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Abstract: In this paper, we use generalized influence function and general-
ized Cook distance to measure the local influence of minor perturbation on
the modified ridge regression estimator in ridge type linear regression model.
The diagnostics under the perturbation of constant variance and individual
explanatory variables are obtained when multicollinearity presents among
the regressors. Also we proposed a statistic that reveals the influential cases
for Mallow’s method which is used to choose modified ridge regression es-
timator biasing parameter. Two real data sets are used to illustrate our
methodologies.
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1. Introduction

In most applications of regression analysis, the regressors are found not to be
orthogonal. Sometimes, the lack of orthogonality is not a serious problem. But,
when the regressors are nearly perfectly linearly related, the inferences based
on the regression model can be misleading. When there exist near linear de-
pendencies between the regressors, the problem of multicollinearity is said to be
present. When the method of ordinary least squares estimator (OLSE) is applied
to multicollinearity data, poor estimates of the regression coefficients could be
obtained. One of the solutions to solve the problem of multicollinearity is the use
of biased estimator. There are many biased estimation procedures are proposed
in literature; among which the ridge type estimations are very popular.

The effect of influential observations on the parameter estimates of OLSE re-
gression model received considerable attention in the last three decades. However,
very little attention has been given to the problem of influential observations in
the biased estimations. Many papers and texts address the problems of multi-
collinearity and influential observations in linear unbiased estimation (see Cook,
1977; Belsley et al., 1980).
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The local influence approach was proposed by Cook (1986) as a general
method for assessing the influence of minor perturbations of a statistical model
and the approach has been applied to a number of influence analysis problems.
Some of the recent papers are Shi (1997) and Shi and Wang (1999) studied the
local influence analysis in principal component analysis and ordinary ridge re-
gression estimator respectively.

In this paper, we intend to analyze the local influential observations on mod-
ified ridge regression estimator (MRRE) using the minor perturbation method.
This paper is composed of six sections. Section 2 gives the background of the
study. Section 3 derives the local influence diagnostics of MRRE including the
perturbation of constant variance and individual explanatory variables. Section
4 provides a diagnostic for detecting the local influential observations of choos-
ing the MRRE biasing parameter. Section 5 reports examples using two real
macroeconomic data sets. Comments are given in last section.

2. Background

A matrix multiple regression model using Walker and Birch (1988), takes the
form

y = 1β0 + Xβ1 + ε, (2.1)

where y is an n × 1 vector of observable random variable, 1 is an n × 1 vector
of ones, β0 is an unknown parameter, X = (x1, · · · ,xm) is an n × m centered
and standardized known matrix (1′xi = 0,x′ixi = 1, i = 1, · · · ,m), β1 is a m× 1
vector of unknown parameters and ε is an n× 1 vector of unobservable random
errors with E(ε) = 0 and V ar(ε) = σ2In where In is an identity matrix of order
n.

Let Z = (1,X) and β = (β0,β
′
1)
′ then the OLSE of β is β̂ = (Z′Z)−1Z′y.

The estimator of σ2 is given by s2 = e′e/(n − p), where e = y − Zβ̂ residual
vector and p = m + 1. When there exists strong near linear relationship among
the columns of matrix Z, it can be said that multicollinearity exists in the data
set.

To deal with multicollinearity problems, ridge type biased estimation tech-
niques are often used. The ordinary ridge regression estimator (ORRE) intro-
duced by Hoerl and Kennard (1970a), is defined as

β̂R = (Z′Z + kI∗p)
−1Z′y, (2.2)

where I∗p = diag(0, 1, · · · , 1) and k > 0 is called ridge biasing parameter. β̂R

is a biased estimator, however, the variances of its elements are less than the
variances of the corresponding elements of the β̂ for suitable k.
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Swindel (1976) introduced one ridge type estimator based on prior information
which is called MRRE and it is defined as

β̂(k,b) = (Z′Z + kI∗p)
−1(Z′y + kb), (2.3)

where k > 0 is MRRE biasing parameter, b is a m× 1 prior information vector.
The prior information vector is same as the ORRE (see Trenkler, 1988).

