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Abstract: The power law process (PLP) (i.e., the nonhomogeneous Poisson
process with power intensity law) is perhaps the most widely used model
for analyzing failure data from reliability growth studies. Statistical infer-
ences and prediction analyses for the PLP with left-truncated data with
classical methods were extensively studied by Yu et al. (2008) recently.
However, the topics discussed in Yu et al. (2008) only included maximum
likelihood estimates and confidence intervals for parameters of interest, hy-
pothesis testing and goodness-of-fit test. In addition, the prediction limits
of future failure times for failure-truncated case were also discussed. In this
paper, with Bayesian method we consider seven totally different prediciton
issues besides point estimates and prediction limits for xn+k. Specifically,
we develop estimation and prediction methods for the PLP in the presence
of left-truncated data by using the Bayesian method. Bayesian point and
credible interval estimates for the parameters of interest are derived. We
show how five single-sample and three two-sample issues are addressed by
the proposed Bayesian method. Two real examples from an engine develop-
ment program and a repairable system are used to illustrate the proposed
methodologies.

Key words: Bayesian method, nonhomogeneous Poisson process, noninfor-
mative prior, prediction intervals, reliability growth.

1. Introduction

When failure times from different systems during their development programs
are collected and analyzed, an approximate straight line pattern in the corre-
sponding log-log plot of the cumulative mean time between failures (MTBF)
against the cumulative operating time is usually observed (see, Duane, 1964).
Crow (1974) extended the Duane model to the nonhomogeneous Poisson pro-
cess (NHPP) with a power intensity law, which is also known as AMSAA model
due to its adoption by the U.S. Army Materiel Systems Analysis Activity. The
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NHPP model is generally used to monitor the reliability growth of repairable sys-
tems, to assess the reliability growth of software and to predict failure behaviors.
Statistically, a NHPP {N(t), t ≥ 0} with the power intensity law

λ(t) = (β/α)(t/α)β−1, α, β > 0, (1.1)

is also known as power law process (PLP) or Weibull process. The corresponding
mean function is defined by

m(t) = E{N(t)} =

∫ t

0
λ(s) ds = (t/α)β.

It was shown by Rigdon (2002) that a linear Duane plot does not imply a PLP,
and a PLP does not imply a linear Duane plot.

Assume that we conduct a reliability growth test on some repairable system
in the time interval (0, t]. For the failure truncated case, the number of failures,
n, is predetermined. Let 0 < x1 < x2 < · · · < xn be the first n ordered failure
times of the PLP. The time to the first failure (i.e., x1) can be shown to follow
Weibull distribution with scale parameter α and shape parameter β. That is, the
probability density function (pdf) of x1 is (Crowder et al., 1991)

f1(x1) =
β

α

(
x1
α

)β−1
e−(x1/α)

β
, x1 > 0

with the corresponding distribution function

F1(x1) = 1− e−(x1/α)β , x1 > 0.

Let fi(xi|x1, · · · , xi−1) denote the conditional density function of xi given x1, · · · ,
xi−1, we have

fi(xi|x1, · · · , xi−1) =
β

α

(
xi
α

)β−1
exp

[
−
(
xi
α

)β
+

(
xi−1
α

)β]
, xi > xi−1.

(1.2)
The joint pdf of x1, · · · , xn is thus given by

f(x1, · · · , xn) = f1(x1)

n∏
i=2

fi(xi|x1, · · · , xi−1) (1.3)

=

(
β

α

)n
e−(xn/α)

β
n∏
i=1

(
xi
α

)β−1
, 0 < x1 < · · · < xn.
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For the time truncated case, the test time t is predetermined. Let 0 < x1 < · · · <
xn < t be the observed failure times of the PLP. Similar to (1.3), the joint pdf of
(x1, · · · , xn;N = n) is given by

f(x1, · · · , xn;N = n) =

(
β

α

)n
e−(t/α)

β
n∏
i=1

(
xi
α

)β−1
, (1.4)

0 < x1 < · · · < xn < t, n > 0,

Pr{N = 0} = e−(t/α)
β
, n = 0,

where N =̂N(t) and the symbol =̂ means “equal by definition”.
In practice, left-truncated data occur due to various reasons such as not be-

ing able to observe in the early developmental phase of a testing program. Re-
cently, Yu et al. (2008) developed classical methods for statistical inferences
and prediction analyses for the PLP with the first r − 1 failure times (i.e.,
{xi}r−1i=1 ) being missing. Using their notations, we denote the observed data as
Y ft
obs = {xr, · · · , xn} for the failure-truncated case and Y tt

obs = {xr, · · · , xn; t} for
the time-truncated case. First, the topics discussed in Yu et al. (2008) only
included maximum likelihood estimates and confidence intervals for parameters
of interest (e.g., α, β and MTBF), hypothesis testing on α and β, and goodness-
of-fit test. In addition, the prediction limit of the (n + k)-th future failure time
(i.e., xn+k) for failure-truncated case was also discussed. In this paper, we will
consider seven totally different issues (see, Sections 4.2–4.4 and 5) besides point
estimates (see, Section 3) and prediction limits for xn+k (see, Section 4.1), and
solutions to the seven prediction issues are not yet available to date for both clas-
sical and Bayesian methods. Second, the prediction limit of xn+k was available
only for the failure-truncated case (Yu et al., 2008). A similar result does not
yet exist for the time-truncated case. The main reason is our inability to find
an adequate prediction statistic in the framework of classical methods. Fortu-
nately, the Bayesian method can be applied (see, Section 4.1). Finally, there is a
computational challenge in obtaining exact solutions from the classical methods
and the accuracy of approximate formulae are heavily dependent of large sample
sizes, while the Bayesian method can facilitate the computation by employing
the conditional sampling procedure (see, two conditional sampling procedures in
Sections 3.1 and 3.3).

