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1National Taiwan Normal University and 2Northwestern University

Abstract: Random Utility models have been shown useful in scaling choice
options, as well as in providing a rich source of information about individual
differences and perceived similarity relationships among choice alternatives.
Modeling of preference data such as rankings was made easier by represent-
ing utilities as latent factors in a structural equation modeling framework.
In this paper, we extend such an SEM approach to analyze ranking data and
other types of ordinal data simultaneously. This combination of both abso-
lute and relative judgment data can enrich our understanding of individual
differences in multiple domains including preference and attitude.
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1. Introduction

Starting from Thurstone’s (1927) seminal work on discriminal process in psy-
chophysical experiments, the task of paired comparisons and ranking have often
been adopted to find scaling values of the choice stimuli. In a ranking task, all
items are presented altogether and a judge is asked to provide orders or ranks of
all the choice items.

It has been shown that by postulating the underlying mechanism as a utility
maximization for ranking and paired comparisons, utility models not only ar-
rive at values which characterize the mean preferences of the choice items, but
also allow for the possibility of understanding the individual difference in their
judgmental process. The random utility paradigm has been highly influential in
the development of many preference models, especially in the econometric and
transportation literature (for reviews, see Train, 2003; McFadden, 2001).

∗Rung-Ching Tsai was supported by grant NSC 96-2413-H-003-017 from the National Science
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By focusing on the mean structure of choice items, one might overlook the
equally important information about individual difference embedded in the vari-
ability of comparative judgments (Bock, 1958; Takane, 1987; Böckenholt & Tsai,
2001). It can be seen that, in most applications involving paired comparison and
ranking tasks nowadays, scaling the stimuli is still their main purpose and the
simplest Case V Thurstonian model is commonly assumed perhaps for computa-
tional reason (Furuya, et al., 2005; Kojima & Kusumi, 2006; Prietoa & Alonsoa,
2000). However, it has been shown that disregard for the dependencies between
the latent utilities and systematic individual differences is a serious model mis-
specification that leads to both incorrect statistical and substantive conclusions
(Bock, 1958; Takane, 1987). Estimation of the Thurstonian choice models other
than the simple Case V have been made possible from a number of past work on
estimation issues (Takane, 1987; Böckenholt & Tsai, 2001; Maydeu-Olivares, 1999
2002; Yao & Böckenholt, 1999; Yu, 2000). However, most of earlier work on esti-
mation required statistical expertise and failure to implement those approaches
into standard software hindered the applications of such models.

Maydeu-Olivares and Böckenholt (2005) gave a detailed account on the for-
mulation, identification and estimation of both paired comparison and ranking
models under a structural equation (SEM) modeling framework and suggested a
flow chart which could be used as a strategy for model selection. By embedding
Thurstonian choice models under the SEM framework, there is no doubt that
such an approach will facilitate not only the number of future applications, but
also more further extensions with the advances of SEM techniques. In particular,
it is shown that ranking data could be converted into multiple binary responses
and consequently could be analyzed using SEM models suitable for dichotomous
items to ease estimation difficulty that the researchers often encounter while an-
alyzing ranking data.

The purpose of this article is to extend Maydeu-Olivares and Böckenholt’s
(2005) approach in analyzing ranking data alone to include covariates and other
measures of latent traits of the judges in the analysis as well. By modeling
ranking and all the other variables in the data within an SEM framework, we
are able to gain our understanding, from the estimates of the model parameters,
in individual differences in the utilities the judges assigned to the options in the
ranking task, as well as in how these utilities relate to the covariates or some
personality traits of the judges.

