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Abstract: A new set of methods are developed to perform cluster analy-
sis of functions, motivated by a data set consisting of hydraulic gradients
at several locations distributed across a wetland complex. The methods
build on previous work on clustering of functions, such as Tarpey and Ki-
nateder (2003) and Hitchcock et al. (2007), but explore functions generated
from an additive model decomposition (Wood, 2006) of the original time se-
ries. Our decomposition targets two aspects of the series, using an adaptive
smoother for the trend and circular spline for the diurnal variation in the
series. Different measures for comparing locations are discussed, including
a method for efficiently clustering time series that are of different lengths
using a functional data approach. The complicated nature of these wetlands
are highlighted by the shifting group memberships depending on which scale
of variation and year of the study are considered.
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1. Introduction

Functional data analysis (Ramsay and Silverman, 2005) techniques have re-
cently become popular as a way of analyzing data that are collected as multiple
time series, where each series is observed frequently in time. Instead of viewing
each time series as a set of n observations over time per series, each series is con-
verted into a continuous, functional representation, often using spline-based tech-
niques. Tarpey and Kinateder (2003) have discussed methods for cluster analysis
of functional data using a version of k-means cluster analysis, exploiting the con-
nections between the coefficients of the spline functions and the values that their
respective continuous functions attain. Hitchcock et al. (2006) and Hitchcock et
al. (2007) employ the k-medoids algorithm of Kaufman and Rousseeuw (1990)
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for clustering functional data, assessing the role of different types of smoothing
in the clustering of functions. Greenwood (2004) also explored clustering of func-
tions using hierarchical clustering methods. Those methods dealt with functions
where the interest was to compare the original observations to detect similar
or different trajectories over time. Tarpey and Kinateder (2003) also explored
clustering based on first derivatives of functions to remove locally linear portions
of the signal and focus the cluster analysis on the variation around that lowest
frequency component of the original time series. Greenwood (2004) considered
registered curvature functions to compare the shape of different curves. These
latter approaches suggest that functional clustering can be adapted to focus on
certain aspects of multiple time series, which we extend in this work.

This study focuses on eliciting information on grouping of the thirty-two sam-
pling locations that have similar patterns in their vertical hydraulic gradient time
series, a metric related to the groundwater pressure at each site that determines
whether a location is in “recharge” - water is moving out of the standing water
and into the groundwater, or the location is in “discharge” - water is moving
out of the groundwater and into the wetland. Grouping the locations that were
studied based on either their long-term trends or diurnal variation in this mea-
sure provides insight into (1) whether there are locations that behave similarly
on either scale (long term trends or diurnal variation ) and (2) consistency (or
lack thereof) of the groups of behaviors across different scales and the two years
of the study. Establishing groups of locations with similar patterns, along with
the form of their patterns, provides a first step in understanding the complex dy-
namics of the wetland and the role of each location in the underlying hydrologic
system. Some conclusions about processes that might be driving variation on the
different scales are possible through a detailed comparison of the different clus-
tering results. Prior studies have not measured the variation in gradients at the
fine time resolution used in this study and thus were not able to observe detailed
changes in the trends or study the average diurnal variation in the gradients.

The data set contains some unique aspects that require novel methods to
control the aspects of the time series that were compared and to maximize the
use of available information for comparing different locations. First, the series
have strong, and possibly non-stationary, low frequency components that tend to
dwarf the scale of the high frequency oscillations. The low frequency components
are of interest as they relate to whether the location is functioning in recharge or
discharge at a particular time of year. The diurnal variations are high frequency
effects likely to be related to evapotranspiration; they provide the opportunity
to study whether this component of variation is consistent in timing of peaks
and amplitude across sites, even if they have different trends. A nonparametric
method is proposed to decompose each time series into two continuous compo-
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nents, with functional clustering methods applied to each component. Second,
data are available for each series for different lengths of time (i.e., different loca-
tions begin and end recording on different dates in each year). A new method for
clustering functional data recorded over different time intervals is proposed. Our
goal is to perform the cluster analysis in a way that fairly compares the series,
but also maximizes the use of the available information over the course of the two
summer field seasons in 2006 and 2007 and provides information on grouping of
locations for the two components of variation.

1.1 Study area

Red Rock Lakes National Wildlife Refuge (NWR) is part of the high mountain
Centennial Valley in Southwestern Montana, USA. The valley bottom where we
collected the wetland hydrologic data is at an elevation of approximately 2,014
meters (m), with the nearby Centennial Range exceeding elevations of 3,000 m
only 5 to 10 km to the south. The most outstanding ecological feature of the
refuge is that it is a wetland complex over 10,000 hectares (ha) in size, and
includes Upper and Lower Red Rock Lakes and Swan Lake. The complex is com-
prised of several types of wetlands, with permanent and semipermanent lacustrine
aquatic beds and semipermanent and seasonal palustrine emergent wetlands be-
ing the most prominent. Much of Red Rock Lakes NWR is a federally designated
wilderness with restrictions on mechanized access. Therefore, detailed climatic,
hydrologic, and soil data are rare.

The study area’s climate is continental, with cold summers and a short grow-
ing season (National Oceanic and Atmospheric Administration Western Regional
Climate Center, 2005). At the weather station in nearby Lakeview, MT, the av-
erage of the yearly means from 1943 to 2008 of the daily maximum temperatures
is 9.6◦C (2006 and 2007 were amongst the warmest 25% of the years on this mea-
sure) and the average of the daily minimum temperatures is -5.9◦C (2006 and
2007 were amongst the warmest 85% of the years). The temperatures were simi-
lar for the two years and relatively warm for the area, but not the most extreme
on record, at least in terms of these measures. The average annual precipitation
in the study area ranges from approximately 127 cm in the Centennial Range to
38 cm on the valley floor (U. S. Soil Conservation Service, 1977; Amend et al.,
1986; Montana Natural Resources Information System, 2005). At Lakeview, the
average yearly total precipitation is 52.8 cm, with 2006 at the 20th percentile and
2007 at the 42nd percentile, suggesting that 2007 was wetter than 2006 but both
years were somewhat dry. The differences in yearly precipitation are important
in understanding the results below.