This article aims to develop Bayesian estimation and prediction methods for
the PLP with the first r − 1 failure times being missing. This left-truncated
data pattern commonly occurs when (i) the importance of a reliability growth
program is eventually recognized only when manufacturers reported the failures
several times; and (ii) a new data-recording person may not be able to determine
the exact failure times during the early stage of the process. This article is
organized as follows. Section 2 presents the posterior and predictive distributions.
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Section 3 derives Bayesian point estimates and credible interval estimates for
the parameters of interest. Five practical single-sample issues are discussed and
then addressed by the Bayesian approach in Section 4. In Section 5, we develop
Bayesian methods for three two-sample issues. Two real examples from an engine
development program and a repairable system are used to illustrate the proposed
methodologies in Section 6. A brief discussion is given in Section 7.

2. Posterior and Predictive Distributions

In this article, we consider a common scenario in which missing data are
produced only in the early stage of the test time (see, Yu et al., 2008). That is,
{xi}r−1i=1 are missing. For the failure-truncated PLP, the joint pdf of the observed
data Y ft

obs = {xi}ni=r is

f(xr, · · · , xn) =
βn−r+1 exp[−(xn/α)β]

(r − 1)!αnβ
· x(r−1)βr

n∏
i=r

xβ−1i , 0 < x1 < · · · < xn.

(2.1)
For the time-truncated PLP, we also assume that {xi}r−1i=1 are missing. The joint
pdf of the observed data Y tt

obs = {xr, · · · , xn; t} is (Yu et al., 2008)

f(xr, · · · , xn;N = n) =
βn−r+1 exp[−(t/α)β]

(r − 1)!αnβ
· x(r−1)βr

n∏
i=r

xβ−1i , (2.2)

where 0 < x1 < · · · < xn < t. Let Yobs represent Y ft
obs or Y tt

obs. Combining (2.1)
with (2.2), the likelihood function for α and β is then given by

L(α, β|Yobs) = [(r − 1)!]−1α−nββn−r+1 exp[−(τ/α)β] · x(r−1)βr uβ−1, α, β > 0,
(2.3)

where

u =̂

n∏
i=r

xi, and τ =̂

{
xn, if Yobs = Y ft

obs,

t, if Yobs = Y tt
obs.

(2.4)

When prior information is not available, it is reasonable to use noninformative
prior distributions.

Case 1: Shape parameter β is known. Following Guida et al. (1989), we
choose the following noninformative prior density of α

g(α) ∝ 1/α, α > 0. (2.5)

The posterior distribution of α is thus given by

h(α|Yobs) ∝ L(α, β|Yobs)× g(α)

= [Γ(n)]−1βτnβα−nβ−1 exp[−(τ/α)β], α > 0. (2.6)
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Let y be any random variable that one wants to predict (e.g., xn+k with k being
any positive integer); the predictive density of y is

f(y|Yobs) =

∫ ∞
0

f(y|Yobs, α)h(α|Yobs)dα. (2.7)

Hence, the Bayesian upper prediction limit (UPL) of y with level γ, denoted as
y(β)
U

, satisfies

γ =

∫ y
(β)
U

−∞
f(y|Yobs)dy. (2.8)

Case 2: Shape parameter β is unknown. Following Box & Tiao (1973), we
consider the following noninformative joint prior density for (α, β)

g(α, β) ∝ 1/(αβ), α, β > 0. (2.9)

Hence, the corresponding joint posterior density is

h(α, β|Yobs) = c−1βn−r(uxr−1r )β · α−nβ−1 exp[−(τ/α)β], α, β > 0, (2.10)

where
c =̂ Γ(n)Γ(n− r)/zn−r,

and

z =̂
n∑

i=r+1

ln(τ/xi) + r ln(τ/xr). (2.11)

Similar to (2.7) and (2.8), let yU denote the Bayesian UPL of y with level γ.
Hence, we have

f(y|Yobs) =

∫ ∞
0

∫ ∞
0

f(y|Yobs, α, β)h(α, β|Yobs)dαdβ,

and

γ =

∫ y
U

−∞
f(y|Yobs)dy. (2.12)

3. Bayesian Point and Credible Interval Estimates

3.1 Bayesian estimates of α and β

We first consider the case in which β is known. Let

X =̂ (τ/α)β. (3.1)
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The inverse transformation is then α = τ X−1/β. From (2.6), it is easy to verify
that

X|Yobs ∼ Γ(n, 1) or 2X|Yobs ∼ χ2(2n). (3.2)

Therefore, the Bayes point estimator and two-sided 100γ% Bayes credible interval
(CI) for α are respectively given by

α̃ = E(α|Yobs) = τ E(X−1/β|Yobs) = τΓ

(
n− 1

β

)/
Γ(n), (3.3)

and [
τ
{1

2
χ2(2n; (1 + γ)/2)

}−1/β
, τ
{1

2
χ2(2n; (1− γ)/2)

}−1/β]
, (3.4)

where χ2(n; γ) denotes the γ percentage point of the chi-square distribution with
n degrees of freedom such that Pr{χ2(n) ≤ χ2(n; γ)} = γ.

When β is unknown, we can integrate (2.10) with respect to α to obtain the
following marginal posterior density of β

h(β|Yobs) =
zn−r

Γ(n− r)
βn−r−1e−βz, β > 0. (3.5)

Obviously, (3.5) implies that

β|Yobs ∼ Γ(n− r, z) or 2zβ|Yobs ∼ χ2(2n− 2r). (3.6)

Based on (3.6), the Bayes point estimator and two-sided 100γ% Bayes CI for β
are respectively given by

β̃ = (n− r)/z, (3.7)

and [
χ2(2n− 2r; (1− γ)/2)/(2z), χ2(2n− 2r; (1 + γ)/2)/(2z)]. (3.8)

By comparing (3.8) with (3.11) in Yu, Tian and Tang (2008), we can immediately
conclude that the Bayes CI for β is identical to the classical confidence interval
for β when the joint prior is chosen to be (2.9).

To derive the Bayes estimates for α, we adopt the conditional sampling
method. From (2.10), we have

h(α|Yobs, β) ∝ α−nβ−1 exp[−(τ/α)β].

Similar to (3.2), we obtain

X|(Yobs, β) ∼ Γ(n, 1), (3.9)

where X is defined in (3.1). Hence, the conditional sampling algorithm can be
summarized as follows.

