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Abstract: The aim of this study is to develop a method for detection of
temporomandibular disorder (TMD) based on visual analysis of facial move-
ments. We analyse the motion of colour markers placed on the locations of
interest on subjects faces in the video frames. We measured several features
from motion patterns of the markers that can be used to distinguish between
different classes. In our approach, both static and dynamic features are mea-
sured from a number of time sequences for classification of the subjects. A
measure of nonlinear dynamics of the variations in the movement of colour
markers positioned on the subjects faces was obtained via estimating the
maximum Lyapunov exponent. Static features such as the number of out-
liers and kurtosis have also been evaluated. Then, Support Vector Machines
(SVMs) are used to automatically classify all the subjects as belonging to
individuals with TMD and healthy subjects.

Key words: Temporomandibular disorder, maximum Lyapunov exponents,
support vector machine.

1. Introduction

One of the most dynamic biomechanical junctures in the human body is the
temporomandibular joint (TMJ). The TMJs are joints located on either side of
the face that connect the lower jaw to the skull (McNeill, 1993) (illustrated in
Figure 1).

Temporomandibular disorders (TMDs) often results when the chewing mus-
cles and the TMJ do not work together correctly. When this occurs, the muscles
often cramp. This spasm can then become part of a cycle that results in tis-
sue damage, pain and muscle tenderness (Okeson, 1996a; Ohrbach and Widmer,
1992).

TMD is a collective term used to describe a number of related disorders af-
fecting the temporomandibular joints, masticatory muscles, and associated struc-
tures, all of which have common symptoms such as pain in or around the ear,
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Figure 1: An illustration of the temporomandibular joint and its location
adopted from (http://www.stevenschnolldds.com/tmjdisorders.htm)

limited mouth opening, tenderness of the jaw muscles, Clicking noises when one
opens or closes the mouth and difficulty in opening and closing mouth (McNeill,
1993; Okeson, 1996b).

The clinical diagnosis of TMD has been based on determine the cause of these
symptoms by conducting a series of diagnostic tests. These may include complete
medical history and clinical examination which is to consider the possibility of
temporomandibular joint pain and dysfunction, particularly if the pain is ac-
companied by clicking jaw joints and limited mouth opening (Carlsson, 1984).
Therefore, poor detection of these signs and symptoms can lead to misdiagnosis
of TMD.

Currently, there are three methods for measurement of the functional features
for diagnosis of TMD; (a) the computerized mandibular scan (CNS) that records
the delicate functioning movements of the jaw, (b) Electromyography (EMG) to
measure masticatory muscle, and (c) The electrosonograph (ESG) to measure and
graphically display or represent sounds made by TMJ components (Deng et al.,
2006). These methods, however, are very rarely used in only a few places around
the world. Different types of imaging systems may also be utilized for diagnosis
of TMD. Arthrography and magnetic resonance imaging (MRI) are the most
popular ones. Plain X-ray and computerized tomography (CT) are valuable for
determining the presence of osseous changes and traumatic injury to the osseous
components of the joint. MRI is costly and unable to visualize perforations of
the posterior attachment or the disc. CT is too hazardous to be used frequently
and not comfortable for the patients.

The above mentioned reasons indicate that there is a clear need for additional
research on alternative methods to be used to supplement clinical examinations
with automated classification and detection of TMD. Signal processing methods
allow for enhanced clinical utility and an automated approach to the diagnosis
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of TMD.

Automatic motion analysis in human recognition is easier and most effective
if the subject movement is cyclostationary. There are two obvious cyclic motions:
walking and chewing. Analysis of motion vectors in walking subjects has been
widely reported in gait recognition (Lee et al., 2006). During normal chewing,
the lower jaw and connecting joints on both sides are synchronized; the joints
on each side slide and rotate right in front of each ear. Both the cyclic and the
chaotic features for these cases can be quantified and exploited in detection of
any abnormality (Ghodsi, 2008). In the cases when the jaw twists during one of
these motions, it causes pain and click (Ghodsi et al., 2008). The most common
symptom of TMD is clicking of the TMJ. In some research the clicking sound has
been suggested as a potential data to characterize TMD (Took et al., 2006; Took
et al., 2008a; Took et al., 2008b). Since the clinicians hear the mixtures of TMJ
sources recorded from inside each auditory canal, it makes the task difficult for
them to diagnose TMD. It is difficult to know which type of TMJ source come
from the right/left TMJ.