A wetland is a complex system, involving linkages among the abiotic fac-
tors that drive wetland characteristics and their spatial and temporal patterns.
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Wetland management is commonly hampered by a lack of knowledge about such
ecological processes, although it is generally understood that hydrology is pivotal
and groundwater often is assumed to play a key role. Although relationships
among hydrological patterns, soils, and vegetation will be the final target of this
research, the current study focuses on the hydrology observed in a network of
wells and piezometers, with special interest in the interactions between surface
water and groundwater. We documented site-specific groundwater discharge in
the wetlands, and this study is an attempt to learn more about hydrologic pat-
terns over time. Specifically, we examine possible groups of locations with similar
long-term or diurnal variations in recharge/discharge behavior that suggest a sim-
ilar function of those locations in the wetland.

Thirty-two locations were monitored in the wetland, half from the shallow
lake area and the rest from palustrine (marsh origin) pond habitats, as displayed
in Figure 1. To sample ponds, we selected palustrine emergent semipermanent
wetlands (PEMF) classified by the National Wetland Inventory (U. S. Fish and
Wildlife Service, 2004) that met three criteria: (1) ponds had to be ≥ 2,500 m2

in area; (2) They could not be contiguous with the open water area of Lower
Red Rock Lake, itself; and (3) No two ponds could be ≤ 200 m apart. These
criteria were chosen to accommodate a companion research objective related to
waterfowl use of the sites that is not reported here, resulting in pond and lake
sites that were planimetrically similar to the lake sites. Eighty-five ponds met
these criteria and 16 were chosen randomly for study. We selected sites within
the open water habitat of Lower Red Rock Lake by selecting randomly from
previously established random points (Paullin, 1973). Using these points as the
northeast corner of the site, 50 m by 50 m plots were established that met two
criteria: (1) the plots could not include emergent vegetation and (2) no two plots
could be ≤ 200 m apart. Thirty-four sites met these criteria, and 16 were selected
randomly. Sites from both groups were selected to appear visually similar and
to present similar opportunities for waterfowl to utilize the sites from a vertical
and horizontal habitat structure perspective. Aspects of hydrology were not used
in the criteria for selecting the locations. By the nature of such wetlands, water
levels varied from being dry at some times in most ponds to nearly 2 m deep at
a few lake sites.

Comparisons across sites as to whether a site was dominated by groundwa-
ter discharge (i.e., hydraulic head in the subsurface being greater than surface-
water stage, causing water to move from the shallow aquifer to the wetland) or
by groundwater recharge (i.e., hydraulic head in the subsurface being less than
surface-water stage, causing water to move into the shallow aquifer from the
wetland) was of key interest to this study (Figure 2). A piezometer and still-
ing well pair using 3.81 cm diameter polyvinyl chloride (PVC) pipe was placed
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Figure 1: Map of Red Rocks Lake study area with pond (triangle) and lake
(circle) sites.

at the northeast corner of each of the lake sites, and each was equipped with
an automated, capacitance rod data logger that took a measurement every 30
minutes. Similarly, a piezometer and well pair was installed in each pond at an
arbitrary location five meters from the edge of the emergent vegetation. Water
levels in the wetlands were monitored with stilling wells whenever surface water
was present. Whenever the wetland was dry, shallow ground water levels were
monitored. In this system, water levels in the ponds reflect the level of the shallow
ground water. Figure 2 shows this arrangement. The vertical hydraulic gradient,
the response variable of interest, was calculated by finding the difference between
water levels in a well and adjacent piezometer, and dividing that difference by
the distance from the piezometer screen to the sediment-water interface of the
wetland.

Hydraulic Head = [Depth to water outside, or depth to water in the well] - [Depth to water inside] 

Positive numbers indicate groundwater discharge to the wetland from the aquifer.

Negative numbers indicate groundwater recharge from the wetland to the aquifer.

Depth to 

water inside

Depth to water outside = 

depth to water in the well

PiezometerWell

Wetland

bottom

PiezometerWell

Figure 2: Schematic of piezometer and well measurement system. Surface
water in the wetland is equivalent to the water table. This example illustrates
a ground water discharge site.
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Two years of vertical hydraulic gradient data from the network of 32 sites are
considered here, with the number of locations varying slightly between the years
due to instrument failure. In 2006, n=27 locations provided useful measurements
for comparing trends among locations, with an average of 5,573 observations per
location, taken every 30 minutes, leading to an average of 116 days of measure-
ments per site. In 2007, n=29 locations provided useful measurements, with an
average of 4,442 observations per location; and, this translates to approximately
93 days of observations for that year. A few outliers (23) were removed from
the entire data set of around 284,000 observations, with these outliers typically
caused by machine errors or instrument maintenance. Because of the small num-
ber of outlying observations relative to the total number of observations, their
removal was not sufficient to impact the analysis.

2. Statistical Methods

The first step in the analysis is to model the time series at each location us-
ing a generalized additive model (GAM, Hastie and Tibshirani, 1990), with the
GAM structured to nonparametrically decompose the time series into a long-term
trend and an estimate of diurnal variation. Each component of the decomposi-
tion is considered a functional observation for each location for the subsequent
cluster analysis. The second step involves defining metrics to assess differences
in the functions on these two scales of variation to generate a distance matrix for
use in cluster analyses related to each component of variation. Finally, analysis
techniques that are well suited to clustering functional data such as these are
discussed.