The conditional sampling:
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Step 1. Generate m i.i.d. posterior samples {β(`)}m`=1 of β according to (3.6);

Step 2. Generate m i.i.d. posterior samples {X(`)}m`=1 of X according to (3.9);

Step 3. For each given pair (β(`), X(`)), calculate α(`) = τ (X(`))−1/β
(`)

. Here,
{α(`)}m`=1 are i.i.d. posterior samples of α.

The Bayes estimates for α can then be obtained from the above i.i.d. posterior
samples {α(`)}m`=1. For example, the Bayes point estimator of α is then given by
α̃ = 1

m

∑m
`=1 α

(`).

3.2 The Pseudo Bayesian Estimate of M(xn)

In this subsection, we restrict our discussion to the failure-truncated case.
If no improvements are incorporated into the repairable system after the time
of the n-th failure (i.e., xn) and the intensity λ(xn) = (β/α)(xn/α)β−1 remains
constant thereafter, then the subsequent times between failures of the system
independently follow exponential distribution with the common failure rate λ(xn)
and the MTBF M(xn) =̂ 1/λ(xn). Since M(xn) involves the random variable xn,
its posterior density cannot be obtained.1 Following the idea of Higgins and
Tsokos (1981), we consider the pseudo Bayes point and CI estimates for λ(xn)
(or M(xn) equivalently) instead. For this purpose, we noted that (see, Theorem
1 in Yu et al., 2008)

λ(xn)

λ̂M (xn)
=

Z · S
4n(n− r + 1)

,

where Z ∼ χ2(2n − 2r) is independent of S ∼ χ2(2n) and λ̂M (xn) = n(n − r +
1)/(zxn) is the maximum likelihood estimate of λ(xn). For the sake of conve-
nience, we define

λn =̂λ(xn), λ̂M =̂ λ̂M (xn), a =̂
2n(n− r + 1)

2n− r + 1
, and Q =̂

aλn

λ̂M
.

As a result, we have

E(Q) = n∗ and Var(Q) = 2n∗, (3.10)

where

n∗ =
2n(n− r)
2n− r + 1

. (3.11)

1Some researchers think that although the failure time xn is a random variable, it has been
observed before making posterior inference. Therefore, the posterior Bayesian estimates of λ(xn)
and M(xn) in a failure-truncated PLP can be easily obtained through the same procedure used
for the time-truncated case (see Section 3.3).
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By treating λn as a parameter, we consider the transformation λ̂M = aλn/Q.
Since (3.10) implies that Q may be approximated by the chi-square random vari-
able χ2(n∗), a pseudo likelihood function for λ̂M takes the following form

L(λ̂M |λn) ∝ 1

λ̂M

(
λn

λ̂M

)n∗/2

· exp

[
− aλn

2λ̂M

]
, λ̂M > 0.

If we adopt a noninformative prior distribution of λn (i.e., g(λn) ∝ 1/λn), then
the pseudo-posterior density of λn is

f(λn|λ̂M ) ∝ λn∗/2−1
n · exp

[
− aλn

2λ̂M

]
.

Therefore, the pseudo Bayes point estimator and the two-sided 100γ% Bayes CI
for λn are respectively given by

λ̃n = n∗λ̂M/a, (3.12)

and [
a−1λ̂M χ2(n∗; (1− γ)/2), a−1λ̂M χ2(n∗; (1 + γ)/2)

]
. (3.13)

Usually, n∗ in (3.11) is not a positive integer. In this case, we can approximate
χ2(n∗; γ) by

χ2(n∗; γ)
.
= n∗

(
1− 2

9n∗
+ uγ

√
2

9n∗

)3

,

where uγ denotes the γ percentage point of the standard normal distribution
N (0, 1). On the other hand, there exist algorithms to calculate χ2(n∗; γ) for
fractional degrees of freedom. For example, the built-in S-plus function qchisq

can handle this case.

3.3 The Bayesian estimate of M(t)

In this subsection, we consider the time-truncated case. Equivalently, we
consider the posterior estimate for λt =̂λ(t) = (β/α)(t/α)β−1.

When β is known, from (2.6), the posterior density of λt is

h(λt|Yobs) ∝ λn−1t exp(−λttβ−1), λt > 0, (3.14)

that is,
λt ∼ Γ(n, tβ−1) or 2tβ−1λt ∼ χ2(2n).

Therefore, the Bayes point estimator and the two-sided 100γ% Bayes CI for λt
are respectively given by

λ̃t(β) = nβ/t, (3.15)
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and [
β

2t
χ2(2n; (1− γ)/2),

β

2t
χ2(2n; (1 + γ)/2)

]
. (3.16)

When β is unknown, we consider the following transformation{
λt = (β/α)(t/α)β−1, λt > 0,
β = β, β > 0.

According to (2.10), the joint posterior distribution of (λt, β) can be shown to be

h(λt, β|Yobs) = h(α, β|Yobs) · J(α, β → λt, β) (3.17)

= c−1βn−r(uxr−1r )β · α−nβ−1 exp[−(t/α)β] · (λtβ/α)−1

= c−1tnβ−r−1λn−1t exp(−βz − tλt/β), λt > 0, β > 0.

Integrating (3.17) with respect to β yield the following posterior distribution of
λt

h(λt|Yobs) = c−1tnλn−1t ·
∫ ∞
0

β−r−1 exp(−βz − tλt/β) dβ, λt > 0. (3.18)

Therefore, the Bayes point estimator of λt is

λ̃t = E(λt|Yobs)

= c−1tn ·
∫ ∞
0

{
β−r−1e−βz

∫ ∞
0

λnt exp(−tλt/β) dλt

}
dβ

= n(n− r)/(tz). (3.19)

From (3.17), we obtain h(λt|Yobs, β) ∝ λn−1t exp(−tλt/β), i.e.,

λt|(Yobs, β) ∼ Γ(n, t/β). (3.20)

To construct a Bayes CI of λt, we consider the following conditional sampling
method to obtain i.i.d. posterior samples of λt.

The conditional sampling:

Step 1. Generate m i.i.d. posterior samples {β(`)}m`=1 of β according to (3.6);

Step 2. For each given β(`), generate λ
(`)
t according to (3.20), ` = 1, · · · , m.

{λ(`)t }m`=1 are then m i.i.d. posterior samples of λt.