2. Model Description

2.1 Thurstonian ranking models

In a complete ranking task, choice items are presented at once and the judges
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are asked to rank or order all the items. For example, when a judge is asked to
give a complete ranking of all four items in the choice set (j, k, l,m), the ranking
pattern of (m � k � j � l) indicates that item m is the most, item k the second,
item j the third, and item l the least preferred, where A � B indicates that option
A is preferred to option B. For each ranking pattern, there exists a response
pattern of multiple paired comparisons which corresponds to the same preference
ordering of the choice items. For instance, the ranking pattern of (m � k � j � l)
corresponds to the pairwise outcomes of ((j, k), (j, l), (j,m), (k, l), (k,m), (l,m)) =
(0, 1, 0, 1, 0, 0). According to Thurstonian ranking models, the choice between any
two items j and k for judge i is determined by the difference in his or her perceived
utilities yijk formulated as follows that

yijk = ηij − ηik, (1)

where ηij and ηik represent the perceived utilities of items j and k for judge i,
respectively. In other words, for ranking of the options j, k, l, and m, we would
have

yi =



yijk
yijl
yijm
yikl
yikm
yilm

 =



1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1




ηij
ηik
ηil
ηim

 = A ηi (2)

=



1 −1 0
1 0 −1
1 0 0
0 1 −1
0 1 0
0 0 1


 ηij − ηim

ηik − ηim
ηil − ηim

 = A∗ η∗i ,

where A∗ is the reduced design matrix of A with the last column of A removed
for identification purpose. The choice between options j and k is determined by
the sign of yijk such that

wijk =

{
1, yijk ≥ 0,
0, yijk < 0.

(3)

Thus, wijk = 1 indicates that option j is preferred to option k for judge i.
Accordingly, we have for judge i’s complete ranking of r items a corresponding
binary response vector wi = (wi12, wi13, . . . , wi(r−1)r) for all pairs in the choice
set. It is important to note that when we observe complete rankings from n
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judges, we only have the data matrix W = (w1, . . . ,wn), not the underlying
latent responses Y = (y1, . . . ,yn).

2.2 SEM of ranking data and other measures

Maydeu-Olivares and Böckenholt (2005) showed that estimation and testing of
Thurstonian ranking models were made straightforward by formulating the model
under an SEM framework as a confirmatory factor model with binary indicators.
Consequently, these preference models could be easily estimated using standard
SEM softwares and allow for broader array of model possibilities.

For modeling the linear relations of the y vector of k variables on the f
vector of p latent factors, the following measurement model with mean structure
(Jöreskog & Sörbom, 1993) is commonly used such that

yi = ν + Λyf i + εi,

where ν is the k-dimensional vector of intercepts, Λy is the k×p matrix of factor
loadings, and ε is the measurement error associated with y. The covariance
matrix of ε is commonly denoted as Θε. For Thurstonian ranking model we
have ν = 0, Λy = A the r!/[2!(r − 2)!] × r complete comparison design matrix,
f = η, and ε = 0. However, for models with unrestricted covariance structure
Ψ of η, it is preferable to formulate the models using the reduced design matrix
A∗ such that Λy = A∗, the r!/[2!(r − 2)!] × (r − 1) matrix for identification
purpose. Accordingly, the measurement model is formulated for the latent vector
η∗ instead of η and resultantly the model becomes yi = A∗η∗i .

The structural part of SEM models is commonly formulated as

f i = κ + B(f i − κ) + ζi,

where κ is the mean vector of f , B is the matrix containing diagonal elements of
zeros and slopes for regressions of latent variables on other latent variables, and ζ
is the vector of residuals and its covariance matrix is usually denoted as Ψ. The
SEM models for rankings considered in Maydeu-Olivares and Böckenholt (2005)
were with no exogenous variables. In other words, the individual differences are
simply characterized as deviations from their mean such as ηi = κ+ζi, where κ =
(κ1, κ2, · · · , κr)′ consists of the overall mean utilities and B = 0. The component
ζij captures the degree to which judge i’s latent judgment deviates from κj and
can be conveniently specified to be normally distributed with ζi ∼ N(0,Ψ).

