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Abstract: For two independent random variables, X and Y , let p = P (X >
Y ) + 0.5P (X = Y ), which is sometimes described as a probabilistic measure
of effect size. It has been argued that for various reasons, p represents an
important and useful way of characterizing how groups differ. In clinical
trials, for example, an issue is the likelihood that one method of treatment
will be more effective than another. The paper deals with making inferences
about p when three or more groups are to be compared. When tied values
can occur, the results suggest using a multiple comparison procedure based
on an extension of Cliff’s method used in conjunction with Hochberg’s se-
quentially rejective technique. If tied values occur with probability zero, an
alternative method can be argued to have a practical advantage. As for a
global test, extant rank-based methods are unsatisfactory given the goal of
comparing groups based on p. The one method that performed well in sim-
ulations is based in part on the distribution of the difference between each
pair of random variables. A bootstrap method is used where a p-value is
based on the projection depth of the null vector relative to the bootstrap
cloud. The proposed methods are illustrated using data from an intervention
study.

1. Introduction

A fundamental issue is choosing an appropriate method of characterizing how
two independent random variables differ. Certainly one of the more obvious
approaches is to compare measures of location. A related approach is to use some
measure of effect size that is based in part on some measure of scale associated
with the groups being compared. One of the better-known and commonly used
measures assumes that groups have identical population variances σ2 and is given
by

δ =
µ1 − µ2

σ
,

where µ1 and and µ2 are the population means. The usual estimate of δ, popularly
known as Cohen’s d, is

d =
X̄1 − X̄2

σ
,
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and where X̄j is the usual sample mean for the jth group (j = 1, 2). When
dealing with clinical trials, Acion et al. (2006) have raised concerns about using
δ and related techniques. They go on to argue that often what is needed is some
sense of how likely it is that a particular treatment will be beneficial compared
to a placebo or some other treatment. In more formal terms, they argue that for
two independent random variables, X and Y ,

p = P (X > Y ) + 0.5P (X = Y )

is an important and useful way of characterizing how two groups differ. Additional
arguments for using p, in a broader context, have been made by Cliff (1996) as well
as Vargha and Delaney (2000). This is not to suggest, however, that measures of
effect size other than p have no practical value. Even if p = 0.5, the means might
differ in important ways or the groups might differ in terms of some measure of
variation. But the arguments for using p certainly seem to have merit given the
goal of gaining perspective on how groups compare.

Given that p is intrinsically interesting and important, there is the issue mak-
ing inferences about p based on random samples of observations. Various methods
have been proposed for testing

H0 : p = 0.5 (1)

and computing a confidence interval for p, which are reviewed in Section 2.
As is well known, the Wilcoxon-Mann-Whitney test is based on an estimate

of p, namely

p̂ =
U

n1n2
,

where U is the usual Wilcoxon-Mann-Whitney U statistic, and n1 and n2 are
the samples sizes corresponding to groups 1 and 2, respectively. But for reasons
reviewed in Section 2, as a method for testing (1), the Wilcoxon-Mann-Whitney
test is unsatisfactory under general conditions.

Although there is an extensive literature regarding methods for testing (1),
evidently little is known about how best to proceed when dealing with more
than two groups. Accordingly, the goal in this paper is to suggest and compare
methods for dealing with J > 2 independent groups. Two types of extensions are
of interest. The first is aimed at testing the global hypothesis that for all pairs
of groups, p = 0.5. That is, for J independent groups let pjk be the value of p
when comparing groups j and k. The goal is to test

H0 : p12 = p13 = · · · = pJ−1,J = 0.5. (2)

Several methods were considered here, only one of which performed well in sim-
ulations.



Measure of Effect Size 473

The second extension deals with the problem of testing

H0 : pjk = 0.5 (3)

for each j < k such that the probability of a least one Type I error, among
these (J2 − J)/2 hypotheses, is α. Two methods are proposed, one of which is
motivated by results reviewed in Section 2. The relative merits of these methods,
when dealing with small sample sizes, are studied via simulations. Wilcox (2003,
Section 15.3) describes a simple extension of a method derived by Cliff (1997) that
is aimed at controlling the probability of at least one Type I error when comparing
all pairs of groups. But in terms of both power and the ability to control the
probability of at least one Type I error, an alternative strategy (method CH
described in Section 3), is found to be better for general use.