4. Bayesian Predictions and Estimations for Single-Sample Problems
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In this section, we consider five practical single-sample issues.

4.1 Prediction limits for xn+k

4.1.1 Shape parameter β is known

Let f(xn+k|Yobs) denote the predictive density function of the (n+k)-th future
failure time (i.e., xn+k) given the observed data Yobs. According to (2.8), the

Bayesian UPL x
(β)
U,B(n, k, γ) of xn+k with confidence level γ should satisfy

γ = Pr
{
xn+k ≤ x

(β)
U,B(n, k, γ)

∣∣∣Yobs} =

∫ x
(β)
U,B(n,k,γ)

τ
f(xn+k|Yobs) dxn+k, (4.1)

where

f(xn+k|Yobs) =

∫ ∞
0

h(α|Yobs) · f(xn+k|Yobs, α) dα. (4.2)

It should be noted that h(α|Yobs) is given by (2.6) and

f(xn+k|Yobs, α)=
f(Yobs, xn+k|α)

f(Yobs|α)
(4.3)

=

∫
τ<xn+1<···<xn+k−1<xn+k

f(xr, xr+1, · · · , xn+k|α)
∏n+k−1
i=n+1 dxi

f(Yobs|α)
,

where f(Yobs|α) is given by (2.3) and f(xr, xr+1, · · · , xn+k|α) is also given by
(2.3) with (n, τ) being replaced by (n+ k, xn+k), that is,

f(xr, xr+1, · · · , xn+k|α) =
βn+k−r+1 exp[−(xn+k/α)β]

(r − 1)!α(n+k)β
· x(r−1)βr

n+k∏
i=r

xβ−1i .

By using the identity (2.2) in Yu et al. (2008), we immediately have the numerator
in the right-hand side of (4.3) being equal to

βn−r+2 exp[−(xn+k/α)β]

(r − 1)!(k − 1)!α(n+k)β
· x(r−1)βr uβ−1 · xβ−1n+k

[
xβn+k − τ

β
]k−1

.

Hence, (4.3) (cf. Calabria, Guida and Pulcini, 1990) and (4.2) become

f(xn+k|Yobs, α) =
β exp[−(xβn+k − τ

β)/αβ]

(k − 1)!αkβ
· xβ−1n+k

[
xβn+k − τ

β
]k−1

, (4.4)

and

f(xn+k|Yobs) =
1

B(n, k)
· β

xn+k

(
τ

xn+k

)nβ[
1−

(
τ

xn+k

)β]k−1
, (4.5)



Bayesian Prediction for the Power Law Process 455

respectively. Substituting (4.5) into (4.1) yields

γ =
1

B(n, k)

∫ 1

[τ/x
(β)
U,B(n,k,γ)]β

yn−1(1− y)k−1 dy.

Thus, [τ/x
(β)
U,B(n, k, γ)]β equals to the 1 − γ percentage point of the Beta(n, k)

distribution. From the relationship between the quantiles of beta distribution
and F -distribution, we have

x
(β)
U,B(n, k, γ) = τ

[
k

n
F (2k, 2n; γ) + 1

]1/β
, (4.6)

where F (m,n; γ) represents the γ percentage point of the F -distribution with m
and n degrees of freedom.

4.1.2 Shape parameter β is unknown

The Bayes UPL for xn+k with confidence level γ satisfies

γ =

∫ xU,B(n,k,r,γ)

τ
f(xn+k|Yobs) dxn+k (4.7)

=

∫ xU,B(n,k,r,γ)

τ

{∫ ∞
0

∫ ∞
0

h(α, β|Yobs) · f(xn+k|Yobs, α, β) dαdβ

}
dxn+k,

where h(α, β|Yobs) is given in (2.10) while f(xn+k|Yobs, α, β) is given in (4.4).
Thus, ∫ ∞

0

∫ ∞
0

h(α, β|Yobs) · f(xn+k|Yobs, α, β) dαdβ

=
Γ(n+ k)

c(k − 1)!
·
∫ ∞
0

βn−re−βz
1

xn+k

(
τ

xn+k

)nβ[
1−

(
τ

xn+k

)β]k−1
dβ. (4.8)

It can be shown that

xU,B(n, k, r, γ) = τ exp
{
yγ · z

/
[(n− r)(n− r + 1)]

}
, (4.9)

where yγ is the solution to the following equation

γ =
k∑
j=1

 k∏
i=1,i 6=j

n+ k − i
j − i

 · [1−
(

1 +
(n+ k − j)yγ

(n− r)(n− r + 1)

)−n+r]
. (4.10)
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To prove (4.9) and (4.10), we substitute both (4.9) and (4.8) into (4.7) and
then make the transformation x = (τ/xn+k)

β, which yields

γ =
Γ(n+ k)

c(k − 1)!
·
∫ ∞
0

βn−r−1e−βz
{∫ 1

R
xn−1(1− x)k−1 dx

}
dβ,

where R = e−βyγz/[(n−r)(n−r+1)]. Using the following identity

1

B(n, k)

∫ 1

R
xn−1(1− x)k−1 dx = 1−

k∑
j=1

(
n+ k − 1
j − 1

)
Rn+k−j(1−R)j−1

and expanding the term (1−R)j−1, we can readily obtain (4.10).

4.2 Estimating the probability of N(τ, T ) ≤ k

Based on Y ft
obs or Y tt

obs, we are interested in the following question:

Issue A1: What is the probability that at most k failures will occur in the future
time period (τ, T ] with T > τ?

Equivalently, we wish to estimate the following probability:

γk = Pr{N(τ, T ) ≤ k|Yobs} = Pr{N(T ) ≤ n+ k|Yobs}, (4.11)

where N(τ, T ) =̂N(T )−N(τ) = N(T )− n.