In this paper we develop a method for detection of TMD based on visual
analysis of facial movement which is comfortable and safe. The combine of the
sound and visual data can help audio analysis to characterize TMD. Here, we
consider visual analysis of facial movement. For this purpose we attached a num-
ber of markers to the points of interest on the individuals’ faces and tracked
their positions over a large number of frames in the video sequences. We used
image processing methods to extract the positions of the markers in the video
frames. The important locations with significant changes during mouth move-
ment are around the TMJ. We analyse the information related to the dynamics
of movement of the colour markers placed on the face around the TMJ.

The paper is organized as follows. In Section 2, we provide the necessary
mathematical background of the support vector machine (SVM), then we discuss
the experimental data in Section 3. Section 4 presents the Bootstrap method and
in section 5 the results are derived. Section 6 concludes the paper.

2. Support Vector Machines

Support vector machine (SVM) is an effective non-parametric classifier suit-
able for highdimensional datasets and has been found competitive with the best
machine learning algorithms (Vapnik, 1995; Taylor and Cristianini, 2000). Unlike
many classification algorithms SVM performs efficiently when

• It is optimum for two-class classification.

• The number of features is high.
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• There is a limited time for performing the classification.

• There is a non-uniform weighting among the features.

• There is a nonlinear map between the inputs and the outputs.

• The distribution of the data is not known.

• A convex (monotonic) is required so it does not fall into a local minima.

In recent years, SVM has found a wide range of real-world applications, in-
cluding face detection from images (Osuna et al., 1997; Shih and Liu, 1996),
object recognition (Blanz et al., 1996; Hayasaka et al., 2006), speaker identifi-
cation (Schmidt, 1996; Moreno and Ho, 2003), text categorization (Joachims,
1997), and biomedical data classification (Shoker et al., 2005).

The formulation of SVM learning is based on the principle of structural risk
minimization. Instead of minimizing an objective function based on the training
samples (such as mean square error (MSE)),the SVM attempts to minimize a
bound on the generalization error (i.e., the error made by the learning machine
on test data not used during training) (Vapnik, 1995).

Consider a data set and their corresponding labels as: (X1, y1), . . . , (XN , yN ),
where Xi ∈ Rp is a feature vector and yi ∈ {−1,+1} are the class labels. Then it
is possible to partition the p-dimensional pattern space into two half-spaces with
a separating hyper-plane of equation

{X|X ·W + b = 0}. (1)

Of all the boundaries determined by W and b, the one that maximizes the mar-
gin (i.e. maximizes the distance between the hyperplane and the nearest data
point of each class) generalizes better than other possible separating hyperplane.
Mathematically, this hyperplane can be found by minimizing the following cost
function:

ϑ(W, ξ) =
1

2
‖W‖2, (2)

subject to the separability constraints:

yi[〈W,Xi〉+ b] ≥ 1, i = 1, · · · , N, (3)

where 〈·, ·〉 means cross-product. This specific problem formulation may not be
useful in practice because the training data may not be completely separable by
a hyperplane. In this case, slack variables, denoted by ξi , can be introduced to
relax the separability constraints in Eq. (3) as follows:
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yi[〈W,Xi〉+ b] ≥ 1− ξi, ξi ≥ 0; i = 1, · · · , N. (4)

Accordingly, the cost function in Eq. (2) can be modified as follows:

ϑ(W ) =
1

2
‖W‖2 + C

N∑
i=1

ξi, (5)

where ‖ · ‖ refers to the vector geometrical norm. Solving the above equation de-
termines the Lagrangian multipliers and a classifier by implementing the optimal
separating hyperplane in the feature space given by

f(x) = sign(
∑
SV

yiαiK(Xi, X) + b), (6)

where sv refers to number of support vectors. Consequently, everything that has
been derived concerning the linear case is also applicable for a non-linear case
by using a suitable kernel instead of the dot product. The choice of kernel to fit
non-linear data into a linear feature space depends on the structure of the data.

In this project we exploit these distinguished properties of SVMs in order
to build up one classifier and apply that to a number of carefully selected and
estimated features.

3. Data Acquisition

In this study; we used seven subjects. We have two individuals with TMD
in the left side of their faces and the rest are healthy subjects. The patients
used in our experiments were examined by our clinical expert collaborator 1. We
captured the video of all subjects’ faces (healthy and individual with TMD) from
the left and right sides in frontal-lateral direction by two cameras (illustrated in
Figure 2).

