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Abstract: This paper considers the estimation of lifetime distribution based
on missing-censoring data. Using the simple empirical approach rather than
the maximum likelihood argument, we obtain the parametric estimations
of lifetime distribution under the assumption that the failure time follows
exponential or gamma distribution. We also derive the nonparametric es-
timation for both continuous and discrete failure distributions under the
assumption that the censoring distribution is known. The loss of efficiency
due to missing-censoring is shown to be generally small if the data model
is specified correctly. Identifiability issue of the lifetime distribution with
missing-censoring data is also addressed.
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1. Introduction

Let T be a random variable representing the failure time of the subject under
study. In many applications, such as in biological sciences and in clinical trials
for cancer research, the failure time T may not be always observable due to the
presence of censoring time C, which is assumed to be independent of T . Denote
F (t) = P (T < t) as the lifetime distribution. The estimation of F (t) based on
censored data is a crucial issue in survival analysis.

This estimation problem has been well-solved by the classical Kaplan-Meier
estimator (Kaplan and Meier, 1958) under the usual random right censoring
model. In such a data model, one observes the failure time or the censoring time,
whichever comes first. However, there are some circumstances in which the cen-
soring time can not be observed, thus resulting in the so-called missing-censoring
data. A typical prototype for missing-censoring data is product warranty data.
If under warranty a product experience a certain type of event, or “failure”, then
from warranty report, we can have the information about the “failure”. However,
for most unfailed items, the censoring time is unknown since the manufactures
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likely do not know the date of the sale of the items. For them, the only infor-
mation is that they have not been reported to be failed. Hu, Lawless and Suzuki
(1998) give some examples there.

Several researchers have studied missing-censoring data. For instance, un-
der the assumption that both T and C are exponential distributed, Phillips and
Sweeting (1996) considered the estimation for the parameter of the exponential
distribution when censoring times are subject to error. Phillips and Sweeting
(2001) studied the estimation problems when censoring is missing but a con-
comitant variable is available. Singh (2002) considered the inferences about the
lifetime distribution under the assumption that both failure and censoring times
are exponentially distributed. Hu, Lawless and Suzuki (1998) considered non-
parametric estimation of F (t) when both T and C are discrete.

The methods used by these researchers are all based on the traditional max-
imum likelihood approach. However, maximum likelihood approach sometimes
could be quite complicated. Besides the maximum likelihood approach may not
be always applicable. As pointed out by Kalbfleisch and Prentice (1981, p12),
“the maximum likelihood approach should be treated with care, since there are
dangers associated with maximizing likelihood of many parameters because this
technique may lead to inefficient or inconsistent estimates”.

We believe that a target parameter or a target function can be consistently
estimated from the observed data if and only if it is a functional of some estimable
variable(s). We say a random variable X is estimable from the sample S if S is
a realization of the random variable, or a function of the random variable. For
instance, suppose the sample S = {x1, x2, · · · , xn} is a realization of the random
variable X, then X, X2, and in general, f(X) for given f , are all estimable
from the sample S. Now consider censoring data setting. Let T and C be the
failure time and censoring time respectively. With the presence of censoring, the
observed data are, δi = I(Ti ≤ Ci), and Xi = Ti∧Ci, for i = 1, · · · , n. From these
censored data, we can see that δ = I(T ≤ C), and X = T ∧ C, or equivalently,
δ, Tδ, and C(1 − δ), are estimable. The target variable T is not estimable.
Consequently, E(T ), the mean life time, can not be estimated consistently from
the data.

Let N(t) = P (Tδ > t) and Y (t) = P (Tδ + C(1 − δ) > t). These two
functions are estimable functions from data since Tδ and Tδ + C(1 − δ) are
estimable. Denote S(t) = 1 − F (t). Then, under the assumption that T and C
are independent, we have,

dN(t)

Y (t)
=
dS(t)

S(t)
.

Hence, S(t) is estimable under the assumption of independence of T and C. If the
independence assumption does not hold, then S(t) will not be estimable. These
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conclusions are well known results in survival analysis.

In this paper, we provide a systematic treatment for missing-censoring data
by using a simple empirical approach. First, we identify the estimable variables
based on observed data, and then express the target parameters or functions
in terms of those estimable variables, and consequently the target parameters
or functions can be estimated consistently from those expressions in a natural
way. Based on this simple method, we derive the parametric estimators and their
biases and variances when the lifetime distribution is exponential and gamma.
Also we consider the nonparametric estimation of the lifetime distribution when
failure time and censoring time are either discrete or continuous. Theoretical
analysis and numerical simulations show that the loss of efficiency due to missing-
censoring is generally small if the data model is specified correctly. Compared
with the traditional maximum likelihood method, the approach advocated in the
present paper is simpler, more straightforward, and much easier to implement.