It is noted that there are rank-based methods for comparing more than two
groups, but they do not provide a test of (2). For example, Rust and Fligner
(1984) as well as Brunner, Dette and Munk (1997) derived a rank-based method
for comparing J > 2 groups that improves on the Kruskall and Wallis test in
terms of handling situations where distributions differ. A rough characterization
of these methods is that they are designed to be sensitive to differences among
the average ranks associated with the J groups, where the ranks are based on the
pooled data. The important point here is that they are not based on estimates
of pjk and they do not provide a satisfactory approach to testing (2). This is not
to suggest, however, that they have no practical value. But given an interest in
making inferences about pjk, a method that deals directly with testing (2), or
(3), would seem desirable.

2. Review of Techniques for the Two-Sample Case

The Wilcoxon-Mann-Whitney test statistic can be written as

Z =
p̂− 0.5

σu/(n1n2)
,

where

σ2u =
n1n2(n1 + n2 + 1)

12
.

(For results on power and sample sizes, see Rosner and Glenn, 2009.) But as
previously noted, as a method for testing (1), or computing a confidence interval
for p, the Wilcoxon-Mann-Whitney method is known to be unsatisfactory. The
reason is that under general conditions, the standard error of p̂ is not σu/(n1n2).
Methods for dealing with this issue have been derived by Brunner and Munzel
(2000), Cliff (1996), Fligner and Policello (1981) and Mee (1990). The methods
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derived by Cliff, and Brunner and Munzel, seem to be particularly effective in
terms of controlling the probability of a Type I error, even when there are tied
values (Neuhäuser, Lösch and Jöckel, 2007), with Cliff’s method having a slight
advantage when the sample sizes are small. Accordingly, one of the methods
suggested here for dealing with more than two groups is based in part on a
simple generalization of Cliff’s technique. For completeness, Reiczigel, Zakariás
and Rózsa, (2005) suggest a bootstrap method for making inferences about p
and they found that it performed better, in terms of controlling the probability
of Type I error, than the method derived by Brunner and Munzel (2000) when
sample sizes are small, say less than 30, and tied values do not occur. But when
tied values can occur, their bootstrap method can perform poorly.

Cliff’s method, which includes the ability to handle tied values, is applied as
follows. Let

p1 = P (X > Y ),

p2 = P (X = Y ),

and
p3 = P (X < Y ).

Cliff (1996) focuses on testing

H0 : δ = p1 − p3 = 0, (4)

which is readily shown to be the same as testing

H0 : p3 + 0.5p2 = 0.5.

For convenience, let P = p3 + 0.5p2, in which case this last equation becomes

H0 : P = 0.5. (5)

Of course, when tied values occur with probability zero, P = p3 = P (X < Y ).
The parameter δ is related to P in a simple manner:

δ = 1− 2P, (6)

so

P =
1− δ

2
. (7)

Based on the random samples X1, · · · , Xn1 and Y1, · · · , Yn2 , Cliff’s confidence
interval for δ is computed as follows. Let

dih =


−1, if Xi < Yh,
0, if Xi = Yh,
1, if Xi > Yh.
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An estimate of δ is

δ̂ =
1

n1n2

n1∑
i=1

n2∑
h=1

dih. (8)

Let

d̄i. =
1

n2

∑
h

dih,

d̄.h =
1

n1

∑
i

dih,

s21 =
1

n1 − 1

n1∑
i=1

(d̄i. − δ̂)2,

s22 =
1

n2 − 1

n2∑
h=1

(d̄.h − δ̂)2,

σ̃2 =
1

n1n2

∑∑
(dih − δ̂)2.

Then

σ̂2 =
(n1 − 1)s21 + (n2 − 1)s22 + σ̃2

n1n2

estimates the squared standard error of δ̂. Let z be the 1 − α/2 quantile of a
standard normal distribution. Rather than use the more obvious 1−α confidence
interval for δ, Cliff (1996, p. 140) recommends

δ̂ − δ̂3 ± zσ̂
√

(1− δ̂2)2 + z2σ̂2

1− δ̂2 + z2σ̂2
.

Note that this confidence interval for δ is readily modified to give a confidence
for P . Letting

C` =
δ̂ − δ̂3 − zσ̂

√
(1− δ̂2)2 + z2σ̂2

1− δ̂2 + z2σ̂2

and

Cu =
δ̂ − δ̂3 + zσ̂

√
(1− δ̂2)2 + z2σ̂2

1− δ̂2 + z2σ̂2
,

a 1− α confidence interval for P is(
1− Cu

2
,
1− C`

2

)
. (9)
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The strategy suggested by Wilcox (2003), when performing all pairwise com-
parisons, is to simply replace z with the 1−α quantile of a Studentized Maximum
modulus distribution with infinite degrees of freedom. This will be called method
SMM

3. Two Multiple Comparison Procedures

This section describes the two proposed methods for testing (3). One of the
methods for testing (3), which is called method CH, is based on a direct estimate
of pjk, but the other method, called method DBH is not.