2.1 Nonparametric time series decomposition using GAMs

These hydraulic time series contain information on a range of different fre-
quencies of oscillation. These oscillations range from long-term, low-frequency
trends across the entire field season of approximately four months to high-frequen-
cy variation both at the diurnal level and higher frequencies. Using an additive
modeling approach (Wood, 2006), we decompose each time series into the two
components of variation that are of interest: the long-term trends and diurnal
variation. By defining specific spline-based components in the GAM, we can de-
compose the signal into two estimated model components. The model for the
vertical hydraulic gradient time-series, ykt, at location k for time t between a and
b, is ykt = αk + s(t)k + sD(t∗)k + εkt. In our notation s() indicates a smooth,
nonparametric, penalized regression cubic B-spline component in the model, with
the two spline bases defined to extract the desired frequency of the signal, decom-
posing the time series into two continuous components, trend, s(t), and diurnal



Multi-scale clustering 405

variation, sD(t∗). The notation t∗ indicates that only the fractional component
of time is used, t∗ = t− btc where b c denotes the floor function. The time series
for all n locations are modeled independently to estimate the model components
for use in functional clustering discussed below.

To estimate a spline-based model component, a set of m basis functions, B,
such as those presented in Figure 3, are defined for each additive nonparametric
model component using the spline formulas for either cubic spline or circular
cubic spline bases (e.g., Wood, 2006, p. 150). The main difference between
cubic splines and circular cubic splines is that for the circular splines, the mth

basis function matches the first basis function, so only m − 1 basis functions
are used for the function. After defining the required basis functions, a smooth
function, s(t), is defined as the sum of the product of the m basis functions and
their spline coefficients, β: s(x) =

∑m
i=1Bi(x)βi. For penalized cubic regression

splines, the spline coefficients are estimated as β̂ = (BTB + λS)−1BTy, where y

is a vector of the responses and S is chosen so that
∫ b
a [s′′(t)]2dt = βTSβ. This

choice of S corresponds to working with penalized cubic regression splines and
penalizing the variation of the second derivative of the function, which controls
the roughness in s(t). A smoothing parameter, λ, is then selected to minimize
||y− ŷ||+λBTSB by cross-validation or, more often, generalized cross-validation
(GCV). Specifically, the smoothing parameter, λ, is selected to minimize GCV =
T
∑

t(ykt − ŷkt)2/(T − γDoF )2, where T is the sample size for the time series,
ŷkt is the estimate from the model at time t, DoF are the total model degrees
of freedom, and γ is a multiplier suggested by Kim and Gu (2004) to improve
the selection of the smoothness of the functions. The suggested multiplier of
1.4 provides slightly smoother functions than would otherwise be selected. The
effective degrees of freedom or edf for the different smoothers in the model can
be calculated from the diagonal of the influence matrix implied by the form of
the estimator for β̂; edf describe the amount of information used to estimate each
model component. DoF are the sum of the edf of the nonparametric components
and the df of the parametric components (just the intercept in these models).
For models with j smooth components, the λS is replaced with

∑
j λjS to allow

different penalties for the different smooths.

Adaptive smoothing is used for the long-term trend model component since
the variation in the rate of change in the low frequency component may vary
depending on the time of year. In many series, the difference between the regular
regression spline and the adaptive smoother in the estimated effects are negligible
except in times of more rapid change in the mean vertical hydraulic gradients.
In these sections of the series, using an adaptive smoother provides better-fitting
results while retaining smoothness in the trends when there is little variation in
the trend. Adaptive smoothing involves choosing a different smoothing param-
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eter, λ(i) for each of the m spline coefficients, with the selection of the optimal
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Figure 3: Plot of a simplified version of the cubic spline bases (a) used for the
trend component in the model and the circular cubic spline bases (b) used in
the diurnal component. More basis functions are used in the actual models
but these are presented to illustrate the form of the splines being used for each
model component.

values of the parameters using the same generalized cross-validation criterion; full
details are available in the mgcv documentation (Wood, 2006). The component
edf can be calculated as discussed above.

The two smooth model components are parameterized to have mean zero.
Combining the intercept with the smooth function of time, αk+s(t)k, provides the
trend as a function of the day and time of observation for location k and retains
information on the mean vertical hydraulic gradient for comparisons between
sites. An example of the type of bases used for the trend component is displayed
in Figure 3a, showing an example with five cubic spline bases. One less basis than
the number of days with observations is used to model the trend component using
adaptive smoothing methods. In contrast, for the diurnal component, sD(t∗)k,
circular bases such as those in Figure 3b are defined so that the estimate at the
end of a day, midnight or 1.0 in the plot, matches the estimate at the beginning of
the next day, 0. Since 48 measurements were taken every day, 47 basis functions
were used for the circular effect. By enforcing the periodicity of one day for this
effect, the frequency of variation that this component estimates is fixed. More
details on the definitions of the spline bases can be found in Wood (2006).

To understand the decomposition of the time series, the results for a single
location across the two years of the study are presented in Figure 4. These results
are typical of observations for the two years, with many locations exhibiting a
swing from recharge (negative vertical hydraulic gradients) to discharge (positive
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vertical hydraulic gradients) during the summer but the variation in both the
diurnal components and the trends were greater in 2007 (the wetter year) than
in 2006. Almost all diurnal components were significant in the models and the
models explained a large amount of the variation in the time series. The four
different model components, 2006 trend, 2006 diurnal component, 2007 trend
and 2007 diurnal components are extracted for use in separate functional cluster
analyses along with a cluster analysis of trends that goes across both years.
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Figure 4: Plot of the estimated vertical hydraulic gradient time series and
nonparametric trend function (α̂+ ŝ(t)) for a location in 2006 (a) and 2007 (c)
and the estimated diurnal component (ŝD(t)) for the 2006 (b) and 2007 (d)
models.

Selecting the amount of smoothing for each model component via GCV is
a quick and often useful technique. However, it can select models that under-
smooth occasionally and it has been recommended by Kim and Gu (2004) to
slightly increase the effective degrees of freedom in the calculation of the GCV
criterion, multiplying by 1.4 to provide better results. We employ this recommen-
dation in all the GAMs estimated here. It also is possible to attempt to account
for the correlation between neighboring observations using generalized additive
mixed model methods, possibly using a continuous autoregressive error structure
inherent in the nature of the measurements. With typically around 5,000 obser-
vations per series in these data and a rich set of basis functions involved in the
fixed effects in each model, this approach was not computationally feasible. In
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testing this approach on reduced data sets, the trend estimates did not track the
observations closely, being heavily smoothed when autocorrelation was incorpo-
rated into the model. So the previous degree of freedom inflation factor was used.
Our interests are in extraction of the features, and these simpler models provide
estimates of those features that track the actual observations closely, with models
typically explaining most of the variation in the series (R2

adj was above 0.95).