As mentioned above, we choose to model η∗ instead of η for identification
purpose. Thus, the structural model of the latent variables becomes η∗ = κ∗+ζ∗.
The covariance matrix of ζ∗ are Ψ∗ = CΨC′ where C is an (r − 1)× r contrast
matrix specified as C = [ Ir−1 −1 ] with the identity matrix of rank r−1, Ir−1,
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and the vector of all ones, 1. As a result, the mean and covariance matrices for
Thurstonian ranking models are respectively µy = A∗κ∗ and Σy = A∗Ψ∗A∗′.
Note that we do not directly observe the variables yjk’s. Instead, in our data we
have the dichotomization of yjk, i.e., wjk, which is determined by the sign of yjk
and indicates which item in the (j, k) pair is preferred within the ranking pattern.

When judge-specific covariates, such as gender or age of the judges, are avail-
able, it is useful to account for individual difference at the between-judge level
with

η∗i = κ∗ + Γzzi + ζ∗i ,

where the matrix Γz contains the regression coefficients and zi is the judge-
specific vector of covariates. The resulting model is also an MIMIC (multiple
indicators and multiple causes) model because the latent variables η have both
effect and cause indicators. Because of the comparative nature of the data, only
the main effects of covariates on the differences between item utilities rather than
on individual item utilities can be identified. Instead of fitting the model to the
covariance or correlation matrix of (y, z), it is a common practice to consider the
conditional distribution of y given the covariates z.

When data other than rankings are available from the same judges, it might
be of interest to see how their utilities of the choice items are related to or influ-
enced by their personality traits measured by the additional data. For example,
one might be interested in how judges’ quality of life relates to their ranking
of a number of pension plans, or of a group of presidential candidates. In such
cases, additional factors which presumably correlate with the item utilities are
introduced into the measurement model such that

xi = Λxξi + δi, (4)

where ξ is the vector of factors of interest and Λx represents the matrix of factor
loadings of the observed response vector x on the vector of factors ξ. With the
inclusion of the additional latent vector ξ which is assumed to have a direct effect
on the option utilities, the structural part of the model becomes(

η∗

ξ

)
=

(
κ∗

κξ

)
+

(
0 Γξ
0 0

)(
η∗ − κ∗

ξ

)
+

(
ζη∗
ζξ

)
, (5)

where the mean and covariance matrices of ξ are κξ and Φ. However, for sim-
plicity, here we are not particularly interested in the mean structure of ξ and
therefore we set κξ = 0. In addition, we set Φ to be the identity matrix I
for identification purpose. When all the response variables in x are categorial,
threshold parameters used for discretization also need to be estimated. The di-
rect effect of ξ on item utility vector η∗ will help understanding the plausible
causes of individual differences in judges’ utilities.
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By combining the above approaches, i.e., using both observed covariates and
latent factor, to account for individual differences, we arrive at the resultant
structural part of the model that(

η∗

ξ

)
=

(
κ∗

0

)
+

(
0 Γξ
0 0

)(
η∗ − κ∗

ξ

)
+

(
Γz
0

)
zi +

(
ζη∗
ζξ

)
, (6)

where the covariance matrices for ζη∗ and ζξ are respectively Ψ∗ and Φ = I.
Under this model, the conditional expectation and variance of (y,x) given z are

E(y,x|z) = Λ(I−B)−1
(

κ∗ + Γzzi
0

)
, (7)

Var(y,x|z) = Λ(I−B)−1Ψ(I−B)−1Λ′ + Θ, (8)

where Λ =

(
A∗ 0
0 Λx

)
, B =

(
0 Γξ
0 0

)
, Ψ = Cov

(
ζη∗
ζξ

)
=

(
Ψ∗ 0
0 I

)
,

and Θ =

(
0 0
0 Θδ

)
.

In summary, let θ denote the set of all the parameters in the above-mentioned
SEM model, we have θ = {κ∗,Γz,Λx,Γξ,Ψ

∗,Θδ}. By obtaining and interpreting

the estimates θ̂ for the parameters in the SEM model, we would be able to gain
some understanding of individual differences in the utilities the judges assigned
to the options in a ranking task and how these utilities are related to either the
covariates or some personality traits of the judges.