The rest of the paper is organized as follows. In Section 2, we consider the
parametric estimation of the lifetime distribution when it is exponential and
gamma. Nonparametric estimation of the lifetime distribution is discussed in
Section 3. Section 4 provides some computational simulations assessing the effi-
ciency of the corresponding parametric estimators with missing-censoring data.
A short discussion is presented in Section 5 while some theoretical derivations
are deferred to Appendix.

2. Parametric Estimation of Lifetime Distribution

In this section, we consider the parametric estimation of the lifetime distri-
bution under the parametric assumption for the lifetime distribution and the
censoring distribution. We begin with the case when both T and C are exponen-
tial and then the case when one is exponential while the other is gamma. General
parametric estimation problem is also addressed.

2.1 Both T and C are exponential

Assume that both the failure time T and the censoring time C follow expo-
nential distributions with mean 1/λ and 1/φ, respectively. Suppose that Ti is
the failure time for product unit i in n manufactured units and Ci is the cen-
soring time for that unit. When there is no censoring, the observed data are Ti,
i = 1, · · · , n, and the estimable variable is T . With the presence of the usual
random censoring, the observed data are δi = I(Ti ≤ Ci), and Ti or Ci, if δi = 1
or δi = 0, for i = 1, · · · , n. Thus the estimable variables are δ = I(T ≤ C), Tδ,
and C(1− δ). When censoring is missing, the observed data are Ti if δi = 1, and
nothing excepting the fact that Ti > Ci when failure time is censored. Hence,
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the estimable variables for missing-censoring data are δ and Tδ.

By some calculations, we have, E(T ) = 1/λ, E(δ) = λ/(λ + φ), E(Tδ) =
λ/(λ+φ)2, and E{C(1−δ)} = φ/(λ+φ)2. Thus, λ = 1/E(T ), λ = E(δ)/{E(Tδ)+
E(C(1− δ)} = E(δ)/E(X), where X = min(T,C), and λ = E2(δ)/E(Tδ). Con-
sequently, when there is no censoring, the corresponding consistent estimator for
the parameter λ is,

λ̂0 =
n∑n
i=1 Ti

. (2.1)

With the presence of censoring, the estimator is,

λ̂1 =

∑n
i=1 δi∑n

i=1{Tiδi + Ci(1− δi)}
=

∑n
i=1 δi∑n
i=1Xi

. (2.2)

While when censoring is missing, the estimator is,

λ̂2 =
(
∑n

i=1 δi)
2

n
∑n

i=1 Tiδi
. (2.3)

As shown in Appendix A, the asymptotic biases and variances of these esti-
mators are:

bias(λ̂0) = λ/n, and var(λ̂0) = λ2/n,

bias(λ̂1) = λ/n, and var(λ̂1) = λ(λ+ φ)/n,

bias(λ̂2) = (λ+ φ)/n, and var(λ̂2) = λ(λ+ 2φ)/n.

Remark. These estimators and their asymptotic biases and variances were de-
rived in Philips and Sweeting (2001) by using maximum likelihood argument and
Fisher information. The derivation in this paper is much more straightforward.

2.2 T is Gamma and C is exponential

Now consider the situation when T follows a gamma distribution with density
function f(t) = λαtα−1e−λt/Γ(α) and censoring time C follows an exponential
distribution with mean 1/φ.

Some calculations lead to, E(T ) = α/λ, E(T 2) = α(α+ 1)/λ2, E(δ) =
λα/(λ+ φ)α, E(Tδ) = α/(λ+ φ)E(δ), E{C(1 − δ)} = φ−1 − φ−1E(δ) − E(Tδ),
and E(T 2δ) = {(α+ 1)/(λ+ φ)}E(Tδ).

From the expressions

α =
E2(T )

E(T 2)− E2(T )
, and λ =

E(T )

E(T 2)− E2(T )
,
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come out the parametric estimators for α and λ when there is no censoring as,

α̂0 =
U2
1

nU2 − U2
1

, and λ̂0 =
nU1

nU2 − U2
1

, (2.4)

where U1 =
∑n

i=1 Ti, and U2 =
∑n

i=1 T
2
i .