Method CH

To describe the motivation for first of the new methods of performing all
pairwise comparisons, first note that the approach used by Wilcox (2003) is nearly
tantamount to using the Bonferroni inequality. For instance, consider C = 10
comparisons with the goal that the probability of a Type I error be less than or
equal to α. If, for example, α = 0.05, the Bonferroni method tests each hypothesis
at the 0.05/10=0.005 level. So the resulting value for z, using Cliff’s method, is
2.808, the 0.995 quantile of a standard normal distribution. Using instead the
method in Wilcox (2003), z would be 2.79. It is known, however, that replacing
the Bonferroni method with a sequentially rejective method results in as much
or more power. Moreover, assuming that each test is level robust, there are
sequentially rejective methods for which the probability of at least one Type I
error is less than or equal to the nominal level. Here, Hochberg’s (1988) method
is used, which is based in part on p-values. There is no explicit expression for a
p-value when using Cliff’s method, but this is easily addressed with the aid of a
computer by determining the smallest α value for which Cliff’s method rejects.

Hochberg’s method begins by computing a p-value for each of the C tests to
be performed, which are labeled P1, . . . , PC . Next, put the p-values in descending
order yielding P[1] ≥ P[2] ≥ · · · ≥ P[C]. Let dk = α/k and proceed as follows:

1. Set k = 1.

2. If P[k] ≤ dk, stop and reject all C hypotheses; otherwise, go to step 3.

3. Increment k by 1. If P[k] ≤ dk, stop and reject all hypotheses having a
p-value less than or equal dk.

4. If P[k] > dk, repeat step 3.

5. Continue until a significant result is found or all C hypotheses have been
tested.
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Note that Hochberg’s method will have as much or more power than the
method based on the Studentized maximum modulus distribution when α/C ≤
1 − 2P (Z ≤ z), where now z is the 1 − α quantile of a Studentized maximum
modulus distribution with infinite degrees of freedom and Z is a standard normal
distribution. The 0.05 quantiles of the Studentized maximum modulus distri-
bution are given in Wilcox (2003) for 2 ≤ C ≤ 28. Based on these reported
quantiles, for α = 0.05, Hochberg’s method will have more power when C ≤ 28.
But, for example, with α = 0.01 and C = 28, α/C > 1 − 2P (Z ≤ z), meaning
that it is not necessarily true that Hochberg’s method will have more power.

Method DBH

To describe an alternative approach to testing (1), let θ1 and θ2 be the popu-
lation medians associated with two independent groups. It is known that under
general conditions, the Wilcoxon-Mann-Whitney test is unsatisfactory for testing

H0 : θ1 = θ2 (10)

(e.g., Hettmansperger, 1984; Fung, 1980). The same is true of the more modern
rank-based methods aimed at allowing differences in dispersion. To provide a
rough indication why, let D = X − Y and note that under general conditions,
θd 6= θ1 − θ2, where θd is the population median of D.

The important point here is that the null hypothesis given by (1) is equivalent
to

H0 : θd = 0,

which is not the same as (10). So for J groups, the goal of testing (3) corresponds
to testing

H0 : θdjk = 0 (11)

for each j < k, where θdjk is the value of θd when comparing groups j and k.
The proposed method for testing (11) is as follows. Let Xij (i = 1, · · · , nj ;

j = 1, · · · , J) be a random sample of size nj from the jth group. Generate a
bootstrap sample from the jth group by randomly sampling with replacement
nj observations from X1j , · · · , Xnjj , which will be labeled X∗

1j , · · · , X∗
njj

. Let
M∗

djk, j < k, be the usual sample median based on the njnk differences X∗
ij−X∗

`k

(i = 1, · · · , nj ; ` = 1, · · · , nk). Repeat this process B times yielding M∗
djkb,

b = 1, · · · , B. Based on general theoretical results in Liu and Singh (1997),
in conjunction with a strategy for dealing with tied values suggested in Wilcox
(2006), a p-value when testing (11) is readily computed as follows. Let

%jk =
1

B
(
∑

I(M∗
djkb > 0) + 0.5

∑
I(M∗

djkb = 0)),
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where the indicator function I(M∗
djkb > 0) = 1 if M∗

djkb > 0; otherwise I(M∗
djkb >

0) = 0. Then a (generalized) p-value when testing H0: θdjk = 0 is

2min(%jk, 1− %jk).