3. Data Analysis

3.1 The data: detroit area study

The data were taken from the inter-university consortium for political and
social research (ICPSR) data archives and collected by Alwin (1997) investigating
the social change in religion and child rearing in the Detroit Area Study. For the
survey, respondents from three counties in the Detroit area were queried about
their work, health, marriage and family, finances, political views, religion, and
child rearing. For current purposes, we specifically choose their responses to
a preference ranking task and a number of questions which we hypothesized
of forming a single construct, in addition to some background variables of the
respondents. The chosen ranking question and its choice set in the original study
are:

Question: “While we’re talking about children, please tell me which of the fol-
lowing things you would pick as more important for children to learn to prepare
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them for life. If you had to choose, is it more important for children to learn”
(Alwin, 1997).

1. To obey

2. To think for themselves

3. To work hard

4. To help others when they need help

Note that in the original study, there was another choice item ”To be well-liked
and popular”. However, this item caused estimation difficulty for making some
of the two-way table with zero frequencies and therefore was dropped from the
subsequent analysis. In other word, we extracted the respondents’ preference
ranking of the above four items from their responses to the five items. Moreover,
the items for the single factor which presumably influences the utility evaluations
are,

x1 : Is gambling wrong?

x2 : Is divorce wrong?

x3 : Is homosexuality wrong?

x4 : Is legal abortion allowed for married couples who do not want any more
children?

x5 : Is assisted suicide allowed?

For the first three items, their response categories were ordinal (1=always; 2=usu-
ally; 3=sometimes; 4=never) whereas the last two contained binary outcomes
(1=yes, allowed; 2=no, not allowed). In addition, gender and marital status were
treated as known sources of individual differences and were incorporated as co-
variates in the model. More specifically, three groups were defined for marital
status as married, once married (either widowed, divorced, or separated), and
never married. The proportion of females in the total sample was .63 and the
proportions of married, once married, and never married were respectively .57,
.25, and .18.

Tables 1 and 2 showed that gender and marital status were indeed inducing
heterogeneity in the sample. The rank ordering implied by the mean ranks were
different for males (help others � obey � think-for-self � work-hard) and for
females (help others � work-hard � think-for-self � obey). For marital status, it
can be seen that people who are married or once married are different from those
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who are never married only in their preference between “to obey” and “to think
for themselves”. More specifically, the former seemingly preferred kids to obey
than to think for themselves whereas the latter on average showed the opposite.

Table 1: Summary of ranks by gender

Gender obey think-for-self work-hard help-others

Female
M(SD) 2.95(1.10) 2.82(.99) 2.52(1.04) 1.70(.89)
Male
M(SD) 2.61(1.10) 2.79(1.06) 2.84(1.04) 1.77(.94)

M=Mean of ranks; SD=Standard Deviation of ranks

Table 2: Summary of ranks by marital status

Marital Status obey think-for-self work-hard help-others

Married
M(SD) 2.78(1.10) 2.85(1.01) 2.69(1.03) 1.68(.91)
Once-Married
M(SD) 2.76(1.16) 2.80(1.01) 2.58(1.11) 1.86(.94)
Never-Married
M(SD) 3.06(1.08) 2.71(1.05) 2.56(1.05) 1.69(.83)

M=Mean of ranks; SD=Standard Deviation of ranks

3.2 Estimation and testing

The parameter estimates of the proposed choice models can be obtained by
limited-information (LI) maximum likelihood method. Unlike the full-information
maximum likelihood methods which require multidimensional integrals to be eval-
uated numerically and consequently the computation could be cumbersome when
r is large. LI algorithms are computationally less demanding and considerably
faster and therefore are better suited to effectively estimate the model param-
eters. The suitability of LI method for the analysis of ranking data was first
recognized by Maydeu-Olivares (1999, 2001).