From the expressions

α =
E2(Tδ)

E(δ)E(T 2δ)− E2(Tδ)
,

φ =
1− E(δ)

E(Tδ) + E{C(1− δ)}
=

1− E(δ)

E(X)
,

λ =
E(δ)E(Tδ)

E(δ)E(T 2δ)− E2(Tδ)
− φ,

we can see that the reasonable estimators for α and λ under usual random cen-
soring model can be

α̂1 =
W 2

1

W0W2 −W 2
1

, (2.5)

and

λ̂1 =
W0W1

W0W2 −W 2
1

−
∑n

i=1(1− δi)∑n
i=1Xi

, (2.6)

where W0 =
∑n

i=1 δi, W1 =
∑n

i=1 Tiδi, and W2 =
∑n

i=1 T
2
i δi.

For the case when censoring times are missing, the corresponding estimators
for α and λ can be derived from the expressions

α =
E2(Tδ)

E(δ)E(T 2δ)− E2(Tδ)
and λ = α

E(δ)
α+1
α

E(Tδ)
,

as

α̂2 =
W 2

1

W0W2 −W 2
1

, (2.7)

and

λ̂2 =
α̂
α̂
√
n

W
α̂+1
α̂

0

W1
. (2.8)

The biases and variances of these estimators, even though can be derived
without much difficulty, are cumbersome and thus of little theoretical interest.
In Section 4, we just use simulations to compare the efficiency of these estimators.

2.3 T is exponential and C is gamma
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For the situation where T follows an exponential distribution with density
function f(t) = λ exp(−λt) and C follows a gamma distribution with density
function g(t) = φ(φt)k−1e−φt/Γ(k), again by some calculations, we have,

E(δ) = 1−
( φ

λ+ φ

)k
,

E(Tδ) =
1

λ

{
1−

( φ

λ+ φ

)k
(1 + k

λ

λ+ φ
)
}
,

E(T 2δ) =
2

λ2

{
1−

( φ

λ+ φ

)k (k + 2)(k + 1)λ2 + 2(k + 2)λφ+ 2φ2

(λ+ φ)2

}
.

Replace E(δ), E(Tδ) and E(T 2δ) by W0/n, W1/n and W2/n respectively, we can
get a nonlinear system about unknown parameters λ, k and φ. Such nonlinear
system usually can only be solved numerically, and the solution gives the estima-
tors to the parameters when censoring is missing. However, due to the lack of
closed forms for these estimators, inferences concerning the resulted estimators
could be elusive.

2.4 Identifiability of the lifetime distribution under parametric assump-
tion

Assume that both failure time T and censoring time C follow some distri-
butions with some unknown parameters. Let f(t|θ1) be the density function of
T and K(t|θ2) be the survival function of C respectively, where θ1 and θ2 are
unknown parameter vectors. Suppose there are totally m unknown parameters.
With missing-censoring data, the estimable variables are δ = I(T ≤ C) and
V = Tδ, and thus, the estimable quantities are E(δ) and E(V k) = E(T kδ),
k = 1, 2, · · · . Denote φk(θ) =

∫∞
0 tkf(t; θ1)K(t; θ2)dt, k = 0, 1, · · · ,m. The quan-

tities φk can be estimated consistently by Wk = (
∑n

i=1 T
k
i δi)/n. Replace φk(θ)

by Wk, k = 0, 1, · · · ,m, we can get a system with m unknown variables. Let
θ = (θ1, θ2), and Φ = (φ1, · · · , φm). Since the determinant |∂Φ/∂θ| is usually
not zero, the unknown variables can be solved uniquely. Thus, under paramet-
ric assumption, the lifetime distribution is usually identifiable even censoring is
missing.

3. Nonparametric Estimation of Lifetime Distribution

It is well known that, without parametric assumption, the lifetime distribution
in general is not identifiable. However, as we will show, when the censoring
distribution is known, the lifetime distribution is estimable or identifiable.

3.1 Estimation with discrete variables
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Assume that both the failure time T and the censoring time C are discrete
and each may take values 1, 2, · · · . Let f(t) = P (T = t), g(t) = P (C = t),
S(t) =

∑
s≥t f(s) andK(t) =

∑
s≥t g(s). Let V = Tδ and h(t) = P (V = t). Since

h(t) = P (T = t, δ = 1) = P (T = t, T ≤ C) = f(t)K(t), f(t) = P (V = t)/K(t).
Thus, the estimator for f(t) is,

f̂(t) =
dt

nK(t)
,

where dt is the number of observed failures at time t. It is easy to show that the
estimator f̂(t) is unbiased with variance

var{f̂(t)} =
f(t){1− f(t)K(t)}

{nK(t)}
.