All indications are that method DBH performs well when dealing with contin-
uous distributions. However, it is not recommended when dealing with discrete
distributions where tied values can occur.

4. A Global Test: Method WMWAOV

Now consider the goal of testing (2). The initial strategy considered here was
to use a simple generalization of the percentile bootstrap method in Wilcox (2005,
pp. 308-310) based on estimates of pjk. Roughly, bootstrap estimates of pjk are
obtained, after which one measures how deeply the null vector (0.5, · · · , 0.5) is
nested within the resulting data cloud. If the null hypothesis is true, the null
vector should have a reasonably deep location within the bootstrap cloud of
points. However, in terms of controlling the probability of a Type I error, the
method was found to be unsatisfactory in simulations; the actual level when
testing at the 0.05 level was found to be greater than 0.075 with sample sizes of
20. A variation was considered that was based on the test statistic

H =
∑
j<k

(p̂jk − 0.5)2

in conjunction with the bootstrap method in Wilcox (2005, Section 7.6). But
this method proved to be unsatisfactory in simulations as well. The only method
found to perform reasonably well in simulations is based on an extension of
method DBH. That is, the strategy is to test (2) with a method based on the
equivalent hypothesis

H0 : θdjk = 0, ∀ j < k, (12)

where θdjk is the value of θd when comparing groups j and k.

To elaborate, again let Xij (i = 1, · · · , nj ; j = 1, · · · , J) be a random sample
of size nj from the jth group. Generate a bootstrap sample from jth group by
randomly sampling with replacement nj observations from X1j , · · · , Xnjj , which
will be labeled X∗

1j , · · · , X∗
njj

. Let M∗
djk, j < k, be the value of Md based on the

bootstrap samples from groups j and k. Repeat this process B times yielding
M∗

djkb, b = 1, · · · , B. SoM∗
djkb representsB vectors, each having length (J2−J)/2.

Based on general results in Liu and Singh (1997), a p-value for testing (12) can
be obtained by measuring how deeply 0 = (0, · · · 0) is nested within the bootstrap
cloud of points.
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To avoid certain computational and theoretical issues (to be explained), it is
convenient to measure the depth of a point, within a bootstrap data cloud of B
points, using a variation of the projection-type technique discussed by Donoho
and Gasko (1992). Here, a rough outline of the method is provided. Complete
computational details can be found in Wilcox (2005, Section 6.2.5). For nota-
tional convenience, write the C bootstrap estimates M∗

djkb (j < k), for the bth
bootstrap sample, as Mb = (M∗

d12b, · · ·M∗
d,J−1,J,b). Let η̂ be an estimate of some

robust multivariate measure of location based on the B vectors M1, · · ·MB. Here,
the marginal medians are used, but as is well known, various alternatives have
been proposed. For fixed i (i = 1, · · · , B), project all B points onto the line Li
connecting Mi and η̂. For fixed b, let Dib be the distance between η̂ and the
projection of Mb. Let

dib =
Dib

q2 − q1
,

where q2 and q1 are estimates of the upper and lower quartiles, respectively. Here,
the estimates of the quartiles are based on the ideal fourths (Frigge et al., 1989).
The projection distance of Mb from the center of the bootstrap data cloud is

Gb = max dib,

the maximum taken over i = 1, · · · , B. Let G0 be the depth of the null vector
(0, · · · , 0). Then, based on general results in Liu and Singh (1997), a p-value for
testing (11) is

1

B

∑
Ib,

where the indicator function Ib = 1 if G0 ≤ Gb; otherwise Ib = 0. This will be
called method WMWAOV. Like method DBH, WMWAOV can perform poorly
when tied values can occur. However, for continuous distributions, it was found
to perform well in simulations.

Notice that the covariance matrix associated with the bootstrap data cloud
can be singular. This is because the C differences, θdjk, for all j < k, can be
linearly dependent. Consequently, measuring depth using Mahalanobis distance
or some robust analog can fail. A practical advantage of the projection method
just described is that no covariance matrix is used, and more generally the inverse
of a matrix is not required, so this issue does not arise.