LI estimation for categorical data is usually carried out in two stages. Here,
the thresholds and the tetrachoric correlations between the binary responses in
W are estimated first. At the second stage, model parameters are estimated by
minimizing the weighted or unweighted least squares of the difference between
the estimates obtained from the sample at the first stage and their model-based
specification. Let ρ and ρ̂ denote the vector of all thresholds and tetrachoric
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correlations between the binary responses in W and its corresponding parameter
estimates at the first stage, respectively. At the second stage, the estimates θ̂ of
the parameter set θ consisting of all parameters in the SEM model are obtained
to satisfy restrictions imposed on ρ by equation (6) so that the following least
squares function with the weight matrix Vρ is minimized:

F =
[
ρ̂− ρ(θ̂)

]′
Vρ

[
ρ̂− ρ(θ̂)

]
.

Two choices of the weight matrix Vρ based on functions of the estimated asymp-

totic covariance matrix Ξ̂ of ρ̂ have been proposed which can result in consistency
and asymptotical normality for the parameter estimators (Muthén, 1978, 1984;
Muthén, du Toit & Spisic, 1997). They are the weighted least squares (WLS)
and the diagonally weighted least squares (DWLS) approaches using respectively

Vρ = Ξ̂
−1

and Vρ =
[
Diag(Ξ̂)

]−1
. For our analysis, the DWLS approach is used

because it has been shown that larger samples are needed for WLS than DWLS
to obtain reasonable parameter estimates and standard errors (Muthén, 1993).

Goodness-of-fit tests based on the statistic T = nF̂ are available for both
WLS and DWLS, where n is the sample size. Satorra and Bentler (1994) and
Muthén (1993) showed that T , though not asymptotically chi-square distributed
itself under DWLS, can be used for testing after scaling T by its asymptotic
mean or by its asymptotic mean and variance. The Satorra-Bentler (SB) mean
adjusted statistic, T̄ = T/ĉ where ĉ is the scaling factor, can be used for both
the assessment of the overall fit of a model and fit comparisons of nested models
under DWLS (Satorra and Bentler, 1994). We note that in most cases it would be
incorrect to compute the difference between the SB-scaled statistics of two nested
models and to test the obtained value against a χ2- variate with the degrees of
freedom equal to the difference between the number of independent parameters
estimated under the two nested models (Satorra & Bentler, 2001). Instead, the
scaled χ2-difference test statistic T̄d should be employed for comparing two nested
models (Satorra & Bentler, 2001). Let M0 and M1 denote the two nested model
where M1 is less restricted and r0 and r1 be their associated degrees of freedom
of the goodness-of-fit statistics T0 and T1, respectively. The scaled χ2-difference
test statistic, T̄d, can then be obtained as

T̄d := Td/c̄d, c̄d := (r0ĉ0 − r1ĉ1)/(r0 − r1),

where ĉ0 and ĉ1 are the scaling factors of T0 and T1 respectively, and Td = T0−T1
with T0 = ĉ0T̄0 and T1 = ĉ1T̄1. Under the null hypothesis, T̄d is asymptotically
distributed as a χ2-variate with degrees of freedom r0 − r1.

The total number of degrees of freedom for the chi-squares statistics reported
in the SEM software Mplus is computed as the sum of the number of thresholds
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(for both binary or paired comparisons and additional categorical factor indica-
tors), the product of the number of independent columns of covariates and the
number of categorical responses, and all the polychoric (tetrachoric) correlations.
For example, consider the model of paired comparisons of four items with two
covariates, gender and age, and an additional factor which presumably associates
with the item utilities and contains five binary indicators, then its total degrees
of freedom is

dfT = [4!/(2!2!)+5]+2× [4!/(2!2!)+5]+{[4!/(2!2!)+5][4!/(2!2!)+5−1]}/2 = 88.