Remark. This estimator has been derived by Hu, Lawless, and Suzuki (1998)
as maximum likelihood estimator and moment estimator. Again, the derivation
here is much simpler.

3.2 Estimation with continuous variables

Now assume both T and C are continuous. Denote the density function and
the survival function of T as f(t) and S(t) = P (T > t) respectively. Denote the
survival function of V = Tδ as SV (t) = P (V > t). We have, SV (t) = P (T > t, δ =
1) =

∫∞
t f(s)K(s)ds. Thus, dSV (t) = −f(t)K(t), and f(t) = −dSV (t)/K(t).

Thus,

S(t) = −
∫ ∞
t

dSV (t)

K(t)
.

Let H(t) be the Heaviside function which is defined as H(t) = 1 for t ≥ 0 and
H(t) = 0 otherwise. From the observed data, the empirical estimator for SV (t)
is,

ŜV (t) =
1

n

n∑
i=1

I(Vi > t) =
1

n

n∑
i=1

δiH(Ti − t).

Consequently, an estimator for S(t) is given by

Ŝ(t) = −
∫ ∞
t

dSV (s)

K(s)
=

1

n

∫ ∞
t

n∑
i=1

δi
H ′(Ti − s)
K(s)

ds =
1

n

n∑
i=1

δi
K(Ti)

H(Ti − t).

(3.1)
Let τ = inf{t : K(t) = 0}. As shown in Appendix B, the estimator is unbiased

if S(τ) = 0, and the variance of
√
nŜ(t) is given by

S(t){1− S(t)}+

∫ ∞
0

λc(u)

K(u)
{S(t ∨ u)− 2S(t)S(t ∨ u) + S2(t)S(u)}du,
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where λc(t) is the hazard function of censoring time C and ∨ is maximum operator
defined as a ∨ b = max(a, b).

4. Numerical Simulations

To investigate the behavior of the proposed estimators and the loss of effi-
ciency due to censoring and missing-censoring under parametric assumption, we
conduct some simulations with different failure and censoring distributions. First
we check the case when both failure time and censoring time are exponential
with mean 1/λ and 1/φ respectively. The estimators λ̂0, λ̂1, and λ̂2 correspond-
ing to the situations of no censoring, random-censoring, and missing-censoring,
are given in subsection 2.1. A simulation is carried out with 100 iterations and
sample size 50. The results are summarized in Table 1.

Table 1: Parametric estimation when failure time is exponential

No censoring Random-censoring Missing-censoring
λ, φ

λ̂0, bias(λ̂0),var(λ̂0) λ̂1, bias(λ̂1),var(λ̂1) λ̂2, bias(λ̂2),var(λ̂2)

2.0, 1.5 2.042, 0.0421, 0.09737 2.045, 0.0445, 0.17484 2.103, 0.1030, 0.24632

2.0, 2.0 2.042, 0.0421, 0.09737 2.061, 0.0607, 0.19929 2.073, 0.0728, 0.25556

2.0, 2.5 2.042, 0.0421, 0.09737 2.045, 0.0459, 0.22301 2.063, 0.0630, 0.29554

From Table 1 we can see that all these three estimators perform quite well
even when censoring is heavy. As we can notice that the estimated values and the
theoretical values derived in subsection 2.1 are closely agreeable. For instance,
when λ = 2 and φ = 2, the theoretical asymptotic variance values are: var(λ̂0) =
λ2/n = 4/50 = 0.08, var(λ̂1) = λ(λ + φ)/n = 5/50 = 0.18, var(λ̂2) = λ(λ +
2φ)/n = 12/50 = 0.24. The estimated values are 0.09737, 0.19929, and 0.25556,
respectively. Also, the differences between the estimated var(λ̂1) and var(λ̂2) are
quite small, indicating loss of efficiency due to missing-censoring is small.

