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Abstract: We consider a fully Bayesian treatment of radial basis function
regression, and propose a solution to the the instability of basis selection.
Indeed, when bases are selected solely according to the magnitude of their
posterior inclusion probabilities, it is often the case that many bases in
the same neighborhood end up getting selected leading to redundancy and
ultimately inaccuracy of the representation. In this paper, we propose a
straightforward solution to the problem based on post-processing the sample
path yielded by the model space search technique. Specifically, we perform
an a posteriori model-based clustering of the sample path via a mixture of
Gaussians, and then select the points closer to the means of the Gaussians.
Our solution is found to be more stable and yields a better performance on
simulated and real tasks.

Key words: High-dimensional function approximation, radial basis func-
tions, kernels, optimal prediction, Bayesian model selection, mixture mod-
elling.

1. Introduction

We are given a training set D = {(xi, yi), i = 1, · · · , n : xi ∈ X ⊂ IRp, yi ∈
IR}, where the yi’s are realizations of Yi = f∗(xi) + εi, with the εi’s representing
the noise terms, herein assumed to be independently normally distributed with
mean 0 and variance σ2. Our goal is to use the information contained in the data
D to build an estimator f̂n of the true unknown function f∗ that achieves the
smallest mean squared error. It turns out that, without some extra knowledge
or at least assumptions about some properties of f∗ like its smoothness, finding
a decent estimator is a task that belongs in the category of ill-posed problems.
Typically, one assumes that f∗ belongs to some normed function space, say H, in
which a global property of f∗ like its smoothness is defined. We therefore need
to find

arg min
f∈H

{
n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H

}
(1.1)
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where λ > 0 is known as the smoothing parameter or regularization parameter,
chosen to achieve a trade-off between approximation and interpolation. From a
practical and/or computational perspective, it is natural to wonder what kind of
function spaces can be used, and how to compute the desired estimator of f∗ in
that space. In this paper, we assume that H is a reproducing kernel Hilbert space
(RKHS), meaning that H is a Hilbert space of functions f : X → IR equipped
with a unique kernel K : X × X → IR, satisfying

1. K(·,x) ∈ H for all x ∈ X ,

2. f(x) = 〈f,K(·,x)〉H for all x ∈ X and all f ∈ H.

It turns out that in an RKHS, the reproducing kernel K is always symmetric
and positive semi-definite, with the consequence that for any given set of points
{x1,x2, · · · ,xn} from X , the corresponding matrices K = (K(xi,xj))i,j are sym-
metric and positive semi-definite. One of the earliest uses of reproducing kernel
Hilbert spaces in statistical function estimation can be traced back to the seminal
work by Craven and Wahba (1979). For our purposes though, the most impor-
tant result is the so-called representer theorem of Kimeldorf and Wahba (1971)
of which a simplified version is given below, and for which a complete proof can
be found in Wahba (1990).

Theorem 1.1 Let H ⊆ C(X ) be a reproducing kernel Hilbert space with repro-
ducing K. Then, for every function f ∈ H, problem (1.1) has a unique solution
fλ of the form

fλ =

n∑
j=1

wjK(·,xj) (1.2)

where the vector w = (w1,w2, · · · ,wn)> can be found as a solution to

arg min
w∈IRn

{
‖y −Kw‖22 + λw>Kw

}
(1.3)

with the matrix K given by K = (K(xi,xj))i,j .