Maydeu-Olivares and Böckenholt (2005) pointed out that because rankings
give rise to only a subset of all possible paired comparison binary outcomes
and an adjustment on the number of degrees of freedom is therefore required
when modeling ranking data are analyzed using SEM models for dichotomous
items. More specifically, when ranking data are transformed into binary data
and analyzed alone, there will be d = [r(r − 1)(r − 2)]/6 redundancies among
the thresholds and tetrachoric correlations estimated from the binary variables
(Maydeu-Olivares, 1999). Therefore, we propose subtracting the constant d from
the degrees of freedom reported for the extended SEM model for paired com-
parisons or binary response. However, the goodness-of-fit of the specified model
can also be assessed using other fit indices such as the Comparative-Fit-Indices
(CFI), Tucker-Lewis-Indices (TLI), Root Mean Square Error Of Approximation
(RMSEA) and Weighted Root Mean Square Residual (WRMR). Although the
calculation of the above fit indices also require an adjustment on the degrees of
freedom for the model, the effect of a small difference in the degrees of freedom
should have less impact on those fit statistics than on the chi-squared statistics.
Yu (2002) suggested, based on a series of simulation studies on CFA and MIMIC
models, that to find suitable cutoff criteria and to understand how fit indices
perform under a certain type of models with a certain sample size, substantive
researchers might want to conduct their own simulation studies and summarized
that CFI ≥ .96, RMSEA ≤ 0.05, and WRMR ≤ 1.0 can be indications of good
models with binary outcomes at sample sizes larger than 250.

3.3 Identification constraints

Because of the discrete nature of ranking data, some identification constraints
are needed for the estimation of their mean and covariance parameters, κ and
Ψ, even in the simple case with only the comparative judgment data. Here we
simply use the utility difference where the last item is chosen as the baseline
item and the parameters of interest are Cκ and CΨC′, where C is the contrast
matrix of which each column indicating the comparison between an item to the
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last. That is, as noted before, the parameters to be estimated are

Cκ = κ∗ =

 κ∗1
κ∗2
κ∗3

 , and CΨC′ = Ψ∗ =

 ψ∗11 ψ∗21 ψ∗31
ψ∗21 ψ∗22 ψ∗32
ψ∗31 ψ∗32 ψ∗33

 ,

where ψ∗11 is further fixed to 1 for identification purpose.
When other measures in addition to rankings are included in the analysis,

constraints necessary for identification of the whole model often need some in-
vestigation. For the case that not all additional variables are continuous, the
residual variances for continuous latent response variables of observed categorical
dependent variables are often treated as parameters to be estimated. However,
the number of parameters in this case will result in under-identification because
we are fitting covariance structure to those categorical dependent variables while
only correlations between them are identified. One possible solution is to im-
pose sufficient restrictions on the residual variances to ensure identification of
the model parameters, without putting additional constraints on them. Cudeck
(1989) discussed the interrelated problems associated with those models where
covariance structure are fitted to sample correlations and concluded that, for
the class of scale-invariant models (Browne, 1982), applying a covariance struc-
ture to a matrix of correlations will not modify the models under consideration.
Consequently, because our intended single factor model for the five indicators of
personality trait in addition to rankings is scale-invariant, the further constraint
of Θδ = I − diag(ΛxΦΛ′x) could be used for identification of the whole model.
However, when the intended model is not scale-invariant, the constraints neces-
sary to ensure identification without imposing any additional restrictions on the
model become less straightforward.

3.4 Results

The estimation was carried out with the SEM software Mplus. We first exam-
ined the total number of degrees of freedom for the model under consideration.
Because the data contain ranking of four items, two binary indicators and three
four-category indicators and two covariates (one is binary and the other with
three levels), the total number of degrees of freedom reported in Mplus would be
105 and consequently the corrected degrees of freedom for our model for ranking
will be dfT = 105− d = 105− [(4)(3)(2)]/6 = 101.

We first considered a model with simply the ranking data (M0 in Table 3).
With the corrected degrees of freedom of 9 in this case, the values of the selected
fit indexes χ2(9) = 33.784, p = .0001, CFI and TLI were respectively .977 and
.974, RMSEA=.078 and WRMR=.731. Three indices, CFI, TLI, and WRMR
indicated that M0 yielded reasonable fit to the ranking data whereas χ2 statistic
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and RMSEA were not favorable. That is, a close fit or approximation of the
model to the ranking data might be slightly doubtful. For M0, it was assumed
that the data were from a homogeneous group of judges. To further incorporate
the possible sources of individual difference to account for heterogeneity, we tried
next to include both covariates, gender and marital status, and an additional
factor which presumably influenced judges’ rankings into modeling the choice
behavior of the judges.