2.2 Functional semi-metrics

To perform a cluster analysis, or many other analyses, a metric for comparing
observations must be chosen. A Euclidean distance measure is the most com-
monly used metric, with ties to typical linear models as well as a useful interpre-
tation in terms of physical distances. A dissimilarity measure, D(x, y), must obey
four conditions to define a metric space: non-negativity, identity of indiscernables,
symmetry, and the triangle inequality (Kaufman and Rousseeuw, 1990). Our pri-
mary metric is based on Euclidean distance, but integrates the squared difference
of two continuous functions, xi(t) and xj(t), over the intersection of times that
both functions are observed, from a to b: D2

ij =
∫
[a,b](xi(t) − xj(t))

2dt. This is
similar to taking the sum of the squared pointwise differences of all observations
between times a and b, especially if the functions are measured frequently in time.
If B-splines are used to estimate the functions and a common set of basis func-
tions is used, then the spline coefficients can also be compared with Euclidean
distance to provide equivalent results to the integrated measure we employ. When
matched B-spline bases are used, the result of the numerical integration is exact
but no faster than when computed using an iterative numerical integration based
on the trapezoidal rule (Ramsay et al., 2009).

In some situations, it is useful to relax the conditions for a full metric space
to meet the needs of a particular analysis, leading to semi-metrics that maintain
many of the properties of a distance metric but allow for comparisons of spe-
cific traits of data sets. Ferraty and Vieu (2006) explicitly discuss the possibility
of relaxing the identity of the indiscernibles part of the metric definition to al-
low measures where having a distance of zero does not imply that the original
functions are identical. One simple functional data semi-metric space involves
comparing first derivatives of functions using Euclidean distance between the
first derivatives of the functions. Two functions could differ but have match-
ing first derivatives. In any situation where some pre-processing or smoothing
is performed, this relaxed semi-metric definition may be useful. In our initial
use of GAMs to decompose each series into two components, we have induced a
similar semi-metric for each estimated component as we move from the original
observations to focus on different aspects of the series.

For the smoothed trends in each year, α̂k + ŝ(t)k, different intervals of time
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of measurement between the series must be considered. If we were to restrict
our measure only to the intersection of time of all the locations as in prior func-
tional clustering research, our resulting data set for comparisons would include
comparisons over a very short time interval. Even searching for a window of time
with generally high levels of recordings leads to a significant loss in time and as
well as a few study locations. We instead define our semi-metric for the trend
that compares each pair based on the time that both records overlap. In this
way, we can maximize the information used for each pairwise comparison. This
induces two complications: (1) the triangle inequality might be violated because
the distance between two functions may not exceed the sum of the distances be-
tween the two functions and third function as different sections of the functions
are compared in each distance calculation and (2) each comparison is based on
windows of time of different lengths (essentially different numbers of the original
discrete observations).

Relaxing the triangle inequality means that this measure loses the geometri-
cal interpretation of distances that the triangle inequality provides, and methods
that do not rely on full distance metrics must be used. This is only problematic
for some cluster analysis techniques, but many methods of forming groups do
not rely on the triangle inequality property. Other researchers (for example see
Quackenbush, 2001) actually use the term semi-metric for dissimilarity measures
that do not satisfy the triangle inequality. We prefer to refer to this more relaxed
notion of differences as “dissimilarities”, as suggested in Kaufman and Rousseeuw
(1990). If the time of observation was the same for any set of three functions,
then our dissimilarity measure meets the conditions of the semi-metric described
above; otherwise, it fits with our conditions for a dissimilarity measure. Specifi-
cally, the measure is always greater than 0, is zero for the dissimilarity between
an observation and itself, is symmetric, and, most importantly, it increases as
two functions become more dissimilar. In fact, despite its limitations, the dissim-
ilarity measure provides a physically interpretable difference between the vertical
hydraulic gradient functions, with units of a difference in hydraulic gradient per
day.

For the comparisons of the cyclic components, sD(t∗)k, with t∗ ∈ [0, 1), the
Euclidean definition of distance between two functions integrates over the course
of a day from 0 to 1. This provides a distance semi-metric, D2

ij =
∫ 1
0 (sD(t∗)i −

sD(t∗)j)
2dt∗. Because the integration is always between 0 and 1 for the diurnal

component, the triangle inequality is satisfied for the clustering of the diurnal
functions. However, since two functions could have identical diurnal components
but have different original series, especially different trends, this is still a semi-
metric measure.

In order to correct for different lengths of time in different comparisons of
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trend components, xk(t) = α̂k + ŝ(t)k, and make the comparisons over different
lengths of time equivalent, we standardize the dissimilarity measure based on the
length of time of the comparison. Let Lij = [a, b] be the intersection of the times
over which both xi(t) and xj(t) are observed and let δ = b − a be the length of
this time interval. The standardized dissimilarity measure for Lij is defined as

D2
ij =

∫ b
a (xi(t)−xj(t))2dt/δ2. By dividing by the squared time of comparison for

the pair, Dij is standardized to be a measure of the average difference between the
functions per day. This type of standardization follows from recommendations
made by Kaufman and Rousseeuw (1990) to deal with missing values and a mix
of categorical and quantitative variables used in a cluster analysis. A limitation
of this method is that the intersection of times of observation, Lij , must not
be empty, otherwise we have no information to generate a pairwise dissimilarity
measure.

The intersection of times of common observation for two series, Lij , could
also be made up of the union of disjoint intervals. This could be generated by
a gap in recordings in the trend for a year or when trends for the two years
are combined into a single analysis. Suppose that Lij = [a1, b1] ∪ [a2, b2], δ =

(b1−a1)+(b2−a2) and the dissimilarity measure is D2
ij = [

∫ b1
a1

(xi(t)−xj(t))2dt+∫ b2
a2

(xi(t) − xj(t))2dt]/δ2. This modification was used to handle a gap of a few
days of missing measurements in one time series in 2007 and to perform a cluster
analysis of the trends across the two summer field seasons. For missing recordings
of less than a day, we can estimate the missing values using the model and then
compare the estimated functions, integrating the differences in the continuous
functions over those small gaps. Typically single observations were removed;
at most, three hours worth of observations were deleted and dealt with in this
manner.