4.2.1 Shape parameter β is known

In this case, we denote γk in (4.11) by γ
(β)
k and we have

γ
(β)
k =

∫ ∞
0

h(α|Yobs) · Pr{N(T ) ≤ n+ k|Yobs, α} dα

=

∫ ∞
0

h(α|Yobs) ·
n+k∑
j=n

Pr{N(T ) = j|Yobs, α} dα

=

∫ ∞
0

h(α|Yobs) ·
n+k∑
j=n

f(Yobs, N(T ) = j|α)

f(Yobs|α)
dα (4.12)
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where h(α|Yobs) and f(Yobs|α) are respectively given by (2.6) and (2.3), and

f(Yobs, N(T ) = j|α)

=

∫
τ<xn+1<···<xj<T

f(Yobs, xn+1, · · · , xj , N(T ) = j|α)

j∏
`=n+1

dx`

(2.3)
=

∫
τ<xn+1<···<xj<T

βj−r+1e−(T/α)
β · x(r−1)βr

∏j
i=r x

β−1
i

(r − 1)!αjβ

j∏
`=n+1

dx`

=
βn−r+1e−(T/α)

β · x(r−1)βr uβ−1[T β − τβ]j−n

(r − 1)!(j − n)!αjβ
. (4.13)

Substituting (4.13) into (4.12) yields2

γ
(β)
k =

n+k∑
j=n

∫ ∞
0

βτnβ[T β − τβ]j−n

Γ(n)(j − n)!
· α−jβ−1e−(T/α)β dα

=
n+k∑
j=n

(
j − 1
n− 1

)
δn(1− δ)j−n

=

(
δ

1− δ

)n n+k∑
j=n

(
j − 1
n− 1

)
(1− δ)j , (4.14)

where

δ =̂ (τ/T )β. (4.15)

In particular, from (4.14), we have the recursive formula

γ
(β)
0 = δn, γ

(β)
1 = δn(n+ 1− nδ), (4.16)

and

γ
(β)
k = γ

(β)
k−1 +

(
n+ k − 1
n− 1

)
(1− δ)kδn, k ≥ 2. (4.17)

4.2.2 Shape parameter β is unknown

2Alternatively, formula (4.14) can also be obtained by exploiting the following result:

Pr{N(τ, T ) ≤ k|Yobs, α, β} =
k∑
i=0

[(T/α)β − (τ/α)β ]i

i!
· exp[−(T/α)β + (τ/α)β ].
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In this case, (4.11) becomes

γk =

∫ ∞
0

∫ ∞
0

h(α, β|Yobs) · Pr{N(T ) ≤ n+ k|Yobs, α, β} dαdβ

=

∫ ∞
0

∫ ∞
0

h(α, β|Yobs) ·
n+k∑
j=n

f(Yobs, N(T ) = j|α, β)

f(Yobs|α, β)
dαdβ,

where h(α, β|Yobs), f(Yobs|α, β) and f(Yobs, N(T ) = j|α, β) are respectively given
in (2.10), (2.3) and (4.13). Thus, we have

γk =
n+k∑
j=n

zn−rΓ(j)

Γ(n)Γ(n− r)(j − n)!
·
∫ ∞
0

βn−r−1(uxr−1r /Tn)β[1− (τ/T )β]j−n dβ

=
n+k∑
j=n

j−n∑
i=0

zn−rΓ(j)(−1)i

(n− 1)!(j − n− i)!i!

[
z + (n+ i) ln(T/τ)

]−n+r
. (4.18)

In particular,

γ0 =

[
z

z + n ln(T/τ)

]n−r
, (4.19)

and

γ1 = (n+ 1)γ0 − n
[

z

z + (n+ 1) ln(T/τ)

]n−r
. (4.20)

4.3 Estimating the probability of λ(T ) ≤ λ0

Based on Y ft
obs or Y tt

obs, we are interested in the following question

Issue B1: Given that a pre-determined target value λ0 for the failure rate of
the system undergoing development testing is not achieved at time τ , what is the
probability that the target λ0 will be achieved at time T with T > τ?

Equivalently, we wish to estimate the following probability:

γ = Pr{λ(T ) ≤ λ0|Yobs}, (4.21)

where λ(T ) = (β/α)(T/α)β−1 =̂λT .

4.3.1 Shape parameter β is known

Similar to (3.14), the posterior density of λT can be easily shown to be

h(λT |Yobs) ∝ λn−1T exp[−λT · τβ(βT β−1)−1], λT > 0. (4.22)
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Substituting (4.22) into (4.21) and using the following relationship between the
gamma and Poisson distribution functions

ba

Γ(a)

∫ λ

0
xa−1e−xb dx = 1−

a−1∑
h=0

(bλ)h

h!
e−bλ, (4.23)

we have

γ(β) =

∫ λ0

0
h(λT |Yobs) dλT

= 1−
n−1∑
h=0

[τβ(βT β−1)−1λ0]
h

h!
exp

[
− τβ(βT β−1)−1λ0

]
= 1−

n−1∑
h=0

Poisson(h|θ(β)), (4.24)

where θ(β) =̂ τβ(βT β−1)−1λ0 and Poisson(h|θ) =̂ θhe−θ/h!.

4.3.2 Shape parameter β is unknown

Consider the following transformation{
λT = (β/α)(T/α)β−1, λT > 0,
β = β, β > 0.

Similar to (3.17) and (3.18), the posterior distribution of λT is

h(λT |Yobs) =
zn−r

Γ(n)Γ(n− r)

∫ ∞
0

βn−r−1(uxr−1r )β

(βT β−1)n
·λn−1T exp[−τβ(βT β−1)−1λT ] dβ.

Substituting this expression into (4.21), we have

γ =

∫ λ0

0
h(λT |Yobs) dλT

= 1−
n−1∑
h=0

∫ ∞
0

[θ(β)]h

h!
e−θ(β) · zn−r

Γ(n− r)
βn−r−1e−βz dβ

= 1−
n−1∑
h=0

∫ ∞
0

Poisson(h|θ(β)) · zn−r

Γ(n− r)
βn−r−1e−βz dβ. (4.25)

4.4 Predicting the time T required to achieve the target failure-rate
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In this subsection, we are interested in the following issue:

Issue C1: Given that the target value λ0 for the system failure-rate is not achieved
at τ , how long will it take in order that the system failure rate will be attained at
λ0?

Statistically, for a given confidence level γ and the target failure-rate λ0, we wish
to estimate the time T (T > τ) that satisfies (4.21). When β is known, it is easy
to see from (4.22) that

2τβ(βT β−1)−1λT |Yobs ∼ χ2(2n).