Table 3: Goodness-of-fit statistics for icpsr ranking with additional factor and
covariates

Goodness-of-fit

Models df scaled χ2 (T̄ ) p CFI/TLI RMSEA covariates

M0 9 33.784 .0001 .977/.974 .078 None

M1 65 88.717 .0270 .989/.985 .033 η∗1 (G, M), η∗2 (G, M), η∗3 (G,M)
M2 67 86.541 .0544 .991/.989 .029 η∗1 (G, M), η∗2 (G,M), η∗3 (G)
M3 68 91.039 .0326 .989/.986 .032 η∗1 (G, M), η∗2 (M), η∗3 (G)
M4 69 88.134 .0601 .991/.989 .028 η∗1 (G, M), η∗2 (G), η∗3 (G)
M5 70 92.525 .0371 .989/.987 .031 η∗1 (G, M), η∗3 (G)

M6 49 73.140 .0143 .988/.985 .038 η∗1 (G), η∗2 (G) η∗3 (G)
M7 50 76.769 .0088 .986/.983 .040 η∗1 (G), η∗3 (G)

G: Gender; M: marital status

A total of another seven different models were fit to the ranking data which
differed in their choice of nonzero covariate effects, with the inclusion of both
an additional factor and the covariates. Table 3 provided a summary of the
goodness-of-fit statistics obtained from these analyses. Model specifications were
given in the last column of Table 3 labeled ‘covariates’.

M1 and M6 served as benchmark models for cases where respectively both
covariates (gender and marital status) or only gender were included in the models.
For models with the same number of covariates, such as M1 to M5, they were
considered as nested model and therefore could be tested using the scaled SB χ2

difference statistic T̄d. As a result, we concluded that M4, among the models with
both covariates, provided the most parsimonious representation of the data with
T̄ = 88.134 and p = .0601. Moreover, M6 and M7 were models with only gender
as the sole covariate and might not be considered as nested model with M4 and
therefore the scaled SB χ2 difference test might not be directly applicable in this
case. However, based on the p-value associated with either model we found that
M4 would be considered preferable to both M6 and M7.

Model 4 (M4) was depicted graphically in Figure 1. The parameter estimates
for M4 were reported in Table 4. The column labeled “Standardized” contained



Understanding Choice Behavior Using SEM 439

the parameter estimates standardized with respect to the variances of y, x and
z. The results in the top part of the table concerned the mean structure and the
effect of gender and marital status on the perceived utilities associated with the
items. For example, Γ̂G = ( .218 .106 .124 )′ indicated that males (gender=1)
had a mean utility difference between “to obey” and “to help others” which was
(2)(.218)=.436 higher than females (gender=-1). The difference between males
and females on their mean utilities were different for different choice items (.212
for η∗2 and .248 for η∗3). However, for martial status, it only made a difference for
judges’ associated utilities on η∗1, not on the other two. That is, the effect of being
married, once married, and never married on the mean of η∗1 were respectively
-.102, .167 and -.065. In other words, although on average “to help others” was
ranked more important than “to obey” by the judges, married people felt more
so than those who were never married. Those who were once married, though on
average still considered “to help others” to be more important than “to obey”,
the difference in their degrees of importance was much smaller while compared
to the other two groups. Moreover, using the unstandardized estimates of the
intercept and the effects of gender and martial status, the mean differences of the
latent utilities η∗1, η∗2, and η∗3 for married males were estimated as follows:

κ̂∗=

 κ̂∗1
κ̂∗2
κ̂∗3

 =

 −.734
−.272
−.287

+ (1)

 .218
.106
.124

+ (1)

 −.102
0
0

+ (0)

 .167
0
0


=

 −.618
−.166
−.163

 .