2.3 Functional cluster analysis

The dissimilarity measure defined previously can be used in two ways: (1)
internally used in the clustering algorithm, or (2) pairwise dissimilarities can
be used to form the clusters. k-means clustering of functions is an example
of a clustering method that uses the measure internally to define a mean for
each group and variability within the group. For the trend functions, xk(t), it is
difficult to define a functional mean (Ramsay and Silverman, 2005) such as µ̂(t) =∑

k xk(t)/n when the times of observation are not the same for all the functions.
This fact makes it difficult to envision a direct application of k-means clustering in
the current situation. Also, clustering based on the mean may produce a center or
“representative” that may not be representative of any of the observed functions.
Summarizing the cluster with a mean is especially sensitive to an individual in
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the group that is different from the others, but not different enough to be moved
to a different cluster. Hierarchical clustering methods such as Ward’s method can
be applied to the dissimilarity matrix generated using the previous metric, but
suffers from the same issues as k-means in terms of identifying representatives
of each cluster. In many of these methods, selection of the optimal number
of clusters is difficult. Numerical measures exist for objective selection of the
number of clusters (for a review, see Milligan and Cooper, 1985), but there is no
consensus on the choice of these measures and many require information that is
not available if the clustering is performed only on the dissimilarity matrix, as is
required here.

Kaufman and Rousseeuw (1990) provide an alternative clustering algorithm
called partitioning around medoids (PAM) that provides a k-means type of cluster
analysis, with a few important modifications. First, it can be performed on
dissimilarity matrices as opposed to relying on access to the original observations
to calculate the means of potential groups as in k-means. Second, the algorithm is
more robust to outliers as it clusters relative to central observations, “medoids”,
instead of being based on the means of the groups. Third, it provides a method
(called the average silhouette width) for choosing the number of clusters. Fourth,
by exploring the initial clustering results, it is possible to identify possible outliers.

PAM uses k random initial starting points to build a cluster solution of size
k around these starting points. This is very similar to how k-means clustering
works with initial random seeds used to generate the preliminary clusters. How-
ever, PAM involves a two-stage algorithm that Kauffman and Rousseeuw (1990)
call “BUILD” and “SWAP” that optimizes the initial choice of the cluster repre-
sentatives in a way that leads to minimal variation in the cluster solution between
different random starting points. It builds the clusters in an agglomerative fash-
ion, but with the option to revisit assignments and switch the “representative”
for each cluster. The net result of this is that, compared with k-means, it is not
as necessary to repeat the cluster analysis many times to assess the variability in
the solution based on the random starting points.

To generate a PAM solution, the algorithm is provided a dissimilarity matrix,
D and the desired number of clusters, G. Define M = (M1, · · · ,MG) as a size G
collection of the n functions and d(xk(t),Mg) as the dissimilarity between function
k and cluster g, the difference between the function and the cluster representa-
tive which is easily found in D. PAM selects the G medoids M∗ that minimize
the sum of the distances between the functions and the medoids,

∑
i d(xk(t),M).

Each of the selected medoids, M∗g , identifies a cluster, with the functions assigned
to the cluster in which they are closest. The silhouette width of an observation is
a measure of how well the individual observation matches the other items in the
cluster. To calculate the silhouette width, for each function k, calculate the aver-
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age dissimilarity of it with the other elements (k′) in its cluster, ak = avg(Dkk′).
Then find the cluster that the function is closest to, the one that it has the small-
est average distance to, bk = ming(avg(Dkk′)). The silhouette width of function
k is then (bk − ak)/max(ak, bk). The silhouette width ranges between -1 and 1,
with larger values indicating more similarity between the function and the others
in the cluster. The average silhouette width over all n observations provides an
overall measure of cluster quality; maximizing the average silhouette width as a
function of the number of clusters, G, provides a method to select the optimal
number of clusters. Plotting the silhouette widths by cluster provides additional
information on the quality of the cluster solution. Additional information is also
available in the related “CLUSPLOT” (Pison et al., 1999) which illustrates dis-
similarities between observations using two-dimensional multidimensional scaling
(MDS) to construct n points that approximate the original dissimilarities. All
cluster solutions were examined using silhouette and CLUSPLOTs to settle on a
final cluster solution, but only the final cluster solutions are reported below.

The silhouette width depends on other clusters and can be inflated when a
few very extreme outliers are included in the cluster analysis, making it mis-
leading to include the outliers in the cluster analysis. For cluster solutions with
two or three clusters and extreme outliers in the data, the outliers will cluster
by themselves (Kaufman and Rousseeuw, 1990). By running each cluster anal-
ysis initially with only two and three clusters, it is possible to identify outlying
functions as those that are in clusters containing only one or two observations.
In these situations, Kaufman and Rousseeuw (1990) recommend removing those
outlying observations and repeating the cluster analysis. In terms of identifying
groups, it is important to understand functions that are unlike all the others, but
more general patterns of behaviors are to be found in clusters containing multiple
observations.

In a k-means analysis, results occasionally are summarized using an ANOVA
for each variable (this is done by default in SPSS (2001), for example) or possibly a
MANOVA to test for evidence of a difference across the groups that were formed
in the partitioning. Permutation MANOVA (perMANOVA, Anderson, 2001)
provides an alternative to the MANOVA that can be applied in this situation.
Regular MANOVA cannot be applied because only pairwise dissimilarities are
available; perMANOVA can be applied directly to the dissimilarity matrices and
still furnish analogous results to a typical MANOVA. Using permutations to assess
significance can provide reasonable inference when the normality assumption is
dubious, as it would be here. Additionally, we could use perMANOVA to assess
differences in the functions based on the type of location (lake or pond) or other
characteristics of the sites (e.g., soil characteristics). We do not perform these
analyses here, as we are first interested in exploring groups of patterns in the
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hydrology to understand relative roles of the different locations and whether it is
possible to detect different types of patterns in the short and long term aspects
of the gradient time series.