From (4.21), we have

γ = Pr
{

2τβ(βT β−1)−1λT ≤ 2τβ(βT β−1)−1λ0|Yobs
}
,

which implies 2τβ(βT β−1)−1λ0 = χ2(2n; γ) or

T =

[
2λ0τ

β

βχ2(2n; γ)

]1/(β−1)
. (4.26)

When β is unknown, the desired T that satisfies (4.25) can be solved by using an
iterative algorithm.

Equivalently, we notice that Issue C1 can be re-formulated as follows:

Issue D1: Based on Y ft
obs or Y tt

obs, what is the Bayes UPL of λ(T ) with T being a
pre-specified value larger than τ?

Statistically, it is desired to find λU,B(T ) satisfying γ = Pr{λ(T ) ≤ λU,B(T )|Yobs}
for a given level γ. When β is known, solving λ0 from (4.26), we obtain

λU,B(T ) =
βT β−1χ2(2n; γ)

2τβ
. (4.27)

When β is unknown, the corresponding λU,B(T ) equals to the λ0 satisfying (4.25).
Thus, an iterative algorithm can be applied.

5. Bayesian Predictions and Estimations for Two-Sample Problems

Suppose that the successive failure times of two repairable systems follow the
same PLP with intensity function (1.1). Furthermore, for the first system, we
assume that the first (r− 1) failure times were missing and the remainder failure
times (i.e., Y ft

obs or Y tt
obs) have been recorded exactly. We are interested in the

following two-sample problems.
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Issue A2: How to predict the k-th (k ≥ 1) failure time yk of the second system?

Issue B2: Assume that the number of failures in the time interval (0, t2] for the
second system is m but that the exact failure times are unknown, how to
predict the k-th (1 ≤ k ≤ m) failure time yk of the second system?

Issue C2: What is the probability that at most m failures will occur in (0, t2] for
the second system?

In this section, we utilize a Bayesian approach to address the above three
issues.

5.1 Prediction limits for the k-th failure time of the 2-nd system

This subsection considers Issue A2. We first note that 2(xn/α)β ∼ χ2(2n)
(Bain, 1978; Theorem 1 of Yu et al., 2008). By replacing xn by yk, for the second
system, we have 2(yk/α)β ∼ χ2(2k) or (yk/α)β ∼ Γ(k, 1). Thus, the sampling
distribution of yk from a Bayesian viewpoint is given by

f(yk) = f(yk|α) = f(yk|α, β) =
1

Γ(k)
βα−kβykβ−1k exp[−(yk/α)β]. (5.1)

5.1.1 Shape parameter β is known

The predictive density of the k-th failure time yk of the second system is

f(yk|Yobs) =

∫ ∞
0

h(α|Yobs)f(yk|Yobs, α) dα

=

∫ ∞
0

h(α|Yobs)f(yk|α) dα by the independence of yk and Yobs

=
βτnβ

B(n, k)
·

ykβ−1k

(τβ + yβk )n+k
. by (2.6) and (5.1) (5.2)

Hence, the Bayes UPL y
(β)
U,B(k, n, γ) for yk with confidence level γ satisfies

γ =

∫ y
(β)
U,B(k,n,γ)

0
f(yk|Yobs) dyk by (5.2)

=

∫ y
(β)
U,B(k,n,γ)

0

βτnβ

B(n, k)
·

ykβ−1k

(τβ + yβk )n+k
dyk let y =

nyβk
kτβ

=

∫ n[y
(β)
U,B(k,n,γ)]β/(kτβ)

0

1

B(n, k)

(
k

n

)k
yk−1

(
1 +

k

n
y

)−n−k
dy.
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Note that the integrand in the above integration is exactly the pdf of the F (2k, 2n)

distribution; thus n[y
(β)
U,B(k, n, γ)]β/(kτβ) = F (2k, 2n; γ) and

y
(β)
U,B(k, n, γ) = τ

[
k

n
F (2k, 2n; γ)

]1/β
. (5.3)

5.1.2 Shape parameter β is unknown

Note that the independency of yk and Yobs, then, the predictive density of yk
is

f(yk|Yobs) =

∫ ∞
0

∫ ∞
0

h(α, β|Yobs)f(yk|Yobs, α, β) dαdβ

=

∫ ∞
0

∫ ∞
0

h(α, β|Yobs)f(yk|α, β) dαdβ by (2.10) and (5.1)

=
Γ(n+ k)

cΓ(k)
·
∫ ∞
0

βn−r(uxr−1r )β
ykβ−1k

(τβ + yβk )n+k
dβ. (5.4)

Thus, the Bayes UPL yU,B(k, n, r, γ) for yk satisfies

γ =

∫ yU,B(k,n,r,γ)

0
f(yk|Yobs) dyk

=
zn−r

B(n, k)Γ(n− r)

∫ ∞
0

βn−r(uxr−1r )β
∫ yU,B(k,n,γ)

0

ykβ−1k

(τβ + yβk )n+k
dykdβ.

It is easy to show that

yU,B(k, n, r, γ) = τV z/(n−r+1), (5.5)

where V is the solution to the following equation

γ =

∫ ∞
0

F (nk−1V βz/(n−r+1)|2k, 2n) · zn−r

Γ(n− r)
βn−r−1e−βz dβ

=

∫ ∞
0

F (nk−1V x/(n−r+1)|2k, 2n) · χ2(x|2n− 2r) dx (5.6)

with F (·|m,n) and χ2(·|n) being the cdf of F (m,n) and the density of χ2(n),
respectively.

5.2 Prediction limits for yk given N(t2) = m
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For Issue B2, we first need to find the conditional density f(yk|N(t2) = m).
Setting r = 1 and replacing n, t, and xi by m, t2 and yi respectively in (2.2), we
obtain

f(y1, · · · , ym; N(t2) = m) = βmα−mβ

(
m∏
i=1

yβ−1i

)
exp[−(t2/α)β].