The mean differences for other groups can be similarly estimated. Parameter es-
timates reported in the lower part of Table 4 concerned the covariance structure
of M4. The largest unstandardized (standardized) coefficient for covariances be-
tween the single factor and the utilities showed that the factor was negatively cor-
related with η∗1, their judgment of “to obey” over “to help others” with a standard-
ized γ̂1 = −.480. That is, the lower the judge scored on the factor, the more he or
she preferred “to obey” over “to help others”. Based on the five indicators and
their loadings on the single factor, Λ̂x = ( .641 .550 .692 −.829 −.690 )′,
we conveniently defined the factor as the level of conservativeness and the lower
the factor score, the higher level of conservativeness. In other words, it implied
that more conservative a judge was, he or she would tend to choose “to obey”
more in comparison to “to help others”. However, we noted that based on the
estimated values of κ, on average, “to help others” was the most preferred choice.

The correlation between η∗1 and η∗2, after accounting for the covariate effect
and the variability attributed from the factor of conservativeness, appeared to be
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Figure 1: Covariance structure of model M4 for Detroit Area Study with rank-
ings (y12 to y34), responses to five attitude questions (x1 to x5), and two co-
variates of the respondents (G: gender; MS: martial status).

very small with an estimated value of -.061 whereas those between η∗3 and ei-
ther η∗1 and η∗2 were considerably larger with estimated values of .310 and .422
respectively. That is, the assignment of utilities to option “to work hard” were
positively correlated with those to either “to obey” or “to think of themselves”,
in comparison to “to help others”.

4. Conclusion

In this paper, we extend the SEM approach by Maydeu-Olivares and Böckenholt
(2005) to model simultaneously ranking data and other types of categorical data,
in addition to the inclusion of covariates. An detailed analysis of Detroit Area
Study has shown the usefulness of the proposed approach in providing a better
understanding of individual difference in their choice behavior. The advantage of
formulating the Thurstonian choice models as structural equation models indeed
facilitate possible extensions beyond merely option scaling. More studies are yet
necessary to evaluate the validity and performance of S-B statistics in comparing
nested or non-nested models under different setting of sample size, model com-
plexity, and especially for models with different numbers of covariates. However,
this outlook for future work should not distract from the fact that, taking advan-
tage of the advances in SEM modeling literature, a wider range of applications
would now become more accessible for analyzing ranking data.
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Table 4: Parameter Estimates for model M4

Parameter Unstandardized SE Standardized

intercept (κ∗) κ∗1 -.734 .093 -.717
κ∗2 -.272 .078 -.317
κ∗3 -.287 .067 -.386

effect of gender
ΓG γG,η∗1 .218 .081 .206

γG,η∗2 .106 .067 .119
γG,η∗3 .124 .057 .161

effect of marital status
ΓMS γMS1,η∗1

-.102 .101 -.077
γMS2,η∗1

.167 .119 .106
Ψ∗ ψ∗2

1 1.00* .954
ψ∗2
2 .709 .166 .986
ψ∗2
3 .535 .122 .974
ψ∗
12 -.054 .079 -.061
ψ∗
13 .236 .079 .310
ψ∗
23 .269 .077 .422

Γξ γ1 -.491 .073 -.480
γ2 .169 .080 .197
γ3 -.084 .059 -.113

factor loadings
Λx λ1 .641 .053 .641

λ2 .550 .056 .550
λ3 .692 .060 .692
λ4 -.829 .052 -.829
λ5 -.690 .064 -.690

measurement errors
Θδ θδ1 .589 .068 .589

θδ2 .698 .062 .698
θδ3 .522 .084 .522
θδ4 .312 .087 .312
θδ5 .525 .088 .525

References

Alwin, D. (1997). Detroit Area Study: Social change in religion and child rear-
ing. Inter-university Consortium for Political and Social Research (ICPSR0-
4120). Ann Arbor, MI.

Bock, R. D. (1958). Remarks on the test of significance for the method of paired
comparisons. Psychometrika 23, 323-334.



442 Rung-Ching Tsai and Ulf Böckenholt
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