Because PAM only requires the dissimilarity matrix, the fact that the dissim-
ilarities are generated from functional data is not important for the algorithm.
A clustering algorithm will find groups based on the dissimilarity measure used.
As noted in the introduction, our methods are similar to Hitchcock et al. (2006)
and Hitchcock et al. (2007) in using PAM for clustering functional data. Our
dissimilarity measures differ from theirs in terms of the alignment issues, smooth-
ing decomposition, and standardization of the differences based on the time of
the pairwise observations. A different approach to clustering functional data is
provided in James and Sugar (2003), where a model-based approach to deal with
similar missing data issues as ours is used. Their method is more computation-
ally intensive, involving the expectation-maximization algorithm to estimate the
unknown group memberships. The method presented in James and Sugar (2003)
provides some additional inference benefits possible from their “functional cluster
model”; the opportunity for inference for the mean functions in the groups is re-
alized because the method is model-based. It is unclear how their method would
handle outlying functional observations, as normality assumptions are used in
deriving the procedure. The high dimensionality of our data set could be prob-
lematic for their approach, which also involves estimation of covariance matrices.
Other approaches to clustering functions such as Tarpey and Kinateder (2003),
Abraham et al. (2003), and Serban and Wasserman (2005) rely on the B-spline
coefficients and k-means algorithms to generate the clusters. In each approach,
the spline bases are the same for all the functions being clustered. Because our
method relies on numerical integration of the continuous functions in D2

ij , our
procedure easily could accommodate different bases underlying the individual
functions. This occurs to a small degree in our data set, where missing obser-
vations change the spacing of the knots slightly. Additionally, as the length of
overlap changes between different pairs, the basis functions generated by each
comparison vary. There are additional years of observations where vertical hy-
draulic gradients were measured, but much less frequently; to compare results
across field seasons with the different sampling rates, different densities of ba-
sis functions could be used and results compared using our techniques. These
extensions of the methods proposed here are left for future research.

3. Results and Discussion

3.1 GAM results

GAM models were fit to the time series for each location in each year to pro-
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vide the required nonparametric model components for the different functional
cluster analyses. A few outliers (23) were removed from the entire data set that
were believed to have been caused by equipment errors or instrument mainte-
nance. For the 27 sites observed in 2006, there were 4,608 overlapping times of
observation (96 days). In 2007, there were 534 overlapping times of observation
(11 days) for the 29 sites due to drier conditions leading to more unobserved gra-
dients in pond sites. In 2007, the missing data modifications are more prominent
than in the same analyses for 2006.

For the 2006 time series, the adjusted R2 values of the 27 generalized additive
models ranged from 0.78 to approximately 1.00. The median of the R2

adj values of
the 27 generalized additive models fit for the 2006 data was 0.99. The minimum
of the edf for the long-term trend in the models fit for the 2006 data was 137.20
and for the diurnal trend, the minimum edf was 5.57. The maximum edf for the
27 models fit for the long-term and diurnal trend in the 2006 data were 144.90
and 19.12, respectively.

For the 2007 time series, the R2
adj values of the 29 generalized additive models

ranged from 0.56 to approximately 1.00 with a median of 0.94. The edf for the
long-term trend had a minimum of 147.80 and a maximum of 184.90. The edf
for the 29 model fits for the diurnal components in 2007 ranged from 0.10 to
24.74. One location that had effective degrees of freedom less than one (0.10)
was deleted from the diurnal clustering; thus, the minimum edf for the functions
used was 4.10.

The diurnal variation generally had a larger amplitude in 2007 than the same
functions in 2006. The changes in the vertical hydraulic gradient trends were
larger for many locations in 2006 than in 2007, but the trends in 2007 were more
variable over time than in 2006. The general differences in the functions between
the years suggests that the system was operating differently in the two years.
The most clear difference between the years was that 2007 was wetter than 2006,
which may be a major factor in explaining the higher variability in the trends
and stronger diurnal components.

3.2 Cluster analysis results

For the 2006 trend data, initially one functional trend was flagged as an
outlier in a two group PAM analysis; it was removed from the cluster analysis.
Clustering on the remaining 26 locations, a solution with five clusters is identified.
Focusing on the medoids for each group in Figure 5(b), three types of shapes of
trends are present in the five clusters. Three clusters (2006T-2, 3, and 4) indicate
negative gradients early in the season that become positive later in the season.
Additionally, one site (2006T-5) in the five group cluster analysis has a somewhat
large positive gradient, suggesting that it is a discharge site, with a slow decrease
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in vertical hydraulic gradient over time. The remaining cluster corresponds to
the locations that have generally small positive gradients (discharge) that do not
change much over the season. The representative of this group drops below zero
for a few weeks in the later part of the record, but generally the members of this
cluster have small positive gradients.
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Figure 5: Plot of clustered 2006 trends (a) and cluster medoids (b).

The three clusters that change from recharge (negative gradient) to discharge
(positive gradient) may be the most interesting in this group of locations. The
first cluster that has the largest range of gradients (2006T-1) contains a lake and a
pond site that are quite similar. The largest cluster (2006T-2) has only moderate
fluctuation over the season, containing two pond sites and eight lake sites, and
transitions between negative and positive gradients sooner than the third cluster
(2006T-3). The third cluster has more negative gradients early in the season and
barely attains positive gradient values, and contains only lake sites. These trends
share common shapes but also have very different implications for vegetation in
each location depending on the time during the season that each site is either in
discharge or recharge. The common shapes suggest a common mechanism driving
the gradients at a set of locations even though the length of time each group of
locations is in recharge or discharge differs systematically. Since the differences in
timing of transition from recharge to discharge are not easily explained by type
of site or location in the study area, further exploration of site characteristics will
be required to fully understand this combination of similarities and differences.