A number of studies revealed the effect on MRRE. For instance, Pliskin (1987)
compared the mean squared error matrix of the ORRE and MRRE; Kaçiranlar
et al. (1998) and Wijekoon (1998) analyzed mean squared error comparisons of
the restricted ridge regression estimator (RRRE) and MRRE and Groß (2003)
used this estimator to develop a new RRRE. They proved that MRRE is superior
to OLSE, ORRE and RRRE in mean squared error criteria.

The key problem in the MRRE is to choose the value of biasing parameter
k. There are several methods for selecting the value of k, among which Hoerl
and Kennard’s an iterative procedure (Hoerl and Kennard, 1976), Mcdonald-
Galarneau’s method (Mcdonald and Galarneau, 1975), Cp statistic criterion (Mal-
lows, 1973), GCV criterion (Wahba et al., 1979), PRESS procedure and VIF
procedure (Marquardt, 1970) are popular.

In this paper, we use Mallows (1973) Cp statistic to choose k. The biasing
parameter k is chosen by minimizing Mallows Cp and it is modified for MRRE is

C(k,b) =
SSR(k,b)

s2
+ 2tr(H(k,b))− (n− 2), (2.4)

where SSR(k,b) is the sum of squares residual of MRRE and s2 is the estimator
of σ2 from OLSE, H(k,b) is hat matrix of the MRRE and H(k,b) = Z(Z′Z +
kI∗p)

−1[Z′ + k(Z′Z + kI∗p)
−1Z′] = Z(Z′Z + kI∗p)

−1(Z′ + kM) where M = (Z′Z +
kI∗p)

−1Z′ from prior information.

3. Local Influence Diagnostics

In a single case influential observation, we can use the case deletion method
(see Jahufer and Chen, 2009). However, for our current case, it is almost impos-
sible to derive an exact formula for β̂(k,b)(i) because of the scale dependency of

the MRRE, where β̂(k,b)(i) is the MRRE without the i-th observation. That is,
Z(−i) (the Z with the i-th row deleted) has to be rescaled to unit length before
computing β̂(k,b)(i). Also, the measures induced by the case deletion method of-
ten suffer from masking effects. The main purpose of this paper then is to derive
an alternative method, local influence analysis, employed to study the influence
of observations on the MRRE.
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Shi and Wang (1999) suggested the local influence, in which the generalized
influence function (GIF) and generalized Cook (GC) statistic are defined to as-
sess the local change of small perturbation on some key issues. The generalized
influence of a concerned function of quantity T ∈ Rp is given by

GIF (T, l) = lim
a→0

T(ω0 + al)−T(ω0)

a
, (3.1)

where ω = ω0 + al ∈ Rn represents a perturbation, ω0 is a null perturbation
which satisfies T(ω0) = T and l ∈ Rn denotes an unit length vector. To assess
the influence of the perturbations on T, the GC statistic is defined as

GC(T, l) = [GIF (T, l)]′M[GIF (T, l)]/c, (3.2)

where M is a p× p positive or semi positive definite matrix and c is a scalar. By
minimizing the absolute value of GC(T, l) with respect to l, a direction lmax(T)
is obtained. This direction shows how to perturb the data to obtain the greatest
local change in T. Thus, it can be used as a main diagnostic. Maximum value
GCmax(T ) = GC(T, lmax) indicates the serious local influence. This method
removes the need of likelihood assumption.