5. Simulation Results

Simulations were used to study the small-sample properties of the proposed
methods. Method CH is invariant under order preserving transformations of the
data. But for methods DBH and WMWAOV, this is not quite the case, and
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so simulations results are reported here for four types of distributions: normal,
symmetric and heavy-tailed, asymmetric and relatively light-tailed, and asym-
metric with relatively heavy tails. Although Cliff’s method is invariant under
order preserving transformations, changes in scale can affect the Type I error
probability, which is an issue that has not been addressed in extant simulations.
So a secondary goal is to report results on this issue when J = 2.

Data were generated from one of four g-and-h distributions, one of which was
standard normal. If Z has a standard normal distribution, then

X =

{
exp(gZ)−1

g exp(hZ2/2), if g > 0,

Zexp(hZ2/2), if g = 0,

has a g-and-h distribution where g and h are parameters that determine the first
four moments. When g = h = 0, X has a standard normal distribution. With
g = 0, this distribution is symmetric, and it becomes increasingly skewed as g
gets large. As h gets large, the g-and-h distribution becomes more heavy-tailed.
Table 1 shows the skewness (κ1) and kurtosis (κ2) for the distributions used
in the simulations, which would seem to cover a range of values often found in
practice. They correspond to a standard normal (g = h = 0), a symmetric heavy-
tailed distribution (h = 0.2, g = 0.0), an asymmetric distribution with relatively
light tails (h = 0.0, g = 0.2), and an asymmetric distribution with heavy tails
(g = h = 0.2). (Additional properties of the g-and-h distribution are summarized
by Hoaglin, 1985.)

Table 1: Some properties of the g-and-h distribution

g h κ1 κ2

0.0 0.0 0.00 3.0
0.0 0.2 0.00 21.46
0.2 0.0 1.75 8.9
0.2 0.2 2.81 155.99

To gain some information about the effect of different scales, simulations were
run where observations in the first group were multiplied by σ1 = 4. For brevity,
this will be called the heteroscedastic case. Note than when dealing with skewed
distributions, changing the scale in this manner alters, for example, the value
of the parameter θd12. In particular, the null hypothesis given by (11) is no
longer true. Accordingly, observations in the first group were shifted so that
the null hypothesis is true. This was done by first estimating the actual value
using simulations based on 20,000 replications. That is, compute θ̂d12 based on
the sample size being used, repeat this 20,000 times, and take the mean of the
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results, say θ̃d12, as the true value of θd12. Then, after generating data from a
particular g-and-h distribution, replace Xi1 with Xi1 − θ̃d12.

Table 2 shows the estimated Type I error probability when testing at the
0.05 level, based on 2,000 replications, for the two sample case with sample sizes
n1 = n2 = 20. As is evident, σ1 = 1 corresponds to the homoscedastic case and
σ1 = 4 is the heteroscedastic case. As can be seen, there is little separating the two
methods. The main difference is that in all cases, the level of method WMWAOV
is greater than the level of Cliff’s methods. For the heteroscedastic case where
g = h = 0.2, the estimated level of method WMWAOV is 0.60 and for Cliff’s
method it is 0.032. This suggests that WMWAOV has a power advantage in this
particular case. To explore the extent this is true, simulations were run with 1.5
subtracted from each observation in the first group. The power of WMWAVO
and Cliff’s method were estimated to be 0.336 and 0.268, respectively.

Table 2: Estimated Type I error probabilities, J = 2, n1 = n2 = 20

g h σ1 WMWAOV CLIFF

0.0 0.0 1 0.054 0.042
4 0.066 0.048

0.0 0.2 1 0.051 0.042
4 0.059 0.055

0.2 0.0 1 0.053 0.042
4 0.064 0.039

0.2 0.2 1 0.050 0.042
4 0.060 0.032

Table 3 shows α̂, an estimate of the Type I error probability when J = 4
groups are compared with methods DBH, CH and WMWAOV. Three variance
patterns were considered where the observations in the jth groups are multiplied
by σj . The three choices were (σ1, · · · , σ4) = (1, 1, 1, 1), (1, 1, 1, 4) and (4, 1,
1, 1). For convenience, these variance patterns are labeled VP 1, VP 2 and VP
3, respectively. Of course, for equal sample sizes, there is no practical difference
between the latter two variance patterns, and so for this special case, only results
for VP 2 are reported. Table 4 reports the results when unequal sample sizes are
used.