For the 2007 functional trends, the higher variability in the trends makes
detecting more subtle groupings difficult. Two locations, both pond sites, were
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initially identified as being outliers in a three group cluster analysis, both having
extremely large positive gradients that were unlike all the other locations and each
other. After removing those two observations, only two additional clusters were
selected, with twenty-one locations in the first cluster (2007T-1), demonstrating a
similar pattern to many of the observations as in the previous year (Figure 6) that
start with a negative gradient and becoming positive later in the season. Seven of
the sites in this cluster were pond sites. The second cluster (2007T-2) contained
five ponds sites which had generally much higher positive gradients than the other
group early in the season. Distinct groups did not emerge from this set of locations
when the solution was pushed to have more clusters, instead the new clusters
introduced more negative silhouette values which made the average silhouette
width worsen dramatically. This suggests that further subtle differences in 2007T-
1, sites that transition from recharge to discharge, were not detectable, likely
because of the higher variability in trends in 2007.
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Figure 6: Plot of clustered 2007 trends (a) and cluster medoids (b).

Performing a cluster analysis of the trends across the two years of the study
requires the modified dissimilarity measure for the union of disjoint intervals.
Observations that are unusual in either 2006 or 2007 must be removed as they
continue to be identified as outliers in the analysis spanning the two years. There
are 20 sites (10 of each type) that exhibit shared behavior in the cluster analysis
with at least one other location in this analysis. The first cluster (0607T-1) in
Figure 7 contains sites that transition from recharge to higher discharge levels.
The second cluster (0607T-2) contains sites that tend to be closer to zero gradient
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in 2006 and are generally discharge sites throughout 2007, with these sites gen-
erally changing less over time than those in the first cluster. The links between
the transitions made in 2006 and resulting shapes of similar locations in 2007 are
some of the most profound results of the study, showing that behaviors of the
same locations are different in two years, but that some locations responded to
the differing climatic conditions in a similar fashion across the two years. Said
another way, the climatic conditions differed between 2006 and 2007, so the ver-
tical hydraulic gradients differ between the years. Identifying groups of locations
that responded with different patterns to 2006 and 2007, but were similar within
the group across the two years, is an interesting finding.
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Figure 7: Plot of clustered 2006 (a) and 2007 (c) trends with medoids for the
combined 2006 and 2007 trend clusters in (b) and (d).

For the diurnal functions, the amplitude of the components is larger in 2007
than 2006 but the cluster analyses of both year’s functions are interesting. For
the 2006 diurnal components, one location had a larger amplitude than the other
locations, was identified as an outlier, and was removed. The final cluster analysis
has eight clusters, as shown in Figure 8. While the amplitude varies between
locations, the main differences in the functional cluster medoids are in the phase
and shape of the functions. The first cluster (06C-1) contains two lake sites and
attains a peak gradient in the early evening, and has both a distinct negative
and positive amount of variation. The next cluster (06C-2) also contains two
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locations, but one is a lake site and one is a pond site. The shape of these functions
is similar to a step function; the functions are either constant values that are
positive or negative, with positive values occurring at night and negative values
occurring during the day. The third cluster (06C-3) contains four locations, two
of each type, and increases slightly but never attains large positive gradients. The
largest cluster (06C-4) has seven members, all lake sites, and has a similar pattern
to the first cluster with a much smaller amplitude, peaking around early afternoon
and containing a distinct negative gradient component. The fifth cluster (06C-5)
has five members but only one lake site, and a unique phase with a peak positive
gradient in the morning and a peak negative gradient in the early evening. The
sixth cluster (O6C-6) contains one of each type of site and also has a step function
shape, with a different phase than the second cluster, but it is otherwise very
similar. The seventh cluster (O6C-7) resembles the first cluster in shape, but
attains its maximum around noon. It contained three sites, with one being a lake
site. The last cluster (06C-8) contains only a single location, and is displayed in
gray in Figure 8(b). The rich set of different diurnal functions that this cluster
analysis detected indicates the great variety of fluctuations that were possible to
observe in these locations during this year.
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Figure 8: Plot of clustered 2006 diurnal functions (a) and cluster medoids (b).
Eight clusters identified, with final cluster only containing a single observation.

For the 2007 diurnal functions, where the amplitude of the functions was gen-
erally larger than for the 2006 data, results from the cluster analysis in Figure
9 are very simple. Fundamentally, the clusters reflect whether the locations are
pond or lake sites. A difference in the timing of the peaks drives the differences
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between the locations that were detected in the cluster analysis. The lake sites
make up the first cluster (07C-1) and have a large negative gradient early in the
day and a peak positive gradient late in the day. The pattern is reversed for
the pond sites (07C-2), with a peak positive gradient in the early morning and a
peak negative gradient late in the day. Note that one pond location did not have
any variation in the diurnal component and was not used in this cluster anal-
ysis. Removing this location corresponds to recommendations made in Serban
and Wasserman (2005), where functions with no variation are removed prior to
further cluster analysis. Across all the clustering performed, these are the only
results that seem to have any direct relationship to the type of site (i.e., lake or
pond). There are systematic differences in the diurnal functions between the two
years that include a greater magnitude of diurnal fluctuations in 2007 and their
coherency by type of site.

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.0
0
4

0
.0
0
0

0
.0
0
4

2007 Diurnal Functions

Time of Day

V
e
rt
ic
a
l 
G
ra
d
ie
n
t 
(c
m
/c
m
) (a)

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.0
0
4

0
.0
0
0

0
.0
0
4

Cluster Medoids

Time of Day

V
e
rt
ic
a
l 
G
ra
d
ie
n
t 
(c
m
/c
m
) (b)

07C−1
07C−2

Figure 9: Plot of clustered 2007 diurnal functions (a) and cluster medoids (b).

