is very complicated to get the second
derivatives of the likelihood. The likelihood including a Lagrangian multiplier
related to a constraint can solve this problem.

Complete-case (CC) analysis produces biased estimates of joint probabilities
under MAR and is less efficient than either MLE or MI. MLE and MI provides
consistent results under either MAR situation used in simulations.

When data are missing at random, simulation results reveal that MLE pro-
vides more efficient estimates of population proportions than either multiple im-
putation (MI) based on data augmentation or complete case analysis, but neither
MLE nor MI provides an improvement over complete-case (CC) analysis with re-
spect to power of tests for independence.

If the missing mechanism does satisfy missing completely at random (MCAR)
criterion, CC analysis can produce unbiased estimates of joint probabilities and
moderate type I error level and power of tests for independence.

Appendix: Derivatives for 3-Way Tables

The log likelihood for a three-way table was given in (2.2). In the case of a
three-way table, the log likelihood function incorporating a Lagrangian multiplier
is

l(θ∗) = l(θ) + γ(1−
∑
a,b,c

θa,b,c), (A.1)

where θ′ = (θabc, a = 1, · · · , A, b = 1, · · · , B, c = 1, · · · , C), θ∗ = (θ′, γ)′, and l(θ)
is given in (2.2).

The first derivative of l(θ∗) in (A.1) with respective to θabc and to γ are

∂l(θ∗)

∂θabc
=
xabc
θabc

+
xmbc
θ•bc

+
xamc
θa•c

+
xabm
θab•

+
xmmc
θ••c

+
xmbm
θ•b•

+
xamm
θa••

− γ,

∂l(θ∗)

∂γ
= 1−

∑
abc

θabc.
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The second partial derivatives involving γ are

∂2l(θ∗)

∂θabc∂γ
= −1,

∂2l(θ∗)

∂γ2
= 0.

The second partial derivatives for the proportions are determined by the over-
lap in the three-tuples identifying the parameters. Below are illustrations for
overlap of three, two, one, and zero dimensions.

∂2l(θ∗)

∂θabcθabc
=
−xabc
θ2abc

− xmbc
θ2•bc

− xamc
θ2a•c

− xabm
θ2ab•

− xmmc
θ2••c

− xmbm
θ2•b•

− xamm
θ2a••

,

∂2l(θ∗)

∂θabcθabt
=
−xabm
θ2ab•

− xmbm
θ2•b•

− xamm
θ2a••

,

∂2l(θ∗)

∂θabcθast
=
−xamm
θ2a••

,

∂2l(θ∗)

∂θabcθrst
= 0,

where r 6= a, s 6= b, and t 6= c. The estimated covariance matrix is −I−1(θ̂∗),
where I(θ∗) is the matrix of second derivatives of the log likelihood with respect
to θ∗.
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