The importance of the above theorem lies in the fact that not only does it
provide an objective functional that leads to a unique estimator of f∗, but it also
gives a way to actually compute that solution. Now, the representation depicted
in (1.2) makes no specific assumption about the form of the kernel K. For the
purposes of this paper, we shall consider translation invariant radial kernels,
meaning that we will use kernels K : X ×X → IR such that there exists an even
function φ : IR+ → IR such that

K(xi,xj) = φ(‖xi − xj‖)
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for all xi,xj ∈ X , where ‖ · ‖ is the Euclidean norm in IRp. As a result, we will
be approximating the unknown true function f∗ using functions fλ such that for
a given x ∈ X ,

fλ(x) =

n∑
j=1

wjφ(‖x− xj‖). (1.4)

The real values w1,w2, · · · ,wn are known as the weights and the vectors x1,x2,
· · · ,xn are the centers. Function approximators of the form (1.4) became known
in the Neural Networks and Machine Learning community as Radial Basis Func-
tion Networks where their popularity skyrocketed from the late 1980s to the
entirety of the 1990s and even up until the present day, thanks in part to the so-
called universal approximation theorem of Powell stated below, but maybe most
importantly to their natural ability to provide approximator of smooth functions
in high dimensional spaces. It is important however to note that the formulation
of Radial Basis Function Networks assumes the existence of a fixed number k of
centers, where k � n is substantially less than the number n of training samples.
In other words, a typical RBF network will be of the form

fλ(x) =
k∑
j=1

w∗jφ(‖x− x∗j‖). (1.5)

where the centers x∗1, · · · ,x∗k are p-dimensional vectors to be learned from the
training data along with their corresponding weights w∗1, · · · ,w∗k. As far as the
basis functions are concerned, the most popular choices include the so called
Gaussian radial basis function kernel with φ(u) = exp(−ru2) where r represents
the bandwidth. Some generalizations of the Gaussian RBF kernel use a different
bandwidth for each of the attributes of the input vector x. Other somewhat pop-

ular choices of kernels include: the multiquadrics kernel with φ(u) =
(
ru2 + 1

) 1
2 ,

the inverse multiquadrics kernel with φ(u) =
(
ru2 + 1

)− 1
2 and the thin plate

spline kernel for which φ(u) = u2 log (u). The universal approximation theorem
for RBF networks, see Park and Sandberg (1991), can be stated as follows:

Theorem 1.2 Let Φ : IRp → IR be an integrable bounded function such that Φ
is continuous almost everywhere and∫

IRp

Φ(x)dx 6= 0.

Let HΦ denote the family of RBFs generated by Φ, i.e.

HΦ =

{
f : ∀x ∈ IRp, f(x) =

k∑
i=1

w∗
i Φ

(
x− x∗

i

σ

)
, k ∈ N,x∗

i ∈ IRp,wi ∈ IR, σ > 0

}
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Then, for any continuous function f∗, ∃f̃k ∈ HΦ such that ‖f̃k−f∗‖q → 0, where
the norm is defined by

‖g‖q =

(∫
|g(x)|qdx

)1/q

In other words, for any continuous function f∗, there exist (a) a kernel K along
with the corresponding Φ, (b) an optimum number of basis functions k, (c) a set
of weights {w∗i }ki=1 and (d) a set of centers {x∗i }ki=1 such that the corresponding
function f̃k ∈ HΦ approximates f∗ to any desired precision ε.

Theorems 1.1 and 1.2 provide all the needed theoretical justification for us-
ing the large class of radial basis function approximators in regression. From a
statistical model selection perspective, one could think of equation (1.4) as the
deterministic portion of the full model while equation (1.5) would represent the
deterministic portion of the optimal model once the most relevant atoms (bases)
have been selected. It turns out, thanks to Theorem 1.1, that the weights {wi}ni=1

of the full model can be estimated quite readily using traditional statistical esti-
mation tools, once the suitable basis function is chosen. Indeed, equation (1.3)
of Theorem 1.1 clearly defines the regularized optimization to be solved in or-
der to find the wi’s of the full model. For a suitable basis set however, it turns
out to be more important to select the most relevant bases, just like one would
want to select the most relevant variables in multiple linear regression. In other
words, while a full solution is important, a much more parsimonious solution
is more desirable for a variety of practical and theoretical reasons that will not
be detailed in the present paper. It suffices to note that many researchers have
proposed a variety of techniques for finding a sparse representation to equation
(1.4), essentially constructing equation (1.5). From a modeling standpoint, it is
important to note that Theorem 1.1 is a simplified version of a much general
theorem that allows the expansion to have a y-intercept captured by a different
basis. However, our simplified version does not lose generality, since we assume
throughout this paper that the data are standardized.