3.1 Perturbing the constant variance

Here, the assumption of the constant variance in model (2.1) is simultane-
ously perturbed. This perturbation scheme is a better way to handle cases badly
modeled (Lawrance, 1988). The distribution of ε under the perturbation becomes

εω ∼ N(0, σ2W−1), (3.3)

where W = diag(ω) is a diagonal matrix with diagonal elements of ω′ =
(ω1, · · · , ωn). Let ω = ω0 + al, where ω0 = 1, the n-vector of ones and
l′ = (l1, · · · , ln). The perturbed version of the MRRE is

β̂(k,b)(ω) = (Z′WZ + kI∗p)
−1(Z′WY + kb). (3.4)

But we know

(Z′WZ + kI∗p)
−1

= (Z′Z + kI∗p)
−1 − a(Z′Z + kI∗p)

−1Z′D(l)Z(Z′Z + kI∗p)
−1 + 0(a2),

where D(l) = diag(l), so from (3.4) we can have

β̂(k,b)(ω) = β̂(k,b) − a[(Z′Z + kI∗p)
−1Z′D(l)Z(Z′Z + kI∗p)

−1(Z′Y + kb)

+(Z′Z + kI∗p)
−1Z′D(l)Y] + 0(a2).
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Therefore the GIF of β̂(k,b)(ω) under the perturbation is

GIF (β̂(k,b), l) = (Z′Z + kI∗p)
−1Z′D(l)[Y− Zβ̂(k,b)].

The residual vector of MRRE is e(k,b) = Y − Zβ̂(k,b), then the above equation
becomes

GIF (β̂(k,b), l) = (Z′Z + kI∗p)
−1Z′D(e(k,b))l. (3.5)

Analogous to case deletion, two versions of the generalized Cook statistic of β̂(k,b)

can be constructed:

GC1(β̂(k,b), l) = l′D(e(k,b))Z(Z′Z + kI∗p)
−1(Z′Z)(Z′Z + kI∗p)

−1Z′D(e(k,b))l/ps
2

(3.6)
and

GC2(β̂(k,b), l) = l′D(e(k,b))Z(Z′Z)−1Z′D(e(k,b))l/ps
2. (3.7)

In (3.6) and (3.7) M scaled on the OLSE and MRRE framework respectively.
That is Cov(β̂) = σ2(Z′Z)−1 and Cov(β̂(k,b)) = σ2(Z′Z + kI∗p)

−1(Z′Z)(Z′Z +

kI∗p)
−1.

Hence, the associated influential diagnostics denoted by l
(1)
max(β̂(k,b)) and

l
(2)
max(β̂(k,b)) are the eigenvectors corresponding to the largest absolute eigen-

values for matrices D(e(k,b))Z(Z′Z + kI∗p)
−1(Z′Z)(Z′Z + kI∗p)

−1Z′D(e(k,b)) and

D(e(k,b))Z(Z′Z)−1Z′D(e(k,b)) from (3.6) and (3.7) respectively. Then, GC
(1)
max =

GC1(β̂(k,b), l
(1)
max) and GC

(2)
max = GC2(β̂(k,b), l

(2)
max) can be used to measure the

impact of the local influential observations.

3.2 Perturbing the explanatory variables

In this subsection we consider the influence perturbation of explanatory vari-
ables on the MRRE. For simplicity, we only consider the individual perturbation
of m explanatory variables. The i-th column of Z is perturbed by

Zω = Z + asild
′
i, (3.8)

where a is limiting coefficient and l ∈ Rn denotes an unit length vector, di is
p × 1 vector with a 1 in the i-th position and zeroes elsewhere. si denotes the
scale factor and accounts for the different measurement units associated with the
columns of Z, i = 2, · · · , p. Under this perturbation, we can easily verify that

β̂(k,b)(ω) = (Z′ωZω + kI∗p)
−1(Z′ωY + kb). (3.9)
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In equation (3.9), (Z′ωZω + kI∗p)
−1 can expand as

(Z′ωZω + kI∗p)
−1 = (Z′Z + kI∗p)

−1 − asi[(Z′Z + kI∗p)
−1

(Z′ld′i + dil
′Z + asidil

′ld′i)(Z
′Z + kI∗p)

−1] + 0(a2)

and (Z′ωY + kb) = [(Z′Y + kb) + asidil
′Y]. Hence, (3.9) becomes

β̂(k,b)(ω)

= β̂(k,b) − asi(Z′ωZω + kI∗p)
−1[dil

′Y− Z′ld′i(Z
′
ωZω + kI∗p)

−1(Z′ωY + kb)

−dil
′Z(Z′ωZω + kI∗p)

−1(Z′ωY + kb)] + 0(a2).