Figure 2: The diagram of cameras and subject position

1We are grateful to Prof. S. Dunne of the Dental Institute, Kings College London.
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Each subject was captured performing three cycles of chewing motion using a
high resolution (640×480 pixels) colour video cameras at 30fps. On average, 400
video frames were obtained per subject. We placed four blue round markers at
the locations of interest on each subject’s face. The size of each marker is 6mm.
We attached two markers on the TMJ at the left and right sides of the face. We
also attached two additional markers of the same colour on nose and chin level.
The distance of subject from camera can vary thus we used the distance of latter
markers as a scaling measure for the images of two sides. We then found the
coordinates of the center of each marker in each frame, which we used to find the
correspondences between the markers detected in different frames. Therefore, for
each marker we obtained a time sequence representing its movement, in direction
x, in the video sequences. We then analyze the motion patterns of the TMJ
markers during cycles of chewing. Figure 3 shows the time sequence of a TMJ
marker for individual with TMD (left side) and healthy one (right side) in the
original scale. As it appears from Figure 3 it is not possible to detect which series
is related to individuals with TMD through visual inspection of the signals.
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Figure 3: Original time series of the TMJ marker from an individual with TMD
(in the left) and that of a healthy individual (in the right)

Some features are measured from chewing motion patterns as described in the
following section, that can be used to distinguish between different classes and
used SVM as our classification method. It is believed that opening and closing
patterns with click is more frequent in patients with TMD than normal subjects
and patients with TMD demonstrated a restricted range of motion and reduced
velocity than normal subjects.

The static features are measured from the normalized highpass filtered data.
The highpass filter is used to remove the effect of mouth movement and enhance
the changes in the TMJ within the time sequence. The signals are normalized to
suppress the changes in picture/video size, here we define the new signal xnew =
(xi − x̄)/s where x̄ is the sample mean and s is the sample standard deviation.
It is believed that the visual features presented to the SVM are distinct enough
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to be separated using either a linear SVM or an SVM with a kernel as discussed
above.

3.1 Features

Although any various order statistics of the data can be considered as features
for this purpose, the following features have been empirically found as the most
effective and justifiable features for this classification application (Ghodsi, 2008).
These features provide both the statistical and dynamical information regarding
the effects on the TMD during normal chewing.

Feature 1. Any abnormalities in the chewing process produce chaotic behaviour
of the motion. Estimating chaos in a dynamical system is an important
problem. Measuring maximum Lyapunov exponents (MLE) is a way to
solve this problem (Kantz, 1994). As a dynamic feature, we used MLE λ1
to measure the changes in the dynamics of the chewing pattern (Rosenstein
et al., 1993). This is measured from the normalized data and it is observed
that the chewing signal for the subjects with TMD is more chaotic than for
healthy individuals (Ghodsi et al., 2007). We denote f1 = λ1. Although in
general the estimates of Lyapunov exponents for short data sequences are
not very accurate, but the method adopted here (Rosenstein et al., 1993)
provides sufficiently distinct values of λ for TMD and normal subjects.

Feature 2. Outliers are observations which are presumed to come from a dif-
ferent distribution than those of majority of the data (Han and Kamber,
2001). They can have a profound influence on the data analysis, often lead-
ing to erroneous conclusions because of their powerful influence on most
parametric tests. Outliers (unusual abnormal values) are often the special
points of interest in many practical situations and their identification is the
main purpose of the investigation. In medicine, unusual values may indicate
the diseases (see, e.g., (Kosheleva et al., 1998)). Accurate identification of
outliers plays an important role in data analysis.

One approach to outlier detection is to start with N normal values x1, · · · ,
xN , compute the sample mean x̄, the sample standard deviation s, and then
mark a value x as an outlier if x is outside the interval (x̄−a s, x̄+a s) (for
some preselected number a). We can therefore identify the outliers as those
values that are outside the aσ intervals (for an application of this method in
engineering, see, e.g. (Wadsworth, 1990)). Here, we selected a = 3 and used
the normalized highpass filtered data. f2 = the number of observations >
3|σ|.
The skewness and the kurtosis tests are useful, among the most powerful
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tools available for testing the presence of outliers in an otherwise normal
sample, especially when the number of outliers is unknown (Hawkins, 1980).

Feature 3. A large ratio between the peak (outlier) amplitude and the variance
of a signal suggests that there is an unexpected value in the data. The
equation describing this feature is given by

f4 =
max{|X|}

s
, (7)

where, X = (x1, · · · , xN ) is normalized highpass filtered data, max(·) is a
scalar valued function that returns the maximum element in a vector, s is
the sample standard deviation of X and | · | is the absolute value applied
element-wise.

Feature 4. Kurtosis can be formally defined as the standardized fourth order
moment. Kurtosis is a measure of how sharp a symmetric distribution is
when compared to a normal distribution of the same variance.