The diurnal patterns for the lake sites potentially can be explained by this
variation being driven primarily by evaporation and not transpiration. Daily
evaporation would draw the lake water levels down, enhancing the apparent dis-
charge in the latter parts of the day. However, this explanation is complicated
by surface water coming into the lake. In this snowmelt-dominated system, one
would expect greatest volume of inflow to occur in the late afternoon or early
evening. For the smaller pond sites, the ratio of perimeter to surface area is
larger so transpiration plays a larger role. Vegetation pumps water out of the
sites earlier in the day and then may be shutting down later in the day. These re-
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sults suggest further research on the sources of this variation would be of interest
to isolate the local influences on this variability.

4. Conclusions

Cluster analysis techniques prove useful in separating locations based on hy-
drological characteristics. Cluster analyses and regression trees were previously
employed for similar data across the 2003, 2004, and 2005 sample years for in-
vestigating wetland hydrology and vegetation in the Red Rock Lakes National
Wildlife Refuge (Sojda et al., in preparation). The results of these analyses were
based on yearly averages of hydrologic variables and vegetation, thus excluding
any daily, weekly, or seasonal fluctuations in the series from consideration. The
research presented here is significant in advancing the field of functional cluster-
ing when missing observations are encountered and in comparing multiple time
series on different scales.

4.1 Practical implications

Determination of causal factors for the differences in trends and daily cycles
of the observed hydraulic gradients between sites and years is beyond the scope
of this paper, but some preliminary conclusions can be made. In 2007, the wetter
of the two years studied, the diurnal fluctuations had a larger amplitude and
the patterns observed were related to the type of site, lake or pond. In contrast
for the similar analysis in 2006, the amplitudes were smaller and many different
shapes (amplitude and phase) were observed with no obvious link between the
clusters and the type of site. The differences in shapes and organization in the
diurnal patterns between the two years could be explained by a combination of
the wetness providing more surface water to be evapotranspirated, the wetter
year having more or healthier vegetation to enhance the evapotranspiration, and
a stronger snowmelt input in 2007. The fact that the patterns organize by type
of site only in 2007 and have different timing between the two clusters suggests
that surficial features are critical in this scale of results.

The groups detected in clustering the trends from each year or across years
were not related to the results for the diurnal components, suggesting that varia-
tion on the two scales is driven by different processes. If diurnal processes, which
are shown to differ between the two years, are tied to evapotranspiration, then
these hydrologic processes are related to the surface water and vegetation. The
long-term patterns, which seem to either make a transition from recharge to dis-
charge during the summer or be discharge throughout, are more directly related
to interplay between the local groundwater and surface water, but less impacted
by the neighboring surface characteristics. This conclusion is based on the lack
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of organization of the trends relative to the type of site in any of the analyses
but the diurnal results that can be related to the types of sites.

The explanations for the specific patterns in longer-term trends are more elu-
sive. The groundwater delivery system is very complicated and may be changing
over time. The study area encompasses alluvial fan deposits, deltaic sands, la-
custrine sediments, etc., which makes it complicated to know how groundwater
moves, especially at the fine time scales considered in this study. The differences
in groups across years and scales suggests that the system is not constant over
time as it responds to differences in climate that affects the delivery of surface
water and groundwater, evapotranspiration rates, and vegetation patterns. This
study provides a glimpse into the complexity of the hydraulic system by studying
the vertical hydraulic gradients on different scales.

4.2 Statistical implications

The first derivatives of the trends also could be considered to be able to link
sites with similar shapes but different average responses, similar to methods in
Tarpey and Kinateder (2003). However, using the first derivatives would remove
information regarding the mean of the vertical hydraulic gradient which is directly
related to a location’s status as a recharge or discharge site, a key component of
this research. We believe that the magnitude of the vertical hydraulic gradient
is as important as its variation, and our clustering methods reflect that idea.

In the definition of the functional dissimilarity metric, two advances are pro-
vided. First, a simple method is provided for performing functional clustering
when functions are observed over different times. This approach maximizes the
use of available information for pairs of functions in making comparisons. Second,
the dissimilarities are calculated using numerical integration without specific ref-
erence to common basis functions as in some other functional clustering research.
Different bases may be required when encountering missing observations as in our
application or when different locations may have different sampling rates. This
could occur by design or due to equipment malfunction. Especially as technology
evolves, sampling rates could increase in a long term record. This metric could
adapt to the differences in resolution and still provide meaningful results.

Other researchers may find applications for our cluster analysis of functions
from GAMs in situations where the cyclic component is of greater interest than
the trend or where the derivative of the trend is of greater interest but some
higher frequency variation is not of interest. These methods can easily be adapted
to highlighting different features of a process. In our application, the trends
dwarfed the diurnal variation. If we had wanted to re-combine the two measures
to create a cluster analysis across the trends and diurnal components, we would
have had to increase the weight on the differences in the diurnal comparisons. A
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weighting coefficient could easily be included in a combined dissimilarity and used
to tune the cluster analysis across these comparisons. We avoided this arbitrary
choice in the methods presented, keeping all of our comparisons on a scale of
a difference in the vertical hydraulic gradient per day. This would, however,
provide a framework for clustering multivariate functional data since more than
one function is observed per individual.

5. Future Work

Since many of the observations contain trends that change from negative ver-
tical hydraulic gradients to positive vertical hydraulic gradients, the estimated
times of transition from negative to positive gradient could also be extracted
from the trends and compared. It would be possible to explore this aspect using
our methods by first defining basis functions that allow for discontinuities, then
estimating functions that are defined over the study period but are discontinuous
based on the crossing of 0. Then the same dissimilarity measures discussed above
could be employed to cluster based solely on this aspect of the time series. Detec-
tions of statistical evidence of zero-crossings might also be of interest. Methods to
identify crossing-points have been explored in Significant Zero Crossings (SiZer,
Chaudhuri and Marron, 1999). These methods could also be applied to the clus-
ter medoids to obtain a better understanding of the clusters by providing detailed
evidence for when the representative has crossed from recharge to discharge.

The next step in our research is to attempt to relate these results to informa-
tion on vegetation and soils at each site, both in terms of the long term trends
and the differences in diurnal variation. That will require a further set of tools
to use these groups of functions and understand how they can predict multivari-
ate vegetation species compositions at different locations or are related to soils
information.
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