Therefore GIF for individual explanatory variable perturbation is

GIF (β̂(k,b)(ω), l) = si(Z
′Z + kI∗p)

−1[die
′
(k,b) − β̂

(i)
(k,b)Z

′]l, (3.10)

where β̂
(i)
(k,b) is the i-th element of β̂(k,b).

Therefore, the GC statistic of β̂(k,b)(ω) is

GC(β̂(k,b)(ω), l) = [GIF (β̂(k,b)(ω), l)]′M[GIF (β̂(k,b)(ω), l)]/ps2.

Using (3.10), two versions of GC statistic can be written

GC1(β̂(k,b)(ω), l) (3.11)

=
s2i l
′

ps2
[e(k,b)d

′
i − β̂

(i)
(k,b)Z](Z′Z + kI∗p)

−1(Z′Z)(Z′Z + kI∗p)
−1[die

′
(k,b) − β̂

(i)
(k,b)Z

′]l

here, M is based on the OLSE framework and

GC2(β̂(k,b)(ω), l) =
s2i l
′

ps2
[e(k,b)d

′
i − β̂

(i)
(k,b)Z](Z′Z)−1[die

′
(k,b) − β̂

(i)
(k,b)Z

′]l (3.12)

in (3.12), M is based on MRRE framework.
The diagnostic directions lmax are obtained through finding the eigenvectors

corresponding to the largest absolute eigenvalues of matrices in (3.11) and (3.12)
respectively.

4. Assessing Influence on the Section of MRRE Parameter

The possible influential observations in the data may have serious impacts on
the estimation of the MRRE parameter. The estimation of MRRE parameter k
is determined from data by imposing some criteria. In this section, using local
influence analysis, we give a method to study the detection of this kind of data.
The selection criteria is given in (2.4) and the perturbation scheme in (3.3).
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If we let C(k,b)(ω), SSR(k,b)(ω) and H(k,b)(ω) denote the perturbed versions
of C(k,b), SSR(k,b) and H(k,b) respectively, then (2.4) becomes

C(k,b)(ω) =
SSR(k,b)(ω)

s2
+ 2tr(H(k,b)(ω))− (n− 2). (4.1)

Let k̂(ω) be the estimator of k obtained by minimizing (4.1), then the main
diagnostic direction of local influence for k̂, denoted by lmax(k̂), has the form
(Lawrance, 1988; Thomas and Cook, 1990; Shi, 1997; Shi and Wang, 1999):

lmax(k̂) ∝ ∂k̂(ω)

∂ω
(4.2)

evaluated at ω = ω0, where k̂(ω0) = k̂ denotes the value by minimizing (2.4).
Since C(k,b)(ω) achieves the local minimum at k̂(ω), we can have

∂C(k,b)(ω)

∂k
|k=k̂(ω) = 0. (4.3)

Differentiating (4.3) with respect to ω then we get

∂2C(k,b)(ω)

∂k2
∂k̂(ω)

∂ω
|ω=ω0,k=k̂ +

∂2C(k,b)(ω)

∂k∂ω
|ω=ω0,k=k̂ = 0.

This yields

∂k̂(ω)

∂ω
|ω=ω0 = −

∂2C(k,b)(ω)

∂k∂ω
∂2C(k,b)(ω)

∂k2

|ω=ω0,k=k̂. (4.4)

Under perturbation (3.3), the sum of the squares of the residual SSRk,b(ω) in
MRRE becomes

SSR(k,b)(ω) = Y′WY− (Z′WY + kb)′(Z′WZ + kI∗p)
−1Z′WY.