From a Bayesian perspective, equation (1.3) can be interpreted as the for-
mulation a Maximum A Posteriori estimation of the vector w, with a Gaus-
sian likelihood given by y ∼ N (Kw, σ2In) and a Gaussian prior given by
w ∼ N (0, (2λK)−1). This prior corresponds to the so-called Silverman’s g-
prior for w. It goes without saying that this formulation presupposes that the
matrix K is invertible, which unfortunately in most situations turns out not to
be the case, because of poor matrix conditioning, due either to the kernel, or
to aspects of the data. At the very least however, the formulation provides an
interesting starting point for considering a Bayesian perspective to the derivation
of a sparse representation of equation (1.4). First of all, it is worth noting that
the prior does not have to be Gaussian, and even when it turns out to be, the



Stable Radial Basis Function Selection 349

corresponding variance-covariance matrix does not have to be data-dependent as
in the Silverman’s g-prior case above. Given the Gaussian likelihood provided
by y ∼ N (Kw, σ2In), we seek to specify a prior over w such that the Bayesian
estimator w̃ of w is k-sparse, i.e. has only k nonzero entries. This problem of
sparse Bayesian learning in the context of radial basis function networks has been
scrutinized by several authors: Tipping (2001) has introduced and developed the
Relevance Vector Machine (RVM). The gist of the RVM approach lies in speci-
fying an independent Gaussian prior for each wi, each with a different precision
hyperparameter λi. It then turns out that the use of a suitably specified Gamma
distribution for each λi leads to marginal prior for the vector w that exhibits
sparsity inducing contours. Practically, the computed RVM solution contains
may λi that so large as to be considered infinite in magnitude, leading to the cor-
responding wi being deemed to be essentially 0. RVM estimates are essentially
obtained via Maximum A Posteriori. Perhaps it is worth pointing out that RVM
is really a Bayesian generalized ridge regression with a suitable choice of hyper-
prior for the rigde parameters. Fokoué (2008) adopts a fully Bayesian approach
to the same problem, essentially combining insights from Tipping (2001) and
Barbieri and Berger (2004) to derive a model space search strategy for selecting
the k most relevant basis elements from the original set of n provided by the full
model. It turns out however that the raw output of the search procedure has
potential of yielding unstable - in a sense that will be clarified later - estimates
of the quantities of interest. In this paper, we propose a post-processing of the
sample path that helps derive stable estimates. To help illustrate the point, let’s
assume that the underlying true function is

f∗(x) = sinc(x) =
sin(x)

x
, x ∈ [−10, 10].

Let’s now generate data points (xi, Yi) with Yi = f∗(xi)+εi, and εi
i.i.d∼ N (0, 0.22).

Finally, let’s assume a radial basis function representation with the underlying
kernel given by

K(xi,xj) = exp

(
−‖xi − xj‖2

2r2

)
.

The estimate of the length scale (bandwidth) r is found to be 2.2 for this dataset.
The fit in Figure 1(b) was obtained after using mixture modelling to postprocess
the sample path of the model search procedure. The fit is clearly better than the
one in Figure 1(a) which was obtained by simply picking the k vectors with the
largest prevalence. While Fokoué (2008) considered a variety of scenarios ranging
from orthogonal polynomial regression to traditional multiple linear regression,
this paper focuses solely on radial basis function regression. Following a notation
introduced by Barbieri and Berger (2004) and used in Fokoué (2008), we start by
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defining the full model

y = Kw + ε, (1.6)

where y = (y1, y2, · · · , yn)> and ε
iid∼ N (0, σ2In). Both Barbieri and Berger

(2004) and Fokoué (2008) considered selecting the most predictively optimal from
among submodels of the form

Mv : y = Kvwv + ε, (1.7)

where v = (v1, · · · , vn) is the model index, defined coordinate-wise as follows:

vi =

{
1, if the ith column of K is used by model Mv,
0, otherwise.