By integrating out the variables y1, · · · , yk−1, yk+1, · · · , ym from the above joint
density, we have

f(yk; N(t2) = m) =
βykβ−1k [tβ2 − y

β
k ]m−k

(k − 1)!(m− k)!αmβ
· exp[−(t2/α)β],

and

f(yk|N(t2) = m) =
f(yk; N(t2) = m)

Pr{N(t2) = m}
(5.7)

=
1

B(k,m− k + 1)
βykβ−1k t−mβ2 [tβ2 − y

β
k ]m−k, yk < t2.

It is noteworthy that (5.7) does not depend on α.

5.2.1 Shape parameter β is known

Since yk is independent of the observed data Yobs for the first system, we also
have

f(yk|N(t2) = m, Yobs) = f(yk|N(t2) = m).

Given N(t2) = m, the Bayes UPL y
(β)
U,B(k,m, γ) for yk with level γ satisfies

γ =

∫ y
(β)
U,B(k,m,γ)

0
f(yk|N(t2) = m, Yobs) dyk

=
1

B(k,m− k + 1)

∫ [y
(β)
U,B(k,m,γ)/t2]β

0
xk−1(1− x)m−k dx.

Hence, [y
(β)
U,B(k,m, γ)/t2]

β is equal to the γ percentage point of the Beta(k,m −
k + 1) distribution. Similar to (4.6), we obtain

y
(β)
U,B(k,m, γ) = t2

[
1 +

m− k + 1

k
F−1(2k, 2m− 2k + 2; γ)

]−1/β
. (5.8)

5.2.2 Shape parameter β is unknown
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From (2.10) and (5.7), we have

f(yk|N(t2) = m, Yobs)

=

∫ ∞
0

∫ ∞
0

f(yk|N(t2) = m) · h(α, β|Yobs) dαaβ

=
zn−r

B(k,m− k + 1)Γ(n− r)

∫ ∞
0

βn−re−βzt−kβ2 ykβ−1k [1− (yk/t2)
β]m−k dβ

=
Γ(n− r + 1)zn−r

B(k,m− k + 1)Γ(n− r)

m−k∑
i=0

(−1)i
(
m− k
i

)
y−1k [z + (k + i) ln(t2/yk)]

−(n−r+1).

The Bayes UPL yU,B(k,m, n, r, γ) for yk with level γ satisfies

γ=

∫ yU,B(k,m,n,r,γ)

0
f(yk|N(t2) = m, Yobs) dyk

=
1

B(k,m− k + 1)

m−k∑
i=0

(−1)i

k + i

(
m− k
i

)[
1 +

k + i

z
ln

t2
yU,B(k,m, n, r, γ)

]−(n−r)
.

Therefore,
yU,B(k,m, n, r, γ) = t2e

−zW , (5.9)

where W can be determined by

γ =
1

B(k,m− k + 1)

m−k∑
i=0

(−1)i

k + i

(
m− k
i

)
[1 + (k + i)W ]−(n−r). (5.10)

In particular, when k = m we have W = (γ−
1

n−r − 1)/m and

yU,B(m,m, n, r, γ) = t2 exp

[
− z

m

(
γ−

1
n−r − 1

)]
. (5.11)

5.3 Estimating the probability of N(t2) ≤ m

For Issue C2, the probability that at most m (a pre-specified value) failures
will occur in (0, t2] for the second system is given by

γm = Pr{N(t2) ≤ m|Yobs} =

m∑
k=0

Pr{N(t2) = k|Yobs}. (5.12)

Note that

Pr{N(t2) = k} =
(t2/α)kβ

k!
exp[−(t2/α)β].
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When β is known, we have

Pr{N(t2) = k|Yobs} =

∫ ∞
0

Pr{N(t2) = k|α} · h(α|Yobs) dα

=

∫ ∞
0

Pr{N(t2) = k} · h(α|Yobs) dα

=

(
n+ k − 1

k

)
qk(1− q)n.

Substituting this into (5.12), we obtain

γ(β)m = (1− q)n
m∑
k=0

(
n+ k − 1

k

)
qk, (5.13)

where
q =̂ tβ2/[τ

β + tβ2 ]. (5.14)

When β is unknown, we have

γm =

m∑
k=0

Pr{N(t2) = k|Yobs}

=

m∑
k=0

∫ ∞
0

∫ ∞
0

Pr{N(t2) = k} · h(α, β|Yobs) dαdβ

=
zn−r

Γ(n− r)

∫ ∞
0

βn−r−1e−βzγ(β)m dβ, (5.15)

where γ
(β)
m is given in (5.13).

6. Numerical Examples

In this section, two real examples from an engine development program and
a repairable system are used to illustrate the proposed methodologies.

6.1 Engine failure data

Zhou & Weng (1992, p.51–52) reported a total of 40 failures for an engine
undergoing development testing in the time interval (0, 8063]. The data are
given by ∗, ∗, ∗, 171, 234, 274, 377, 530, 533, 941, 1074, 1188, 1248, 2298, 2347,
2347, 2381, 2456, 2456, 2500, 2913, 3022, 3038, 3728, 3873, 4724, 5147, 5179,
5587, 5626, 6824, 6983, 7106, 7106, 7568, 7568, 7593, 7642, 7928, 8063 hours.
Here, the exact failure times for the first three failures are unknown and are
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denoted by ∗. Since these data are failure-truncated, we have n = 40, τ = x40
= 8063 and r = 4. Yu, Tian & Tang (2008) performed a goodness-of-fit test
which fails to reject the hypothesis that the data come from a PLP the the 0.05
significant level with the MLE of β being β̂ = 0.6761.

We first consider the case that β is known by letting β = β̂ = 0.6761. From
(3.3) and (3.4), the Bayes point estimator of α is α̃(β) = 36.0680 and the two-
sided 95% Bayes CI for α is [22.5067, 56.6112].

When β is unknown, from (3.7) and (3.8), the Bayes point estimate of β equals
β̃ = 0.6578 while the two-sided 95% Bayes CI for β is [0.4607, 0.8894]. It is easy
to obtain z = 54.73 from (2.11). To investigate the posterior density of β, we first
generate m = 50, 000 i.i.d. samples of β according to (3.6). Figure 1(a) shows that
the posterior density of β is quite symmetric and should be well approximated
by a normal distribution. We also generate m = 50, 000 i.i.d. posterior samples
{X(`)}m`=1 of X based on (3.9). For each given pair (β(`), X(`)), we then calculate

α(`) = τ (X(`))−1/β
(`)

and {α(`)}m`=1 are the i.i.d. posterior samples of α. Based
on these i.i.d. posterior samples, the Bayes point estimator for α is given by α̃
= 39.1501 while the two-sided 95% Bayes CI for α is [2.5117, 135.9328]. Figure
1(b) shows that the posterior density of α is obviously skewed.