Using the knowledge of the matrix theory, we can obtain

∂SSR(k,b)(ω)

∂ωi
|ω=ω0 = (e

(i)
(k,b))

2, (4.5)

where e
(i)
(k,b) is i-th element of e(k,b).

But, we know e(k,b) = y− Z(Z′Z + kI∗p)
−1(Z′y + kb) then

∂e(k,b)
∂k = Z(Z′Z + kI∗p)

−1(β̂(k,b) − b)

= X(X′X + kIm)−1(β̂1(k,b) − b1),
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where β̂1(k,b) is the MRRE of β1 and b1 is prior information of b. Hence, we can
have

∂2SSR(k,b)(ω)

∂k∂ωi
|ω=ω0,k=k̂ = 2e

(i)
(k,b)xi(X

′X + kIm)−1(β̂1(k,b) − b1) (4.6)

where xi is the i-th row of matrix X.
A similar matrix partial differentiation for tr(H(k,b)(ω)) = tr[Z(Z′WZ +

kI∗p)
−1Z′W] + tr[kW

1
2 Z(Z′WZ + kI∗p)

−1M] gives

∂tr(H(k,b)(ω))

∂ω |ω=ω0

= −Z(Z′Z + kI∗p)
−1(Z′Z)(Z′Z + kI∗p)

−1Z′ + Z(Z′Z + kI∗p)
−1Z′

+k
2M′(Z′Z + kI∗p)

−1Z′ − kZ(Z′Z + kI∗p)
−1(Z′Z)(Z′Z + kI∗p)

−1M,

the second order partial differentiation of the above equation with respect to k
gives

∂2tr(H(k,b)(ω))

∂k∂ω |ω=ω0,k=k̂ = Z(Z′Z + kI∗p)
−2(Z′Z)(Z′Z + I∗p)

−1Z′

+Z(Z′Z + kI∗p)
−1(Z′Z)(Z′Z + I∗p)

−2Z′

−1
2Z(Z′Z + kI∗p)

−2Z′ − k
2Z(Z′Z + kI∗p)

−3Z′

−Z(Z′Z + kI∗p)
−1(Z′Z)(Z′Z + I∗p)

−2Z′

+kZ(Z′Z + kI∗p)
−2(Z′Z)(Z′Z + I∗p)

−2Z′

+kZ(Z′Z + kI∗p)
−1(Z′Z)(Z′Z + I∗p)

−3Z′.

But, we know matrices (Z′Z), (Z′Z+kI∗p)
−1, (Z′Z+kI∗p)

−2 and (Z′Z+kI∗p)
−3

are symmetric, hence the above second order partial differentiation becomes

∂2tr(H(k,b)(ω))

∂k∂ω |ω=ω0,k=k̂ = Z(Z′Z + kI∗p)
−2(Z′Z)(Z′Z + I∗p)

−1Z′

−1
2Z(Z′Z + kI∗p)

−2Z′ − k
2Z(Z′Z + kI∗p)

−3Z′

+2kZ(Z′Z + kI∗p)
−2(Z′Z)(Z′Z + I∗p)

−2Z′.

Therefore, the i-th element of lmax(k̂) obtains

l
(i)
max(k̂) ∝ ∂k̂(ω)

∂ωi
= e

(i)
(k,b)xi(X

′X + kIm)−1(β̂1(k,b) − b1)/s
2

+xi(XX + kI∗p)
−2(X′X)(X′X + I∗p)

−1x′i
−1

2xi(X
′X + kI∗p)

−2x′i − k
2xi(X

′X + kI∗p)
−3x′i

+2kxi(X
′X + kI∗p)

−2(X′X)(X′X + I∗p)
−2x′i

(4.7)

The index plot of lmax(k̂) can reveal the influential points that have high impacts
on the selection of the MRRE parameter in the linear ridge type regression.
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5. Examples