Now we check the case when the failure time follows a gamma distribution
with shape parameter α and scale parameter λ and the censoring time follows
an exponential distribution with mean 0.5. The estimators for α and λ are given
in subsection 2.2. A simulation is conducted to assess the performance of these
estimators. We use the algorithm proposed by Cheng and Feast (1980) to produce
a gamma distribution. In this simulation, we use 100 iterations, and since we find
that sample size 50 is too small to get desirable results, we take sample size 500.
As mentioned by Hu, Lawless and Suzuki (1998), for missing-censoring data, the
sample size usually is large, thus taking sample size 500 is reasonable. Table 2
gives the results.
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Table 2: Parametric estimation when failure time is gamma

No censoring Random-censoring Missing-censoring

α = 3 2.959, -0.041, 0.04219 3.091, 0.091, 0.36577 3.091, 0.091, 0.36577

λ = 2 1.973, -0.027, 0.01953 2.172, 0.172, 0.78302 2.148, 0.148, 0.53299

α = 3 2.959, -0.041, 0.04220 3.006, 0.006, 0.23242 3.006, 0.006, 0.23242

λ = 3 2.959, -0.041, 0.04394 3.054, 0.054, 0.62545 3.043, 0.043, 0.51500

The three numbers in each cell are: estimated value, estimated bias, and estimated
variance for the parameter under different data settings.

The table shows again that all these three estimators perform quite well.
It is interesting to notice that the estimated variance for estimator λ̂2 is less
than that of the estimator λ̂1, this implies that observed censoring times do not
provide much information in the estimation of lifetime distribution, and thus
the mismeasurement for censoring will not significantly affect the estimation of
lifetime distribution. Such conclusion is quite agreeable with the statement made
by Meier et al. (2003).

5. Discussion

This paper considers the estimation of the lifetime distribution with missing-
censoring data by using a kind of empirical estimation method, rather than the
traditional maximum likelihood method. The estimators and their biases and
variances are derived in a simple and uniform way. Theoretical analysis and
simulation studies show that the loss of information due to missing-censoring is
negligible if the model is correctly specified. Compared with the traditional max-
imum likelihood method, the approach advocated in this paper is much simpler
and much easier to implement. As we can see, it would be quite hard to tackle
the parameter estimation for gamma distribution by using maximum likelihood
method. The method used in the present paper might be also applicable to other
censored data.

Appendix A

To obtain the bias and the variance of the estimator λ̂1 in (2.2), denote
W0 =

∑n
i=1 δi, W1 =

∑n
i=1Xi, and,

W0 − E(W0)

E(W0)
= δW0,

W1 − E(W1)

E(W1)
= δW1.
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We have,

λ̂1 − λ =
W0

W1
− λ =

E(W0)(1 + δW0)

E(W1)(1 + δW1)
− λ = λ

(1 + δW0

1 + δW1

)
− λ

= λ{δW0 − δW1 − δW0δW0 + (δW1)
2 + terms of order 3 or more}.

Ignoring the terms of order 3 or more, we have,

bias(λ̂1) = E(λ̂1 − λ) = −λE(δW0δW1) + λE(δW1)
2

= −λ cov(W0,W1)

E(W0)E(W1)
+

λ

E2(W1)
var(W1).

When both failure time and censoring time are exponential, the data fit the
propositional hazard model. As shown in Chen et al. (1982), δ and X are
independent. Thus, cov(W0,W1) = cov(

∑
δi,
∑
Xi) = ncov(δ,X) = 0. Since X

follows exponential distribution with mean 1/(λ+φ), we know E(W1) = nE(X) =
n(λ + φ)−1, and var(W1) = nvar(X) = n(λ + φ)−2. Hence, bias(λ̂1) = λ/n.
Similarly,

var(λ̂1) ≈ E(λ̂1 − λ)2 ≈ λ2E{(δW0)
2 + (δW1)

2 − 2δW0δW1}

= λ2
var(W0)

E2(W0)
+ λ2

var(W1)

E2(W1)
− 2λ2

cov(W0,W1)

E(W0)E(W1)

= λ2
n λφ
(λ+φ)2

n2
(

λ
λ+φ

)2 + λ2
n 1
(λ+φ)2

n2
(

1
λ+φ

)2 − 0

=
λφ

n
+
λ2

n
=
λ(λ+ φ)

n
.

Now consider the bias and variance of estimator λ̂2. Let W0 =
∑n

i=1 δi,
W1 =

∑n
i=1 Tiδi, and denote,

W0 − E(W0)

E(W0)
= δW0,

W1 − E(W1)

E(W1)
= δW1.