(1.8)

In equation (1.7) above, Kv ∈ IRn×m contains the columns of K corresponding
to the nonzero coordinates of v, and wv ∈ IRm is the corresponding vector of re-
gression coefficients. Here, m = |v| is simply the model size corresponding to the
number of nonzero regression coefficients. Clearly, the model selection problem at
hand is an old one. Both the statistics and machine learning literatures are rich
with a wide variety of model selection techniques that have been invented and
applied from both the frequentist and Bayesian perspectives. A distinct feature
of both Barbieri and Berger (2004) and Fokoué (2008) that is worth emphasizing
is that unlike the majority of authors before them, both these papers seek to se-
lect models for optimal prediction rather than model identification (explanation).
Fokoué (2008) goes a little further by proposing a more flexible counterpart to
the Median Probability Model (MPM) of Barbieri and Berger (2004), making it
possible to avoid cases of non existing solutions (albeit at the cost of somewhat
suboptimality) on the one hand and to handle cases of non full rank data matrix
on the other hand. The reader is referred to the two papers for more detailed
accounts of the techniques proposed therein. Despite providing a nice extension
to its predecessor, Fokoué (2008) handling of non full rank data matrix cases
produces model search results that tend yield rather unstable basis function se-
lections. The idea proposed in this paper helps circumvent that difficulty. The
rest of this paper is organized as follows: Section 2 provides a quick overview of
the model selection technique used. Section 3 presents motivating examples and
highlights the need for a better and more stable post processing of the sample
path obtained from the model space search. Section 4 presents a simple mix-
ture modelling approach to stabilizing the basis function selection, along with
illustrations of how the problem encountered earlier is solved using the proposed
technique. Section 5 provides some discussion and conclusion.
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(a) Fit from raw sample path (b) Fit through mixture modelling

Figure 1: Results of function approximation: (left) fit obtained using the raw
sample path; (right) Fit obtained after post processing the sample path using
mixture modeling

2. Aspects of Model Space Search

Our model selection approach is centered around the model index v, since the
entries of v indicate whether or not a particular atom is included in the model
under consideration. From Bayesian perspective, this translates into the need to
specify a prior on v and then deriving the corresponding posterior. Specifically,
our approach is based on the overall posterior probability that an atom is included
in a model out of 2n − 1 possible models.

Definition 1. The posterior inclusion probability for atom i is

pi ≡
2n−1∑
j=1

I(vij = 1)p(vj |y). (2.1)

pi as defined above is nothing but Pr(vi = 1|y), and represents the proportion
of times atom i is chosen by one of the 2n− 1 models for predicting the response
Y . It makes sense that the larger pi is, the more important and therefore relevant
atom i is. Obviously, no technique worth mentioning would dare to exhaustively
search among 2n − 1 models, even for the smallest of samples. In other words,
we do not explicitly calculate each pi based on 2n − 1: as remarked by Barbieri
and Berger (2004), it suffices to estimate the pi from the sample path yielded by
the model space search as we explain in details in the following section. First of
all, we use a noninformative prior for each atom, namely

Pr[vj = 1] =
1

2
, j = 1, · · · , n,
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so that each model index arises with equal probability p(v) = 1/2n, regardless
of its size. As for the model size k, it is implicitly tied to the model index. The
model search strategy that we use is based on the simulation of a continuous-
time birth-and-death process. Specifically, we consider a set A consisting of the
indices of those atoms that make up the current model. We then allow new atoms
to be added to A or atoms to be removed from A based on their contribution to
the marginal likelihood. With p(y|σ2, λ,v) representing the marginal likelihood
associated with model v, and v\{i} representing the (|v| − 1)-model without
atom i, the death rate δi for atom i is given by

δi ∝
p(y|σ2, λ,v\{i})
p(y|σ2, λ,v)

.