Example 1. Macroeconomic Impact of Foreign Direct Investment (MIFDI) Data
Sun (1998) studied MIFDI in China 1979-1996. Based on his theory, the MIFDI
data were collected in Sri Lanka from 1978 to 2004 to illustrate our methodologies.
The data set consists four regressors (Foreign Direct Investment, Gross Domestic
Product Per Capita, Exchange Rate and Interest Rate) and one response variable
(Total Domestic Investment) with 27 observations. The selected variables were
tested for statistical conditions: (i) Cointegration, (ii) Constant Error Variance
and (iii) Multicollinearity. The test results showed that: (i) Variables are cointe-
grated with a same cointegration coefficient I(1) at 1% level of significance, (ii)
The estimated Durbin-Watson value for the linear model is 2.0131 so, satisfied
the constant error variance condition and (iii) The scaled condition number of
this data set is 31,244, this large value suggests the presence of an unusually high
level of severe multicollinearity among the regressors (the proposed cutoff is 30;
see Belsley et al., 1980). The MRRE biasing parameter is estimated for this data
set k=0.0131.

We analyze the constant variance perturbation. The index plots of l
(1)
max(β̂(k,b))

and l
(2)
max(β̂(k,b)) are shown in Figure 1 and Figure 2 respectively. From these two

index plots the most five influential cases are (3, 2, 15, 23, 4) and (3, 23, 15, 2,
14) using OLSE and MRRE framework respectively. In both influential measures
the detected influential cases approximately same, but only the order of influence
magnitude is changed.
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Figure 1: Index plot of l
(1)
max(β̂(k,b))
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Figure 2: Index plot of l
(2)
max(β̂(k,b))

Next, we consider the perturbation of individual explanatory variables. The

maximum values of l
(2)
max(β̂(k,b)) for separately perturbing explanatory variables

Xi, i = 1, · · · , 4 are 0.148787, 1.72859, 0.697375 and 0.918912 respectively using
MRRE framework. Hence local change caused by perturbing X2, X3 and X4 are
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largest among the others on MRRE. The most five influential cases when X2, X3

and X4 are perturbed (3, 27, 18, 2, 4), (3, 27, 23, 14, 15) and (3, 27, 14, 22, 15)
respectively.

Finally, we study the influence on the selection of MRRE biasing parameter
k. An index plot of lmax(k̂) is given in Figure 3. From this index plot the most
five influential cases are (3, 23, 4, 27, 2) in this order.

Observation Number

lm
a

x
(k

)

272625242322212019181716151413121110987654321

15

10

5

0

-5

0

Figure 3: Index plot of lmax(k̂).

For verifying these results, we contribute Table 1 of modified ridge regression
estimates for the full data and the data without some influential cases detected
by local influence methods. In this table, the parenthesis value indicates the
percentage of change in the parameter value. The results reveals that case 3 is
the most influential case while case 14 is the seventh influential point among the
detected cases. At the same time parameter β̂(k,b)0 has big changed and β̂(k,b)2

has small changed among the others when influential cases are deleted. It is also
clear from this table, that omission of single influential cases 3, 23, 15, 27, 2, 4
and 14 contribute the substantial change in the MRRE. Among all of these 3,
23, 27, 2 and 4 have a remarkable influence while cases 15 and 14 have a little
influence.

Example 2. Longley Data
The second data set is Longley (1967) to explain the influential observations on
the MRRE. The scaled condition number of this data set is 43,275 (see Walker
and Birch, 1988). This large value suggests the presence severe multicollinearity
among regressors. Cook (1977) used this data to identify the influential obser-
vations in OLSE using Cook’s Di and found that cases 5, 16, 4, 10, and 15 (in
this order) were the most influential cases. Walker and Birch (1988) analyzed the
same data to detect anomalous cases in ridge regression using global influence
method. They observed that cases 16, 10, 4, 15 and 5 (in this order) were most
influential observations. Shi and Wang (1999) also analyzed the same data to
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Table 1: The most seven influence observations according to local influence
analysis in MRRE

β̂(k,b) Full Data Case Deleted

(3) (23) (15) (27) (2) (4) (14)