(a) Posterior density for beta
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(b) Posterior density for alpha
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Figure 1: The posterior densities of β and α generated by the conditional
sampling method introduced in Section 3.1 with m = 50, 000 for the engine
failure data.

Finally, from (3.12) and (3.13), we readily obtain the pseudo Bayes point
estimate of λ(xn) as 0.00326, and the two-sided 95% Bayes CI for λ(xn) as
[0.00195, 0.00490].

6.2 A repairable system failure data
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The following failure data from a prototype of a repairable system is given in
ReliaSoft Corporation (2005). Briefly, a total of 12 failures for a system tested
for t = 6500 hours are given by: (80), (175), (265), (400), 590, 1100, 1650, 2010,
2400, 3380, 5100, 6400. ReliaSoft Corporation (2005) showed that the above life
data followed a PLP. For illustrative purpose, we assume that the exact failure
times for the first four failures are unknown. Since these data are time-truncated,
we have t = 6500, n = 12 and r = 5. The MLE of β is β̂ = (n − r + 1)/z =
0.4389.

We first consider the case that β is known by letting β = β̂ = 0.4389. From
(3.3) and (3.4), the Bayes point estimator for α is α̃(β) = 31.7042 while the two-
sided 95% Bayes CI for α is [7.3213, 101.7389]. From (3.15) and (3.16), the Bayes
point estimator of λ(t) is λ̃(β) = 0.00081, and a two-sided 95% Bayes CI of λ(t)
is [0.00042, 0.00133].

When β is unknown, we first generate m = 50, 000 i.i.d. posterior samples
{β(`)}m`=1 of β according to (3.6). Thus, the Bayes point estimator for β is β̃ =
0.3838 while the two-sided 95% Bayes CI for β is [0.1542, 0.7151]. Figure 2(a)

plots the posterior density of β. Next, for each given β(`), we generate λ
(`)
t based

on (3.20) for ` = 1, · · · , m. Using these i.i.d. posterior samples of λ(t), the Bayes
point estimator for λ(t) is λ̃t = 0.000708 and the two-sided 95% Bayes CI for
λ(t) is [0.000226, 0.00155]. Figure 2(b) shows that the posterior density of λ(t) is
skewed.

(a) Posterior density for beta
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(b) Posterior density for lambda(t)
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Figure 2: The posterior densities of β and λ(t) generated by the conditional
sampling method introduced in Section 3.3 with m = 50, 000 for the repairable
system failure data.

Now assume that we wish to obtain 0.95 Bayesian upper prediction limits
on x12+k for k = 1. When β is known (say, β = 0.4389), using (4.6), we have
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x
(β)
U,B(12, 1, 0.95) = 11479.9. When β is unknown, we obtained yγ = 2.4925 by

solving (4.10). Thus, from (4.9), we get xU,B(12, 1, r, 0.95) = 14630.13.
Suppose that we are interested in the probability γk that at most k failures

will occur in the future time period (τ, T ] = (6500, 7500]. (i) When β is known
(say, β = 0.4389), using (4.16) and (4.17), we have γ0 = 0.4706, γ1 = 0.8144,
γ2 = 0.9505, γ3 = 0.9891, γ4 = 0.9979, γ5 = 0.99965, and γ6 = 0.99995. (ii) When
β is unknown, from (4.18) we obtain γ0 = 0.53246, γ1 = 0.84436, γ2 = 0.95668,
γ3 = 0.98912, γ4 = 0.99743, γ5 = 0.99941 and γ6 = 0.99987. Figure 3 shows the
desired probabilities for known and unknown β.
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Figure 3: Comparison of the probabilities γk that at most k failures will occur
in the time interval (6500, 7500] for known β = 0.4389 and unknown β.

7. Conclusion

In this article, we consider Bayesian estimation and prediction methods for the
PLP in the presence of left-truncated data. Bayesian point and credible interval
estimates for the parameters of interest are derived. Bayesian prediction limits
of future failure times are available for both failure- and time-truncated cases.
We also show how five single-sample and three two-sample issues are addressed
by the proposed Bayesian method.

It is interesting to note that (4.6) does not depend on r. In other words,
when β is known, the Bayes prediction limit of xn+k remains the same regardless
of the absence of the first (r − 1) failure times (i.e., {xi}r−1i=1 ). This result is
not surprising because the conditional distribution of xn+k given x1, · · · , xn+k−1
depends only on xn+k−1 but not x1, · · · , xn+k−2 (cf. (1.2)).

Furthermore, when β is known, the Bayes estimates of α (see (3.3) and (3.4)),
λ(t) (see (3.15) and (3.16)), Pr{N(τ, T ) ≤ k} (cf. (4.14)), Pr{λ(T ) ≤ λ0} (cf.
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(4.24)), as well as the Bayes prediction limit of yk (cf. (5.3)), remain the same
regardless of the absence of the first (r − 1) failure times. In other words, these
posterior estimates and prediction depend on the data only through n and τ , and
do not depend on r and xr.

In addition, we notice that the Bayesian UPL of xn+k under the noninfor-
mative prior (2.5) is identical to the classical UPL of xn+k by comparing (4.6)
with (3.18) in Yu, Tian and Tang (2008). Most importantly, the prediction limit
for xn+k is available only for the failure-truncated case under the classical ap-
proach while the prediction limits for xn+k are available for both the failure- and
time-truncated cases under Bayesian approach.

By comparing (4.9) with (3.18) and (3.19) in Yu, Tian and Tang (2008), we
find that the Bayesian UPL for xn+k under the joint noninformative prior (2.9)
is identical to the classical UPL for xn+k. Again, the Bayes prediction limits for
xn+k are available for both failure- and time-truncated cases.
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