So,

λ̂2 − λ =
W 2

0

nW1
− λ =

E2(W0)(1 + δW0)
2

nE(W1)(1 + δW1
− λ = λ

{(1 + δW0)
2

1 + δW1
− 1
}

= λ{2δW0 − δW1 + (δW0)
2 + (δW1)

2 − 2δW0δW1 + o(|δW0|+ |δW1|)2}.

Thus,

bias(λ̂2) ≈ λE(δW0)
2 + λE(δW1)

2 − 2λE(δW0δW1)

= λ
var(W0)

E2(W0)
+ λ

var(W1)

E2(W1)
− 2λ

cov(W0,W1)

E(W0)E(W1)
.
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And,

var(λ̂2) ≈ 4λ2E(δW0)
2 + λ2E(δW1)

2 − 4λ2E(δW0δW1).

By some calculation, we find, E(W0) = nλ/(λ + φ), var(W0) = nλφ/(λ+ φ)2,
E(W1) = nλ/(λ+φ)2, var(W1) = nλ(λ+ 2φ)/(λ+φ)4, cov(W0,W1) = nλφ/(λ+
φ)3. Plugging in these values in above bias and variance expressions, we obtain,

bias(λ̂1) =
λ+ φ

n
,

and

var(λ̂1) =
λ(λ+ 2φ)

n
.

Appendix B

To study the estimator Ŝ(t) in (3.1), we use martingale arguments since the
parametric method in Appendix A is not suitable for nonparametric estimation.

For the mean of Ŝ(t), we have

Ŝ(t)− S(t) = 1− 1

n

n∑
i=1

δi
K(Ti)

+
1

n

n∑
i=1

δi
K(Ti)

{I(Ti ≥ t)− S(t)}

= Ŝ(∞) +
1

n

n∑
i=1

δi
K(Ti)

{I(Ti ≥ t)− S(t)}.

Then, E{Ŝ(∞)} = 1− E{I(T < C)/K(T )} = 1−
∫ τ
0 f(t)dt = S(τ), and

E
[ 1

n

n∑
i=1

δi
K(Ti)

{I(Ti ≥ t)− S(t)}
]

=E
[I(T ≤ C)

K(T )
{I(T ≥ t)− S(t)}

]
=S(t)− S(τ)− S(t){1− S(τ)}
=− S(τ){1− S(t)}.

Thus, E{Ŝ(t)− S(t)} = S(τ)S(t). So, Ŝ(t) is unbiased when S(τ) = 0.
For the asymptotic variance of

√
nŜ(t), let λc(t) denote the hazard function

for the censoring distribution. As in Zhao and Tsiatis (1997), define a filtration
F (u) as the σ- algebras generated by

σ{I(Ti ≤ u, Ti ≤ Ci), I(Ci ≤ u),K(s), 0 ≤ s <∞, i = 1, · · · , n}.
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The corresponding martingale process M c
i (u) can be expressed as

M c
i (u) = N c

i (u)−
∫ u

0
λc(t)Yi(t)dt,

where
N c
i (u) = I(Ci ≤ u,C < Ti), Yi(u) = I(Ti ≥ u,Ci ≥ u).

By the equality from Robin and Rotnitzky (1992, p313),

δi
K(Ti)

= 1−
∫ ∞
0

dM c
i (u)

K(u)
.

Since Ŝ(∞) is a constant, we can assume Ŝ(∞) = 0. Thus,

n
1
2 {Ŝ(t)− S(t)} = n−

1
2

n∑
i=1

δi
K(Ti)

{I(Ti ≥ t)− S(t)}

=n−
1
2

n∑
i=1

{I(Ti ≥ t)− S(t)} − n−
1
2

n∑
i=1

∫ ∞
0

dM c
i (u)

K(u)
{I(Ti ≥ t)− S(t)}.

From the results for empirical estimator, the asymptotic variance from the
first term goes to S(t){1 − S(t)}. From the martingale theory, the second one
converges to,

E

∫ ∞
0
{I(Ti ≥ t)− S(t)}2 I(Ti ≥ u)I(Ci ≥ u)λc(u)

K2(u)
du

=

∫ ∞
0

λc(u)

K(u)
{S(t ∨ u)− 2S(t)S(t ∨ u) + S2(t)S(u)}du.

As claimed in Zhao and Tsiatis (1997), these two terms are uncorrelated.
Hence, the asymptotic variance of

√
nŜ(t) is

S(t){1− S(t)}+

∫ ∞
0

λc(u)

K(u)
{S(t ∨ u)− 2S(t)S(t ∨ u) + S2(t)S(u)}du.
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