Note that the kurtosis of a normal distribution is 3. If a distribution has
a large central region which is flatter than a normal distribution with the
same mean and variance, it has a kurtosis of less than 3 (i.e. sub Gaussian).
If the distribution has a central maximum more peaked and with longer tail
than the equivalent normal distribution, its kurtosis is higher than 3 (i.e.
super Gaussian) (Brooks and Carruthers, 1953).

As noted above, kurtosis largely reflects tail behavior, and so its use for de-
tecting outliers has been considered. Discussions of approaches to detecting
outliers using kurtosis can be found in (Barnett and Lewis, 1996; Jobson,
1991). Kurtosis is defined as:

f4 =

∑N
i=1(xi − x̄)4

s4
. (8)

Feature 5. Skewness is a measure of the asymmetry of a distribution and is
zero for a normal distribution. If the longer tail of a distribution occurs for
values of x higher than the mean, that distribution is said to have positive
skewness. If the longer tail occurs for values of x lower than the mean,
the distribution is said to have negative skewness (Kerbaol and Chapron,
1999). Great skewness may motivate the researcher to investigate outliers.
The normalized skewness for each signal is given by

f5 =

∑N
i=1(xi − x̄)3

s3
. (9)
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Figure 4 confirms that why we used features 2-5.

Figure 4: Histogram of the signal of TM marker from (a) the individual with
TMD and (b) a healthy individual

Feature 6. This feature is a measure of likelihood of a peak subject to the
gradient of the smoothed waveform.This feature identifies whether the peak
appears in opening or closing the mouth. Let u(t) be the lowpass filtered
data. We denote ∇tu(t) (approximated as ∇tu(t) = u(t) − u(t − 1) ) and
define

I∇tu(t) =


1, peak at ∇tu(t) ≥ 0,
0, no peak,
−1, peak at ∇tu(t) < 0.

(10)

We denote f6 = I∇tu(t). To acquire a better understanding of f6, Figure 5
shows the highpass filtered data (thin line) and ∇tu(t) (thick line) together.
As it appears from Figure 5 all peaks occur when ∇tu(t) ≥ 0.

4. Data Sample Generation Using Bootstrap

Although a reasonably large number of data samples can be provided by multi-
ple recordings from the same subjects, in those cases where the statistical features
are mainly with respect to the data distribution, a number of data samples can
be produced. Also, in places where provision of sufficient data with reasonable
lengths is difficult a number of data samples can be generated according to the
actual data distribution. One of the methods for doing that is bootstrap (Efron
and Tibshirani, 1993). This is explained next. We used bootstrap average signal
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Figure 5: Highpass filtered (thin line) and lowpass filtered data (thick line)

to test the reliability and accuracy of the results obtained from the original signal.
Let us consider the method of constructing bootstrap average signal for the signal
Xt (for more information see, e.g., (Efron and Tibshirani, 1993; Golyandina et
al., 2001)). Under a suitable choice of embedding dimension m (we select this
parameter using false nearest neighbor) and the corresponding eigentriples in the
singular value decomposition (SVD), we have the representation Xt = S̃t + Ñt,
where S̃t (the reconstructed signal) approximates Xt, and Ñt is the noise series.
Suppose now that we have a (stochastic) model for the noise Ñt (for instance,
pure noise). Then, simulating n independent copies Nt,i of the noise series Ñt,

we obtain n signals Xt,i = S̃t + Ñt,i and produce n reconstruction results X̃t,i

(Hassani and Zhigljavsky, 2009).
When the sample X̃t,i (1 ≤ i ≤ n) of the reconstruction results is obtained,

we can calculate its bootstrap average signal by averaging the bootstrap results.
The simplest model for Nt is the Gaussian white noise model. The corresponding
hypotheses can be checked with the help of a standard test for randomness and
normality (Golyandina et al., 2001; Hassani, 2007; Hassani et al., 2009).

5. Results

As we mentioned above, we used both static and dynamic features extracted
from movement of the markers positioned on subjects’ faces to detect individuals
with TMD. Table 1 represents a summary of the obtained results. The second
column represents the left (L) and right (R) sides of face for all subjects; two
individuals with TMD in left side (L1, L2) and the rest are healthy people.
The values of features 1–6 for all samples are calculated. We followed the same
procedure for the observations obtained by bootstrap method. The symbol ‘∗’ in
Table 1 indicates that the results obtained by bootstrap method. Columns 3-14
represent the values of f1–f6 for both original and bootstrap averaged signals.
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Table 1: Values of the features for all subjects/trials