β̂(k,b)0 0.3474 -0.1449 0.4620 0.3950 0.3518 0.2769 0.2985 0.3892

(141.7%) (33.0%) (13.7%) (1.3%) (20.3%) (14.1%) (12.0%)

β̂(k,b)1 0.0933 0.0697 0.0931 0.0962 0.0876 0.1049 0.0968 0.0923

(25.3%) (0.2%) (3.2%) (6.1%) (12.5%) (3.8%) (1.0%)

β̂(k,b)2 1.1466 1.2238 1.1267 1.1468 1.1703 1.1188 1.1515 1.1534

(6.7%) (1.7%) (0%) (2.1%) (2.4%) (0.4%) (0.6%)

β̂(k,b)3 -0.4588 -0.4769 -0.4227 -0.4828 -0.5459 -0.3868 -0.4809 -0.4929

(4.0%) (7.9%) (5.2%) (19.0%) (15.7%) (4.8%) (7.4%)

β̂(k,b)4 0.2231 0.2049 0.2047 0.2328 0.2722 0.2121 0.2434 0.2365

(6.2%) (8.2%) (4.3%) (22.0%) (4.9%) (9.1%) (6.0%)

detect influential cases on the ridge regression estimator using local influence
method. They detected cases 10, 4, 15, 16, and 1 (in this order) were most
anomalous observations. Jahufer and Chen (2009) also used the same data to
identify influential cases in modified ridge regression estimator using global in-
fluence method and they identified 16, 4, 1, 10 and 15 (in this order) were most
influential cases.

The affects of MRRE biasing parameter k on the influence of observations are
also studied by plotting C(k,b), Cook’s Di and DFFITSi against k. The value of
k that minimizes (2.4) for this data set is 0.0002.

We study the influence of observations on constant variance perturbation.

Analyzing the index plots of l
(1)
max(β̂(k,b)) for k = 0 and l

(2)
max(β̂(k,b)) for k =

0.0002, we found that cases (4, 1, 15, 16, 10) and (10, 4, 15, 16, 1) are the most
five influential observations using OLSE and MRRE framework in this order
respectively. The influential cases detected by these two methods are same but,
only the order of magnitude is changed.

we consider the perturbation of individual explanatory variables. The max-

imum values of l
(2)
max(β̂(k,b)) for separately perturbing explanatory variables Xi,

i = 1, · · · , 6 are 0.6376, 8.1347, 0.3140, 0.0494, 2.0168 and 6.6122 respectively.
Hence, local change caused by perturbing X2, X5 and X6 are the largest among
the others on MRRE. The most five influential cases when X2, X5 and X6 are
perturbed (10, 4, 15, 5, 1), (10, 4, 15, 6, 1) and (5, 15, 4, 7, 11) respectively.

Finally we estimate the lmax(k̂) values using (4.7). From the index plot of
lmax(k̂) cases 10, 16, 4, 15 and 1 in this order are the most five influential obser-
vations on MRRE parameter.

The influential observations detected by this study and the previous studies
Cook (1977), Walker and Birch (1988), Shi and Wang (1999) and Jahufer and
Chen (2009) are approximately same in Longley data set but, only the order of
magnitude is changed.
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6. Comments

In this paper, we have studied several local influence diagnostic measures
that seem practical and can play a considerable part in MRRE data analysis.
The local influence measures proposed focus on various outcomes of MRRE. Few
of the measures introduced focus on perturbing the constant variance, other on
perturbing the regressor variables and still on the selection of MRRE biasing
parameter. All the proposed measures are the function of residuals, leverage
points and MRRE coefficients.

Although no conventional cutoff points are introduced or developed for the
MRRE local influence diagnostic quantities, it seems that index plot is an opti-
mistic and conventional procedure to disclose influential cases. It is a bottleneck
for cutoff values for the influence method. Also, the issue of accommodating in-
fluential cases has not been studied. These are additional active issues for future
research study.
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