Once the δi’s are computed for all the atoms, the overall death rate δ =
∑|v|

i=1 δi
is computed to determine whether a birth or death needs to occur. We use an
overall constant birth rate ν, so that a birth occurs according to a Bernoulli draw
with parameter ν/(ν + δ). With

η ∼ Ber (ν/(ν + δ)) ,

the next event is a birth if η = 1. Within the birth-and-death process, an event
is either a birth or a death, and the time to the next event is assumed to be
exponentially distributed with parameter 1/(ν + δ),

t ∼ Exp (1/(ν + δ)) .

Starting at 0, one sweep of the birth-and-death process runs for a total T units of
time with each increment drawn from an exponential. This use of the exponential
distribution for the time between consecutive events dovetails with our use of a
truncated Poisson distribution as our prior for the size of the model. In this
paper, we consider the simplest of prior over the weights, namely the isotropic
Gaussian prior w ∼ N (0, λ−1In). Although this prior does not inherently have
the ability to yield sparse estimates of w, the fact that we search a large space of
models of varying size does not hinder our ability to select the atoms that yield
optimal prediction. With this prior, the much needed marginal likelihood for a
submodel Mv is Gaussian and given by,

p(y|σ2, λ,v) =
1√

(2π)n det(σ2In + λKvK
T
v)

exp

[
−1

2
yT(σ2In + λKvK

T
v)−1y

]
.

Putting all the above together, a pseudo-code for our model space search is given
below.
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Algorithm: Model space search

- Initialize A(0) with bn/2c indices randomly drawn from {1, 2, · · · , n}.

- Initialize posterior inclusion probabilities: pj = 0, j = 1, · · · , n .

- Repeat

- r := r + 1

- Update the active set
A(t) := birth-and-death(A(r−1), λ(r−1), (σ2)(r−1),y)

- Update the posterior inclusion probabilities
for j := 1 to n

if j ∈ A then pj := pj + 1

end
p(r) := (p1, p2, · · · , pm)

- Get new model size
k(r) := |A(r)| := length(A(r))

- Estimate current parameters
(λ(r), (σ2)(r)) := Gibbs-sampling(λ(r−1), (σ2)(r−1),A(r),y)

Until r = R

More details about the birth-and-death process simulation can be found in
Fokoué (2008).

3. Mixture Modeling of the Sample Path for Stability

Let’s consider once again the motivating example of the sinc function pre-
sented earlier. If we use our model space search strategy for this example, the
corresponding sample path allows us to obtain approximate distributions for both
the model size k and the model index v as shown on Figure 2. Figure 2(b) strongly
suggests k = 4 or k = 5 as the most plausible candidates for optimal model size.
We then consider picking the 4 or 5 atoms with the highest posterior inclusion
probabilities. However, due to good mixing and neighborhood effect, the 4 atoms
directly selected from Figure 2(a) suffer from what we call the ”redundancy of
potential prevalent atoms”. Indeed, two of the highest values of pj correspond to
two vectors that are virtually equal in magnitude. Hence the lesser quality of fit
seen on Figure 1(b) of our motivating example. This redundancy is indeed to be
expected when the raw sample path is used, partly because of the fact that the
representation of the function is in dual space with weights being direct functions
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Figure 2: Approximate distribution of atom prevalence and approximate dis-
tribution of model size