N S f1 f∗1 f2 f∗2 f3 f∗3 f4 f∗4 f5 f∗5 f6 f∗6

1 L1 0.091 0.101 6 5 5.24 4.87 6.77 6.10 0.16 0.15 1 1

2 R1 0.074 0.075 0 0 2.87 3.13 2.92 3.00 -0.11 -0.10 0 0

3 L2 0.094 0.102 4 5 3.99 3.98 5.93 5.57 0.14 0.13 1 1

4 R2 0.063 0.071 0 0 2.82 2.85 3.15 3.09 0.08 0.08 0 0

5 L3 0.066 0.691 0 0 2.21 2.36 2.21 2.22 0.10 0.08 0 0

6 R3 0.068 0.081 2 1 2.95 3.06 2.90 2.96 -0.15 -0.13 1 1

7 L4 0.074 0.084 0 0 2.68 2.82 2.96 2.89 -0.02 -0.03 0 0

8 R4 0.077 0.080 1 0 3.12 3.05 3.23 3.28 0.06 0.08 -1 0

9 L5 0.078 0.084 0 0 2.65 2.84 2.84 2.84 -0.03 -0.03 0 0

10 R5 0.073 0.081 1 2 3.2 3.31 3.22 3.31 -0.12 -0.08 1 -1

11 L6 0.065 0.077 0 0 2.69 2.78 3.17 3.10 -0.08 -0.09 0 0

12 R6 0.060 0.062 1 0 3.02 2.89 2.85 2.61 -0.02 0.01 -1 0

13 L7 0.074 0.083 0 0 2.81 2.74 2.88 2.85 0.06 0.06 0 0

14 R7 0.074 0.081 1 0 2.87 2.80 3.00 2.86 0.11 0.09 0 0

As appears from Table 1, the results of bootstrap averaged signals are close
to the original signal indicating that our results are reliable. Columns 3 and
4 of Table 1 show the values of λ1 (is rounded) for each colour marker. The
values λ1 are positive for all samples (individuals with TMD and healthy subjects)
indicating that they have chaotic behavior. However, this value for the individuals
with TMD, rows 1 and 3, is larger than those for healthy subjects.

Feature 2 represents the number of outliers for all subjects. It should be
noted that outliers are often the special points of interest and their identification
is the main purpose of the investigation for instance in medicine may indicate the
diseases. Here, the outliers represent the click events in either opening or closing
process. The number of outliers for individuals with TMD is greater than those
for healthy ones indicating that click is more frequent in the group of individuals
with TMD.

A large ratio between the peak amplitude and the variance of a signal is a
typical identifier for the click which is shown in feature 3. The normal chewing
process is usually distributed about its mean value. Therefore, a low ratio is
expected for a health subject, whilst the chewing process for an individuals with
TMD has a high value. As the results show, the same pattern obtained here.

Features 4 and 5 indicate how clicks change the distribution of chewing pro-
cess. Feature 6 is useful to distinguish between the peaks in the signals during
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the chewing process related to TMD and other non-relevant peaks. The results of
feature 2 are presented in columns 5 and 6. As it is shown in these columns, the
number of extreme values for the individuals with TMD is greater than those for
healthy subjects which confirms the significance of this feature for classification.

SVM is used to separate TMD and non-TMD classes based on the above
features. 14 data segments from 7 subjects were used for training and the data
from another 7 subjects were used for testing. A linear kernel was used. In
order to test the classification we used cross-validation to test the accuracy of the
SVM performance. In the cross-validation procedure we used 70% of the data as
training examples and 30% for testing with no overlapping. The cross-validation
was performed 10 times, each time the data were randomly rearranged, in order
to yield a better estimate of the error. To test the classification results, we
compared the classification results with the impressions by our expert clinician.
As the result, we were able to classify correctly all the subjects into TMD or
non-TMD subjects.

6. Conclusions

In this paper, we attempted to use an efficient classification system followed by
measurement of a set of carefully selected features to classify the subjects suffering
from the most common type of TMD, namely click, from visual data. This
provides a simple non invasive and non intrusive procedure for TMD diagnosis.
The TMD classifier works based on visual analysis of facial movement. We used
a number of carefully selected features extracted from movement of the markers
positioned on subjects’ faces. In our approach the features are related to both
static and dynamic visual variables measured from a number of time sequences
corresponding to different subjects within different time intervals, and classified
using SVM. The SVM correctly classified the two-class data for all subjects.
SVM has been verified as a computationally cost effective method capable of
classifying separable and nonseparable data through application of linear and
nonlinear kernels. Furthermore, using bootstrap technique the designed classifier
was tested and the results obtained from the original data were confirmed. It is
achieved that even in the cases of mild TMD the classifier can obtain close to
100% correct classification.
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