Clark et al. (2009) report results on a study dealing with the effectiveness
of lifestyle intervention strategies for adults aged 60 and older. A portion of the
study dealt with comparing groups of participants based on measures of phys-
ical wellbeing. Here, results for the physical composite variable are reported,
which was chosen in part because there are no tied values. The three groups that
are compared differ in terms of amount of treatment received. The sample sizes
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Table 3: Estimated Type I error probabilities, J = 4 groups, (n1, n2, n3, n4) =
(20, 20, 20, 20), α = 0.05

g h VP DBH CH WMWAOV

0.0 0.0 1 0.060 0.029 0.048
2 0.061 0.026 0.051

0.0 0.2 1 0.060 0.029 0.034
2 0.058 0.025 0.037

0.2 0.0 1 0.061 0.029 0.046
2 0.059 0.027 0.053

0.2 0.2 1 0.060 0.029 0.044
2 0.059 0.025 0.033

Table 4: Estimated Type I error probabilities, J = 4 groups, (n1, n2, n3, n4) =
(20, 20, 30, 40)

g h VP DBH CH WMWAOV

0.0 0.0 1 0.059 0.036 0.055
2 0.057 0.030 0.062
3 0.060 0.026 0.055

0.0 0.2 1 0.061 0.036 0.055
2 0.058 0.030 0.051
3 0.061 0.026 0.060

0.2 0.0 1 0.061 0.036 0.060
2 0.060 0.030 0.063
3 0.058 0.029 0.064

0.2 0.2 1 0.061 0.029 0.056
2 0.060 0.030 0.049
3 0.061 0.026 0.052

were 67, 64, and 41. The output from the R function cidM, designed to perform
method DBH, using the default α = 0.05 for the probability of one or more Type
I errors, was

$test

Group Group p-value p.crit P(X<Y) P(X=Y) P(X>Y) p.hat

1 2 0.006 0.01666667 0.6408434 0 0.3591566 0.6408434

1 3 0.018 0.02500000 0.6286858 0 0.3713142 0.6286858

2 3 0.490 0.05000000 0.4630275 0 0.5369725 0.4630275

The column headed by p.hat indicates the estimate of p. So at the 0.05 level,
for groups 1 and 2, as well as 1 and 3, H0: p = 0.5 is rejected. (The R functions
used here are available from the author upon request.)

A portion of the output from the R function cidmulv2 (method CH), again
testing at the 0.05 level, is
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Group Group p.hat p.ci.lower p.ci.uppper p-value p.crit

1 2 0.6408434 0.5413586 0.7295302 0.006 0.01666667

1 3 0.6286858 0.5171831 0.7279818 0.024 0.02500000

2 3 0.4630275 0.3536995 0.5760297 0.530 0.05000000

So again a significant difference is found for groups 1 and 2, as well as 1 and 3.
Note, however, that for α = 0.04, method CH no longer rejects when comparing
groups 1 and 3, but again method DBH rejects, the only point being that the
choice of method can make a difference. In fairness, although DBH tends to have
more power when there are no tied values, situations can be constructed where
CH rejects and DBH does not.

Another portion of the study compared five groups based on a physical com-
posite score. No differences were found using any of the methods in this paper.
But it is interesting to note that if 2.5 is added to every observation in the first
group, method WMWAOV rejects at the 0.05 level, but methods CH and DBH
find no differences. This merely illustrates that it is possible for the global test
to find a true difference that is missed using methods CH and DBH. (The R
function wmwaov, available from the author, performs method WMWAOV.)

6. Concluding Remarks

In summary, the results reported here strongly indicate that method SMM
should be abandoned in favor of method CH. When dealing with continuous
distributions, the results indicate that method DBH has a practical advantage
over method CH in terms of power. Perhaps this is because the actual Type
I error probability associated with DBH is a bit higher than it is with method
CH. That is, if an adjustment could be made so that both methods are more
level robust, the choice of method might be immaterial in terms of power. When
dealing with tied values, all indications are that method CH is best for general
use.

Although situations can be found where method WMWAOV rejects when
methods CH and DBH do not reject, perhaps such situations are rare in practice.
However, it seems prudent to consider the possibility that this event can occur,
which is the main reason for including it in this study.

Finally, to stress a point made in the introduction, it is not being suggested
that p be used exclusively when studying the differences among groups. Indeed,
it seems that multiple perspectives can be useful. For example, there might
be situations where the lower quantiles of two distributions differ substantially
while the upper quantiles do not. That is, subsets of participants might respond
differently to a particular treatment, an issue that can be addressed using the
shift function developed by Doksum and Sievers (1976).
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