of the observations which in turn can be very close to one another. When such sit-
uations arise, they cause k-variable models to select all or most of the k prevalent
atoms in the same neighborhood. The problem is exacerbated when the number
of model space searches is made very large as shown in Figure 2(a). One could
argue that this situation is an artifact of the search technique, and that a solution
consists in redesigning the search technique. While that may be a viable solution,
we feel that for a well-mixing search algorithm like ours, it might be better to
seek a solution that leaves the search algorithm intact, and instead post processes
the output. That’s exactly the contribution of this paper. Noticing that the plot
of the distribution of the prevalence of atoms exhibits a multi-modal shape, it
seemed natural to extract the modes of this distribution and use those modes as
the prevalent points. The sample path of the model search procedure contains a
sequence {pi, i = 1, · · · , p} where pi represents the number of times atom i was
in the current model during the R searches of the model space. Figure 2(a)is
a plot of the histogram of such a sample path. Clearly, its shape suggests the
plausibility of mixture modeling as a way to extract the modes. Let’s consider
{pi, i = 1, · · · , p} where pi represents the number of times atom i was in the
current model during the R searches of the model space. The key idea consists
in forming a new sample of size R from the sample path. One could think of it
as drawing a stratified sample of sorts, with each xi being replicated pi times to
reflect its prevalence. It actually turns out that one could form the new sample S
during the model space search by updating it after each sweep of the simulation
of the birth-and-death process. Basically, having initialized S as an empty set,
augment it after each sweep of the process using

S := S ∪
{
xj
}
,
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for all the atoms currently in the active set, i.e., for all j such that j ∈ A.
Alternatively, one could post-process the sample path as follows:

Algorithm: Postprocessing of the sample path

Initialize sample S as empty

for i = 1 to n

S := S ∪
{
pi copies of xi

}
.

end

One can think of this operation as reconstructing the original sample from a
stem and leaf plot. We now treat S as a random sample from the distribution of
a random variable U . Using the fact that the overall search scheme also produces
the most probable number of prevalent atoms k∗, and considering the fact the
above approximate distribution of the indices exhibits strong multimodality, it
is reasonable to use a mixture of k∗ Gaussians to model the distribution of U ,
namely

p(u) =

k∗∑
`=1

π`p`(u;µ`, σ
2
` ).

An implementation of the standard EM algorithm for mixtures can then be used
to find estimates of the centers µ̂1, · · · , µ̂k∗ . Now, for j = 1, · · · , k∗, the prevalent
vectors {x∗1, · · · ,x∗k∗} are given by

x∗j = arg min
{x1,··· ,xn}

‖xi − µ̂j‖2,

from which the corresponding fit is given by

f̂(x) =

k∗∑
j=1

ŵ∗jK(x,x∗j )

3.1 Example of Fit Using Mixture Modelling

Let’s consider once again the underlying true function

f(x) = sinc(x) =
sin(x)

x
,
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with data points (xi, Yi) assumed to arise from the representation

Yi =

n∑
j=1

w∗jBj(xi) + εi,

with εi
i.i.d∼ N (0, 0.22) and basis function given by

Bj(xi) = K(xi,xj) = exp

(
−‖xi − xj‖2

2r2

)
.

The estimate of the length scale (bandwidth) r is found to be 2.2 for this dataset.
The fit in Figure 3(b) was obtained after using mixture modelling to postprocess
the sample path of the model search procedure. The fit is clearly better than the
one in Figure 3(a) which was obtained by simply picking the k vectors with the
largest prevalence.
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(a) Fit from raw sample path (b) Fit through mixture modelling

Figure 3: Results of function approximation: (left) fit obtained using the raw
sample path as is (right) Fit obtained after post processing of the sample path
using mixture modeling

4. Conclusion and Discussion

We have proposed a straightforward and effective solution to an important
aspect of model space search in the context fully Bayesian treatment of radial
basis function regression. In our future work, we intend to enrich our search
algorithm in such a way to sharpen the sample path to clearly isolate the modes
even in the presence of the desirable good mixing. We intend to run our proposed
algorithm on a variety of high dimensional simulated and real life data. We
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also plan on exploring the effect of a different prior distribution on the weights
of the radial basis function expansion. Of particular interest will be the use of
Silverman’s g-prior along the lines of Zhang et al. (2008) who theoretically proved
the consistency of the posterior when Bayesian model selection is tackled using
Silverman’s g-prior. In the same spirit, we will consider exploring the effect of
Zellner’s g-prior, following the recent work by Liang et al. (2008).
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